Concurrent Error Correction in Iterative Circuits by
Recomputing with Partitioning and Voting

Hussain Al-Asaad and Edward Czeck

Department of Electrical and Computer Engineering
Northeastern University

Boston, MA 02115

Abstract

This paper presents a novel technique for the design of
iterative circuits with concurrent error correction
capabilities. The new method is called "recomputing with
partitioning and voting” (RWPV). It uses a combination
of hardware and time redundancy to achieve fault
tolerance while providing the same error correction
capabilities as found in hardware TMR or time
redundancy computation. RWPV error correction is
obtained with small hardware and time overhead, as
compared to over 200% overhead in either hardware or
time for TMR or time redundancy.

1 Introduction

To achieve fault tolerance, redundancy is often used in
the form of hardware, software, information, or time. The
most common form of redundancy is hardware. For
example; duplication with comparison (DWC) can detect
an error while triple modular redundancy (TMR) can
correct an error [1]. Hardware redundancy impacts
physical weight, size, power consumption, and cost. DWC
and TMR methods use at least 100% and 200% hardware
redundancy respectively.

To overcome these difficulties of hardware redundancy,
time redundancy has received much attention [2-5]. The
main idea of time redundancy is to reduce the amount of
extra hardware at the expense of performance.

The paper is divided into the following sections:
Section 2 presents concurrent error detection/correction
techniques, their associated overheads in redundancy, and
their limitations in fault coverage. Section 3 discusses a
timing model used to evaluate our technique. Section 4
details our new scheme -- Recomputing with Partitioning
and Voting -- RWPV. Section 5 presents results of a
timing simulation for some common circuits with RWPV
applied. Finally, Section 6 concludes the paper.

2 Concurrent error checking

Hardware concurrent grror detection duplicates the

174

0-8186-3830-3/93 $03.00 © 1993 IEEE

system and then compares the results to detect errors.
Time redundant concurrent error detection repeats the
computation, then compares the results to detect the
errors. To detect permanent faults using time redundancy,
the repeated computation is performed differently.

Various techniques which use time redundancy are:
alternating logic [2], recomputing with shifted operands
(RESO) [3] and recomputing with swapped operands
(RESWO) [4]. The differences in the above techniques
are their encoding and decoding functions. Recently, a
new technique, recomputing using duplication with
comparison (REDWC), was developed for iterative
circuits. REDWC has been proved to be a good technique
for error detection[5]. The method which accomplishes
error detection resembles that of duplication with
comparison. A time redundant calculation completes the
operation and obtain the final result.

The error detection schemes described above use either
hardware or time redundancy to detect errors. Table-1
shows the associated overhead for each of these schemes.

Table 1 Redundancy used in different error detection and
correction methods.

TIME

HARDWARE
Scheme redundancy redundancy
Error detection schemes
_Allermating Logic | 0%-100% 2100% |
RESO =0% >100%
RESWO 0%-100% 0%-100%
[REDWC 0%:100% | 0%100%
DWC >100% =0%
Error correction schemes
2200% 0% __|
RESO =0% >200%

A typical error correctiop hardware scheme is TMR
with its disadvantage of high hardware redundancy -- at
least 200%. On the other hand, RESO has limited
capabilities of error correction by using at least 200%
time redundancy. Table-1 shows the associated overhead
for each of the above error correction techniques.

To overcome the weaknesses of the above approaches
in error correction, an extension of REDWC is presented

(N/3)units. Each primary input vector A is also divided
into three (N/3) bit parts AL, AM and AH. In addition, we
need the following:

1) 3-to-1 Multiplexer (MUX1) for each primary
input of (IT) to select between L, M, and H parts.

2) 2-to-1 Multiplexer (MUX2) for each secondary
input entering ITL. Similarly for ITM and ITH.

3) A Latch (LC) for each secondary output of ITL.
Similarly for ITM and ITH.

4) (N/73)-bit voter (VOTER) for each primary output
of IT.

5) One bit voter (V) for each secondary output of
ITL. Each (V) will vote among a secondary output
of ITL, ITM and ITH.

6) Two (N/3) bit latches (LATCH) for each primary
output of IT to store the first (SL) and the second
(SM) parts of the result.

The complete computation is done in three phases:

PHASE 1: The L part of primary inputs is selected to
enter the three parts of the iterative circuit ITL, ITM and
ITH. External values are applied to the secondary input of
each of ITL, ITM and ITH. The primary outputs of ITL,
I'TM and ITH are voted and the result is then saved in the
latch of the lowest part to get (SL).

PHASE 2: The M part of primary inputs is selected to
enter the three parts of the iterative circuit ITL, ITM and
ITH. In this phase, the secondary outputs of ITL, ITM and
ITH from the first phase are used as secondary inputs to
ITL, ITM and ITH. This justifies the need of latches at the
secondary output of each ITL, ITM and ITH. The primary
outputs of ITL, ITM and ITH enter the voter to vote on
the results. The voter result is saved in the latch of the
medium part to get (SM).

PHASE 3: In this phase, the same happens as phase 2,
but the output of the voter is not latched because the
complete result of the computation is ready at the output.
The result of (V) is used in this phase as the secondary
output of IT.

The computing time using RWPV per phase is:

Tp=T [(NI3)-1]+nmx[ﬂco+7Lc0,Bs+¢s]
where T, is defined in equation (1).
Hence the computing time of each phase of RWPV is:
Tp=To+max{Tp;, Tpyo 14Ty,

where T, is the propagation delay of the primary
input multiplexers (MUX1), T 5 is the propagation delay
of the secondary input multiplexers (MUX2) and T, is the
delay of the voter (VOTER).

Note that the delay in phase i of the storage latches
(LATCH) and those of the latches at the secondary
outputs (LC) is overlapped with the next phase i+7.
Hence the computing time of RWPYV iterative circuit is:

176

Tprv"y‘Tp

Then the time redundancy in using RWPYV as compared
to a non-redundant implementation is:

(100*(3*max{Ty,; T, o }43°T +2*max{ B 0 }+2*A +
2*max{B +h B} - 4*(B A)] / [max{ Beo®co) +
Ao + (N-2)*[Boy#h o) + max{B A o B+ 1] @

From the above equation, we can see that the time
redundancy is inversely proportional to N.

The advantages of the above model is its use in RWPV
iterative circuit design. Iterative circuits can be designed
in different forms and using the delay model we can
determine which design form is better under RWPV.

RWPYV can correct any single error in the iterative
circuit, input multiplexers, and the one bit latches.
Moreover, RWPV can correct multiple errors if the errors
occur in one part of the circuit, i.e the L, M, or H.

SL

OS>

T O >

Figure 3 Structure of RWPV circuit.
5 Simulation

RWPYV was simulated using VHDL for three different
iterative circuit designs. These are:

which allows error correction capability. Our new
approach is called recomputing with partitioning and
voting (RWPYV). It achieves error correction with typically
less than 200% overhead by combining hardware and time
redundancy. A description of RWPYV follows in Section 4.

3 Circuit model

An iterative circuit consists of N identical units
connected in a linear form. The inputs and outputs of the
iterative circuit are divided into two major types: primary
inputs (outputs) and secondary inputs (outputs). The
secondary outputs of unit i-/ become the secondary
inputs of unit i. Unit i cannot perform its operation until
unit i- has finished.

A delay model of iterative circuits, Figure-1, is
developed to understand the propagation delays in such
circuits. It has six parameters which can be extracted from
the design of a unit cell. These parameters are:
¢, The minimumn time needed for the primary input data
to propagate towards the secondary output until
reaching a point which depends on a secondary input.
The minimum time needed for the secondary input
data to propagate towards the secondary output until
reaching a point which depends on a primary input.
¢, The minimum time needed for the primary input data

to propagate towards the primary output until
reaching a point which depends on a secondary input.
Bs The minimum time needed for the secondary input
data to propagate towards the primary output until
reaching a point which depends on a primary input.
Ao Is equal to the maximum propagation delay from (A
secondary input to secondary output minus) or (A

primary input to secondary output minus o..).

s Isequal to the maximum propagation delay from (A
secondary input to primary output minus B;) or (A
primary input to primary output minus o).

The computation time delay using the above circuit
model is derived as follows:

Bo

Figure 1 lterative circuit delay modal.

176

Let T (i) be the time needed for the secondary output of
unit i to settle after an input change. Then,
Ty@=(max (B 000} +Ac)+E-1* Bt Aoy 0))

The total computing time of the iterative circuit is:
T= Tl(N-l)-i-max{ﬁco+Aco,ﬂs+4)s} If czs<T1(N-l)+Bs)
T= max{Bco+lm+Tl(N-l),as+¢s] If ocs>T1(N-1)+[5S ?3)

where N is the number of elements in the iterative
circuit. In most cases, the value of 0 is much smaller than

Ty (N-D+ g since T(N-1) is a linear function of N --

later stages are waiting for the secondary inputs rather
than the primary inputs. Hence equation 2 is often used.

Consider the example of ripple carry adder; a unit of
this adder is shown in Figure-2. The model parameters are
extracted from the circuit using the previous definitions. If
the delay of a 2-input XOR gate is 8 ns and a 2-input
NAND gate is 5 ns then we have:

0eo=8 ns, B=0ns, =8 ns.

B=Ons,A . =10ns, ¢s=8 ns.

Hence the computing time of this iterative circuit
without RWPV is:
T=8ns+ 10 ns + (N-2)*10 ns +10 ns = 8 ns + N*10 ns.
This result can be verified easily from the circuit or by
circuit simulation.

Figure 2 Ripple carry adder cell.
4 New method - RWPV

Our method divides the iterative array and input data
into three parts. Each third of the array executes three
times over the data part. Since the delay through the array
is alinear function of array length, and the time required
to perform one-third of the operation three times is
approximately equal to performing the operation one time,
this procedure requires little time overhead. Figure-3
shows the structure of RWPV while the following
paragraphs describe the operation.

Consider an iterative circuit (IT) of N units, partitioned
into three parts ITL, ITM and ITH each of which is

A) N bit Ripple carry adder (RIPP ADD).

B) N bit Adder formed of 4-bit carry lookahead adders
(Standard 74L.S83) and the carry ripples between
carry lookahead adders (FAST ADD).

C) N-bit ALU formed of 4-bit ALU (Standard
74LS181) and the carry ripples between carry
lookahead ALU's (FAST ALU)

The time redundancy of the RWPV for the three
designs is shown in Table-2, while the hardware
redundancy is shown in Table-3. For the sake of
comparison, the time and hardware redundancies of a
TMR implementation are shown in Tables 4 and 5
respectively.

Table 2 Percent time redundancy for RWPV iterative
circuits for different values of N.

the iterative circuit model described).
As a suggestion for evaluating RWPV in a single figure
of merit, the parameter p is defined as:

= RWPYV hardware overhead + RWPV time overhead
p TMR hardware overhead + TMR time overhead

Table-6 shows the values of p for the cases studied. p is
always less than 1, except when the array size is small.
Hence, the redundancy of an RWPYV iterative circuit is
typically less than that of the TMR.

Table 6 Values of p as a function of array size.

N 12 24 36 43 96
RIPP ADD{ 1.023 | 0.897 | 0.855 | 0.833 | 0.800
FASTADDY 0.732 | 0.626 | 0.587 | 0.568 | 0.538
FAST ALU| 1441 | 0965 | 0.768 | 0.668 | 0.490

N 12 24 36 48 96

RIPP ADD|] 25.00 12.50 8.33 6.25 3.13

FAST ADDY 33.33 17.39 | 11.76 8.89 4.49

FAST ALU] 264.71 | 150.00 {104.50 | 82.14 | 42.59

Table 3 Percent hardware redundancy for RWPV
iterative circuits for different values of N.

N 12 24 36 43 96

RIPPADD| 243.14 1218.63] 210.46 |206.37 | 200.25

FAST ADDY 147.62 |132.74 |127.78 |125.29 | 121.58

FAST ALU| 79.48 | 7147 68.80 | 67.47 65.46

Table 4 Percent time redundancy for TMR iterative
circuits for different values of N

N 12 24 36 48 96

RIPP ADD| 9.17 4.58 3.06 2.29 1.15

FAST AD[] 15.2 797 5.39 4.07 2.06

FAST ALU| 21.5 12.22 8.53 6.55 3.40

-~

Table 5 Percent hardware redundancy for TMR iterative
circuits for different values of N.

N 12 24 36 48 96
RIPP ADDJ 252.94 | 252.94 | 252.94 | 252.94 | 252.94
FAST ADDj 232.14 }232.14 | 232.14 | 232.14 | 232.14
FAST ALUJ 217.31 |217.31 | 217.31 | 217.31 | 21731

From the simulation data, we conclude the following:

1-The hardware redundancy of the TM R iterative
circuit is independent of N, decreases as the complexity of
the iterative circuit increases, and is always greater than
200%.

2-The time redundancy of TMR iterative circuit
decreases as N increases.

3-The hardware redundancy of an RWPY iterative
circuit decreases as N increases or as the complexity of
the iterative circuit increases.

4-The time redundancy of an RWPYV iterative circuit is
inversely proportional to N and depends on the actual
design of the iterative circuit unit, (i.e, the parameters of

177

6 Conclusion

A new approach for concurrent error correction in
iterative circuits was presented and evaluated. The
technique allows for the on-line detection and correction
of errors in an iterative array circuit. The advantage of this
technique is that error correction is achieved with less
than 200% redundancy in both time and hardware.
Moreover, the time and redundancy overheads have been
shown to decrease as the complexity and delay of the
array increases.

References

{11 Siewiorek, D., Swarz, R., Reliable Computer Systems:
Design and Evaluation, Digital Press, 1992.

(2] Reynolds, D., Metze, G. "Fault Detection Capabilities of
Alternating Logic", IEEE Transactions on Computers, Vol
C-27, No. 12, pp. 157-162, December 1978.

[3] Patel, J., Fung, L. "Concurrent Error Detection in ALU's by
Recomputing with Shifted Operands", IEEE Transactions
on Computers, Vol C-31, pp.417-422, July 1982,

[4] Hana, H., Johnson, B. "Concurrent Error Detection in VLS
Circuits Using Time Redundancy”, Proc. IEEE
Southeastcon, March 23-25, 1986, pp. 208-212.

[5] Jobnson, B., Aylor, J., Hana, H. "Efficient Use of Time and
Hardware Redundancy for Concurrent Error Detection in a
32-bit VLSI Adder®, IEEE Journal of Solid-State Circuits,
Vol. 23, No. 1, pp. 208-215, February 1988.

[6] Johnson, B., Design and Analysis of Fault Tolerant
Digital Systems, Addison-Wesley, 1989.

[7] Hsu, Y., Swartzlander, E. “Time Redundant Error
Correcting Adders and Multipliers”, IEEE Int’l Workshop
on Defect and Fault Tolerance in VLSI Systems, pp 247-
254, 1992, Published after initial submission of this paper.

