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ABSTRACT

Fault tolerance is often considered as a good additional
feature for multiprocessor systems but nowadays it is
becoming an essential attribute. Fault tolerance can be
achieved by the use of dedicated customized hardware that
may have the disadvantage of large cost. Another
approach to fault tolerance is to exploit existing redun-
dancy in multiprocessor systems via a task scheduling soft-
ware strategy based on time redundancy. Time redundancy
reduces the expense of additional hardware needed to
achieve fault tolerance at the expense of additional compu-
tation time, which is more affordable. In this paper we
present a general-purpose time redundant task-scheduling
scheme for real time multiprocessor systems that is capable
of tolerating various hardware and software faults. Our
experimental simulation results show that our technique is
highly effective, feasible, and promising.

Keywords: Fault tolerance, time redundancy, task
scheduling, multiprocessor systems.

1 INTRODUCTION

Real-time systems can be classified as hard real-
time systems in which the consequences of missing a
deadline can be catastrophic and soft real-time sys-
tems in which the consequences are relatively tolera-
ble. In hard real time systems it is important that tasks
complete within their deadline even in the presence of
a failure. Examples of hard real-time systems are con-
trol systems in space stations, auto pilot systems, and
monitoring systems for patients with critical condi-
tions. In soft real-time systems it is more important to
economically detect a fault as soon as possible rather
than to mask a fault. Therefore the main priority is
given to mechanisms that are able to detect a fault fast

and with the least cost. It is assumed that a proper
action can be done immediately after the detection of
a fault. In the worst case, the proper action may be
replacing the faulty unit with a correct one and repair-
ing the faulty unit off-line. Examples of soft real-time
systems are all kind of online transactions processing
such as airline reservation, banking, and E-commerce
applications. A multiprocessor system can be used to
process and provide vital on-line information such as
weather prediction or stock market data. Although
failure of a processor is not often catastrophic, it can-
not be tolerated for a long period of time. Long down-
time of a web server can cause loss of business
income for companies who rely on that server. It is
interesting to note that while the cost of the system
itself decreases, the cost for maintenance and down-
time penalty grows. Thus failure of a single processor
does not have destructive effects as long as the failure
is detected with a minimum period of time and ideally
with the least cost.

In this paper, we target multiprocessor systems
where availability is more important than reliability.
The advantage of our approach is that there in no need
for hardware redundancy and so the cost for detecting
faults will be minimum. It also has the least impact on
the speed and performance of each processor. The
only drawback is time redundancy, which will be ana-
lyzed and evaluated via simulation experiments for
different scenarios. The following section reviews
some well-known fault-tolerant techniques imple-
mented in different architectures. Section 3 summa-
ries fault-tolerant techniques particularly for
multiprocessor systems. Section 4 is dedicated to our
approach and the results of our simulations. Finally,
Section 5 presents a summary of contributions and a
discussion of possible future improvements.



2 BACKGROUND

Computers built in late 1950s had a 12-hour mean
time to failure. The maintenance staff of a dozen full-
time computer engineers could repair the machine in
about eight hours. This failure-repair rate cycle pro-
vided 60 percent availability [1]. The vacuum tube
and related components were the major sources of
failures as they had lifetime of a few months. Thus
the machines rarely operated for only more than a day
without interruption. Scope of computer’s applica-
tions has been expanded significantly since then.
These applications include real-time control of trans-
portation and communication systems, space flights,
automated factories, and even monitoring critically ill
patients in hospitals. The fault-tolerance requirements
for these applications far exceed the established reli-
ability for previous computer generations. In general,
in order to detect a fault and handle it properly,
designers use one of the following two techniques:

* Self-Testing: The module performs its own oper-
ation and some extra work is done to validate its
correct functionality. Built-in Self Test (BIST)
and error detecting codes for transferring mes-
sages are examples of this approach.

e Comparison: Two or more copies of the same
module perform the same operation and a compar-
ator examines their results. If there is a
disagreement, a proper action is performed.

Self-testing requires additional circuits or a rede-
sign of existing modules. For example, BIST requires
extra three hardware components to a digital circuit: a
pattern generator, a response analyzer, and a test con-
troller. However, self-testing using error detecting
codes requires a redesign of the system.

Error detecting codes are often used for digital
communication and memories to ensure correct trans-
mission of data. However, in case of data modifica-
tion like arithmetic processing, they often do not have
the capability to detect errors efficiently. On the other
hand as the integrated circuits become more and more
complex designing the customized additional circuits
such as BIST to detect the errors of these processors
would be more time-consuming, costly and sophisti-
cated as well. Ironically the price of the complicated
processor does not increase as much as their com-
plexity does. Thus it would be simpler and more eco-
nomic to use the comparison technique to detect
faults.

In custom fault-tolerant design, 30 percent of pro-
cessor circuits and 30 percent of processor design
time are devoted to self-testing [2]. On the other hand
the duplication with comparison technique saves that
much effort and time and the result is overall reduc-
tion of design and circuit cost. Advantages of the
duplication and matching technique include (i) low
design cost with wide applications, (if) easiness to
upgrade for higher reliability without massive techni-
cal redesign, and (ii7) high fault coverage.

Redundancy resources already exist in multipro-
cessor systems and thus in our method we exploit this
redundancy in comparing the results of all pairs of
processors. Of course a device that has two identical
modules to perform the same operation has twice
problems as a device with one module. Thus redun-
dancy by itself provides error detection capability but
does not improve availability/reliability. Availability/
reliability can be improved if we include some kind
of recovery or repair facility. This can be achieved by
a mechanism that determines which module is faulty,
switches the faulty module off-line, and connects the
output of the well-functioning unit to the main system
output. Fault detection circuits can be built in the two
units to determine the faulty unit in case of disagree-
ment. The original idea of duplication with compari-
son using different techniques for detecting the faulty
unit has been employed by some well-known manu-
factures such as AT&T, Tandem, and Intel [2][3].

The simplicity, low design cost, and low perfor-
mance impact on the system, makes the comparison
technique more attractive. Duplication with compari-
son is applicable to all areas and all levels of com-
puter design and therefore is widely used. If the
duplicated modules have access to the same common
source like a bus or memory then some errors can
affect both modules at the same time and faults may
not be detected because both copies are in agreement.
Thus careful physical separation of the modules is
necessary to provide confinement areas and be able to
detect overlapping failures.

Time redundancy reduces the need of extra hard-
ware at the expense of spending additional time. In
many applications like web servers the trend is to use
the available high performance PCs than customized
computers with additional extra built-in hardware to
provide fault-tolerance. Time redundancy methods,
which eliminate the need for extra hardware, have
received much attention as an alternative practical



solution. Extra hardware impacts design, power con-
sumption, and cost. On the other hand extra time to
detect faults can be tolerated when operations are less
critical and urgent.

The simplest approach to increase the reliability of
a system using time redundancy is to re-execute an
operation on the same functional unit and compare
the two results. This method detects transient/inter-
mittent faults but not permanent ones. Other tech-
niques that can detect permanent faults include:
Alternating Logic, RESO, Re-computing with
Swapped Operands (RESWO) and Re-computing via
Duplication with Comparison (REDWC). Alternating
logic method [4] can be used for self-dual circuits
like full adder. In a self dual circuit complementary
inputs provides the complementary outputs and so
verification of the circuit can be done easily by com-
paring the outputs when complemented inputs are
given at different times. RESO [5] is suitable for log-
ical or arithmetic operations. Two operations are per-
formed on a single module. The first is a regular
operation and the second involves applying operands
that are shifted one bit, for example, and the result
will be shifted again in the reverse order after the
operation. If the circuit is fault free then the results
are the same. However if there is a faulty bit slice, its
effect will be realized in different positions for each
operation and therefore the fault can be detected. The
need for additional hardware like the shifter is the
main problem in RESO. In RESWO [6], two opera-
tions are performed. One regular computation and
another one where the operands are swapped and the
operation is executed on the same module. A faulty
bit slice affects different bit position each time and
correct functionality of the module can be verified
over time. In REDWC [7] an N-bit module is virtu-
ally divided into two units. The two units perform a
partial computation involving the least significant
N/2 bits of the operands in a first time slot and then
perform another partial computation involving the
most significant N/2 bits of the operands in a second
time slot. In case of addition the carry out of the first
computation is used for the second calculation. In
each time slot, the results are compared to check for
errors.

The above fault tolerant techniques are applicable
to any digital system. Specialized fault tolerant tech-
niques for multiprocessors via task scheduling are
discussed next.

3 TIME REDUNDANT TASK SCHEDULING

Fault tolerance is particularly relevant to multipro-
cessor systems since the higher number of processors
increases the chance of a fault in these systems. Gen-
erally, fault tolerance in a real-time multiprocessor
system can be achieved by scheduling multiple cop-
ies of tasks. Primary/backup (PB) and triple modular
redundancy (TMR) [8][9] are the two basic
approaches for task scheduling in different proces-
sors. In the PB technique, two copies of a task are
executed serially. The backup copy is executed only
if the correct result is not generated from the primary
task. In this method it is assumed that there is a fault
detection mechanism to detect a fault in each proces-
sor. In TMR, three copies of a task are executed
simultaneously and the result is achieved by a major-
ity vote.

Maode [10] proposed a new time redundant task
scheduling algorithm. The basic idea of this algo-
rithm is that the scheduler assigns tasks in a chunk of
a fixed size. There is a local queue for each processor
and one main backup queue that hold all assigned
tasks. When a processor finishes all tasks in its
assigned chunk, it notifies the scheduler and that
chunk will be removed from backup queue. It is
assumed that all faults in the system can be detected
and isolated by a hardware mechanism. When a fault
appears in a processor, the scheduler reassigns its
unfinished tasks to another processor. Customized
built-in hardware is required in this method to notify
the scheduler for any failure.

Agrawal [11] suggested another time redundant
task scheduling algorithm called RAFT (recursive
algorithm for fault tolerance). In this algorithm, each
task is assigned to two processors and the result is
compared. If a matching signature is found, then the
result is given to the user. Otherwise, the process of
assigning the job to another processor continues until
a matching pair is found. The restriction of this
method is its large time overhead. At any given time
at most only half of the processors can be utilized.

The mentioned approaches target hard real time
systems in which it is very important that a task is
executed within its deadline. The techniques can be
applied when reliability and correct execution of each
individual task is the main consideration of system
designers. Examples include satellite computers
where it is not possible to repair the system on-line,



computers that perform critical operations that cannot
be interrupted even for the duration of repair like air-
craft computer systems, or computers in which the
repair is significantly expensive. On the other hand
there are some applications like web servers that may
allow some downtime for repair and recovery in case
of failure but correct functionality of processors
should be verified periodically. We target this kind of
applications and propose a new fault tolerant scheme
that we describe next.

4 THE PROPOSED SCHEDULING SCHEME

Our fault tolerant time redundant task scheduling
scheme targets systems where availability is more
significant than reliability. The advantage of our
approach is that there in no need for hardware redun-
dancy and so the cost for detecting faults will be min-
imum. It takes advantage of multiple components of
the system itself as redundant resources and performs
the same task for each two of them periodically. Thus
there is no dedicated checker or backup processor.
Instead at any given time a single processor serves as
a tester for another processor. Each pair of processors
will be compared to each other so that multiple faults
at the same time can be detected easily and quickly as
well. The only drawback of our approach is time
redundancy, which is analyzed and evaluated for dif-
ferent scenarios later in this section.

The algorithm could be applied to any multipro-
cessor system or any network of computers. Web
servers are good examples where our method can be
applied practically. Similar to the real world, we
assume that the required time for each task is differ-
ent from job to job. One client may request a web
page to be displayed and another client may request a
transfer of a file or execute an interactive program.
Thus the time for each task is considered to be ran-
dom.

The main issue of multiprocessor scheduling is to
determine when and where a given task should be
executed. In our algorithm, some tasks serve as tests
for pairs of processors. To explain our scheduling
scheme, we assume that we have n processors with
the names Py, P,, ..., P,. Initially, the first available
task is selected as a test and is assigned to the proces-
sor pair (P{P,). Other tasks are assigned to the
remaining processors to achieve the best utilization.
If there is an agreement in the responses of P; and P,
to the assigned task, then the response is dispatched
to the user. Otherwise, an error is detected and the
multiprocessor system needs to take an appropriate
action such as repair or reconfiguration of the system.
If no error is detected from comparing P, and P,, then
we need to test the next pair of processors (P;P5). To
do so, both P; and P; need to be available. So, P,
waits until P finishes its current task and then the
first available task is selected as a test for the pair
(P1P3). The process is repeated for the following pair
sequence (PiPy), ..., (PiP,), (PoP3), ..., (P,P),
(P53Py), ..., (P,_1P,). Once the last pair is tested, we
cycle back to testing the first pair (P;P,) and so on.
With this approach, the existence of more than one
faulty processor at the same time can be detected eas-
ily.

A sample run of our scheduling scheme is illus-
trated in Figure 1. In this figure, there is a sequence of
seven tasks that need to be executed on a multipro-
cessor system with four processors. Two tasks served
as tests for processor pairs: T for (P;P,) and T for
(P1P3). Note that processor P; stops for 5 time units
waiting for processor P; to become available (shown
as W in Figure 1). This waiting time is wasted since
the order of testing the processor pairs is fixed.

The primary concern of our approach is to use a
method that has the minimum impact on the speed
and performance of each processor. For this reason

Task T T T3 Ty Ts Te T7
Task time 25 30 20 15 30 10 15
Processor Task scheduling
Py T w | T
) Ty
Ps ) ‘ T
P, T, T4 \ T,

Figure 1 An example of our time redundant task scheduling scheme.




we focus only on fault detection. Our method detects
all permanent faults and several transient/intermittent
faults. Once a fault is detected, a proper recovery
mechanism is initiated to take some appropriate
action such as re-execution of the client’s request,
restarting the faulty system, or repairing the faulty
system off-line. The scheduler itself can take over
and handle the situation when two processors dis-
agree. In this case, the scheduler can assign the fail-
ing task to the first available processor and the correct
result will be provided to the user by means of major-
ity voting. Fault masking is thus achieved again with-
out extra hardware.

We have coded our scheduling scheme in a C++
program with a user-friendly interface that asks the
user to enter the number of processors, the maximum
random time for each task, and the maximum number
of jobs. The program then concurrently provides the
status of each processor in terms of its availability
and the remaining time needed to finish its task. At
the end, the total amount of the time spent for regular
operation (where a task is assigned to a processor as
soon as it is available) and the fault tolerant operation
is calculated.

Simulation is performed in two modes. First we
assume that there is a chunk of tasks in the queue. We
evaluate the required time to execute the batch of
tasks when the system performs regularly and when
our method of fault tolerance is used. The total time
spent is the difference between the time the first task
is started and the time when the last task is finished
and all processors are available. The results of model-
ing and simulating the system are given in Table 1.
From this table we can see that providing fault toler-
ance with a limited number of processors has a signif-
icant impact on processing time. In other words, as
the number of processors increases, the time over-
head decreases.

When there are only three processors, dedicating a
processor for checking anther processor means loos-
ing almost one third of resources. However when the
number of processors is greater, the time difference
between the two approaches diminishes and fault tol-
erant scheduling becomes more advantageous. The
maximum task time in Table 1 was fixed to 10 so that
the impact of other elements on the whole time spent
can be examined more clearly.

Consider having 20 tasks in the queue in which
one of them requires 20 seconds and all the rest need

Table 1 Simulation results of several
processor-task configurations using a
maximum task time of 10 time units.
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3 10 29 16 81.25
4 10 20 13 53.85
5 10 13 12 8.33
6 10 9 9 0.00
3 20 56 31 80.65
4 20 33 24 37.50
5 20 27 20 35.00
6 20 20 17 17.65
7 20 17 16 6.25
8 20 16 14 14.29
9 20 15 13 15.38
10 20 13 12 8.33
3 40 102 60 70.00
4 40 65 46 41.30
5 40 48 38 26.32
6 40 39 33 18.18
7 40 35 30 16.67
8 40 32 26 23.08
9 40 27 24 12.50
10 40 24 21 14.29
3 60 165 91 81.32
4 60 102 70 45.71
5 60 75 57 31.58
6 60 62 49 26.53
7 60 52 42 23.81
8 60 45 37 21.62
9 60 40 33 21.21
10 60 34 30 13.33

1 second to be completed. In this case 20 processors
can process these 20 independent tasks in parallel in
20 seconds. Two processors can do the same thing as
well. Thus when the range of job times is enlarged,
the impact of loosing one processor on the whole pro-
cess time is negligible. Actually this is the case in
web servers in which their process time differs from
simple task like submitting a web page to more time-
consuming processes such as transferring a large file.
In Table 2, the number of tasks is fixed to 15 and the
maximum task time is varied from 5 to 40. When the
maximum task time increases, the difference between
the processing time with fault-tolerant scheduling and



Table 2 Simulation results of several
processor-task configurations with the
number of tasks fixed to 15.
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3 20 57 35 62.86
4 20 37 27 37.04
5 20 28 22 27.27
6 20 23 19 21.05
7 20 21 18 16.67
8 20 19 18 5.56
9 20 18 18 0.00
10 20 18 18 0.00
3 40 156 91 71.43
4 40 82 79 3.80
5 40 79 68 16.18
6 40 71 55 29.09
7 40 55 48 14.58
8 40 48 42 14.29
9 40 42 38 10.53
10 40 38 38 0.00

regular processing time decreases. That is especially
the case when the number of processors is not very
limited.

As the maximum task time increases, the limited
number of processors can be exploited more effi-
ciently than the case when there is greater number of
processors. As a matter of fact we may reach to a
point that increasing the number of processors does
not reduce the whole process time anymore. If we

Table 3 Simulation results with continuous
task arrivals after executing 150 time units.
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know the average process time for each task and
average task number we can achieve the optimum
number of processors from the output of our program
as well.

The above results focuses on the behavior of a sys-
tem that handles a chunk of tasks that already exist in
the queue and analyzes the effects of the number of
tasks, the maximum random time of each task, and
the number of processors on the execution time.
Another situation that can be considered is when
tasks arrive continuously. To do so, we assume that
tasks arrive with some time distance following Pois-
son distribution. The scheduler statically assigns the
arrived tasks to the scheduled pair of processors and
the other available processors simultaneously. Table 3
shows typical results when the simulation is run for
150 time units. It is assumed that the tasks arrive con-
tinuously and the mean difference between arrival
times (1/A) is changed from 1 to 4.

The result of simulation shows that as the differ-
ence in time between arrivals increases, the perfor-
mance difference between the system employing
fault-tolerance and the one without fault-tolerance
decreases. If we have (1/A) > (T/P), where P is the
number of processors and T is the maximum task
time, then the tasks arrive in such a way that there is
almost always an available processor to take care of
the task. In this situation, the processors actually wait
for the tasks rather than the tasks wait for available
processors and hence there is no accumulated tasks in
the queue and the difference in tasks processed by the
two systems in a fixed period of time is negligible.



S DISCUSSION

The scheme presented in this paper for achieving
fault tolerance in multiprocessor systems efficiently
exploits the redundant resources that already exist in
the system and therefore the need for dedicated cus-
tomized hardware is eliminated at the expense of
extra time. The analysis of the simulation data shows
the feasibility of bringing the promising method to
systems where extra time can be tolerated more than
extra hardware like web servers. Our simulation pro-
gram can also be used to determine the optimum
number of processors in different scenarios depend-
ing on the characteristics of the tasks.

The presented algorithm is designed to detect indi-
vidual faults as well as multiple faults that may occur
at the same time. It is assumed that proper action will
be taken after fault detection. The scheduler itself can
take over and act in case of failure. Again without any
need for extra hardware the scheduler can reassign
the task that cause the disagreement between the two
processors to a third processor and sent the correct
result to the client by majority voting. This approach
can be implemented by providing a backup queue in
which all assigned tasks are saved.

An important question in the design of a fault-tol-
erant multiprocessor system is where the scheduler is
executed. One possibility is to execute the scheduler
on a dedicated processor. This approach can be easily
implemented, however, the problem of a fault in the
dedicated processor may be catastrophic. Another
approach is to run the scheduler on multiple proces-
sors in the multiprocessor system. Hence, once a pro-
cessor becomes available, it determines the
scheduling pattern and then the next available proces-
sor verifies the selected pattern. Further research is
needed to explore the various scenarios discussed
above.

One possible improvement to our scheduling
scheme is to reduce the waiting time of the processors
by allowing a variable order of processor pair com-
parisons. To do so, we need an array that records
which pairs of processors are compared and the
scheduler determines the next processor pair to be
compared based on availability of processors and the
scheduling array. Further research is needed to
explore this possibility and to evaluate it via simula-
tion experiments.
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