
1

Abstract

Our mutation based validation paradigm (MVP) is
a validation environment for high-level microprocessor
implementations. To be able to efficiently identify and
analyze the architectural states (prospect states) that
can possibly satisfy a set of constraints during MVP’s
test generation, we need to reduce the search space in
the analysis process as early as possible. In this paper,
we present some optimizations in the search space that
speed up the overall test generation process.

1. Introduction

Complete high-level microprocessor implementa-
tions have a large design space, often too large for
modern deterministic automatic test pattern generation
(ATPG) methods. In our previous research [1], we have
defined a method to generate highly effective input
stimuli by targeting the set of constraints that poten-
tially exposes the largest number of modeled errors for
any given ATPG iteration; this method, however,
requires deterministic ATPG. Common high-level
ATPG methods do not always perform deterministic
ATPG [2][3], and the ones that do rely on first synthe-
sizing portions of the high-level microprocessor imple-
mentation [4]. These methods are not efficient or
effective enough because they circumvent the task of
generating one test sequence for one set of constraints
directly from the high-level information, a requirement
when generating input stimuli that satisfy the most
effective ATPG goals at any given time frame.

In our previous research [1][5][6], we have devel-
oped the methods that implement MVP (Mutation-
based Validation Paradigm), our validation environ-
ment for high-level microprocessor implementations.
MVP is able to handle complete implementations
because it only uses high-level information, and only

uses the hardware description language (HDL) infor-
mation relevant to the set of constraints when identify-
ing all relevant architectural states. We are defining an
architectural state of the circuit that satisfies the set of
constraints under consideration as a prospect state.

Generating input stimuli that satisfy a set of con-
straints requires the solver to identify all prospect
states for each time frame, and eliminate the prospect
states that can not be used to produce a test sequence.
This is a problem for modern superscalar microproces-
sor implementations because of their inherently large
state space. Therefore to be able to efficiently identify
and analyze the architectural states (prospect states)
that can possibly satisfy the set of constraints, we need
to reduce the search space in the analysis process as
early as possible.

MVP relies heavily on its basic algorithm that
extracts and solves prospect states when satisfying
constraints, when identifying which signals act as reg-
isters, and when identifying the finite state machine
(FSM) for any given register. It is therefore important
that prospect states are extracted and solved as effi-
ciently as possible, because doing so optimizes MVP
as a whole. Section 2 discusses some relevant back-
ground information. Section 3 describes the limitation
of our initial algorithm for solving a prospect state,
which was the motivation for the work presented in
this paper. Section 4 describes the test circuit devel-
oped for analyzing the performance-limiting scenario,
and Section 5 describes the methods used to optimize
our solver. Finally, the results are discussed in Section
6.

2. Background

For our validation paradigm [6], we have created
the notion of a prospect state to define an architectural
state in terms of a set of constraints. For each con-
straint, there is a data dependency of its corresponding

Search-Space Optimizations for High-Level ATPG

Jorge Campos and Hussain Al-Asaad
Department of Electrical and Computer Engineering

University of California, Davis, CA
E-mail: {jcampos, halasaad} @ece.ucdavis.edu

2

signal to the set of primary inputs and internal regis-
ters, and there is a set of control requirements that
allow that data dependency to become active.

For a prospect state generated from multiple con-
straints, a non-false control requirement signifies that
an architectural state exists which may be able to sat-
isfy the set of constraints. Furthermore, a non-false set
of data dependencies means that a solution for that
architectural state has been generated.

The data dependencies and control requirements
of a prospect state are each represented as independent
data dependency graphs (DDGs). Each DDG has a tree
structure with the following sequence of layers starting
at the root node: Boolean OR operators, Boolean AND
operators, relational operators, computational opera-
tors, and literals/identifiers. Given that Boolean OR
operators are always at a layer above Boolean AND
operators, a DDG in a prospect state has a disjunction
of conjunctions structure.

All DDG nodes operate on an explicit range of
values, which we are implementing using our Valu-
eRange derived classes. Identifiers initially hold the
range of values specified by their corresponding type
definition, and literals hold the exact value specified by
the hardware description. Given that the root DDG
node returns a Boolean range of values, a DDG is
solved by forcing a true value onto the root node. The
solver algorithm reduces the range of values returned
from the root node to true by reducing the range of val-
ues of all identifiers in the DDG accordingly. An iden-
tifier found to have an invalid range of values after
solving a DDG signifies that its statement (rooted by
an ancestor relational operator) contradicts with a
statement elsewhere within the same conjunction
(rooted by an ancestor Boolean AND operator). The
range of values in that conjunction therefore cannot be
satisfied.

3. Problem Definition

Each prospect state is defined by two components:
(i) the data dependency of its constraints onto all regis-
ters and primary inputs of the circuit under test, and (ii)
the control requirements that allow for that prospect
state to become active. Each of these components is
implemented as a DDG, therefore both components can
be solved by using the same algorithm.

Prospect states are generated and solved through-
out the ATPG process, making the algorithms that
restructure and solve the DDGs to be MVP’s limiting
factor. Therefore optimizing the worst-case scenario
for the algorithm that restructures and solves a DDG

will have a significant impact on MVP’s overall perfor-
mance.

Case statements are commonly used in hardware
descriptions to describe the functionality of an FSM.
Therefore it is expected that some case statements in a
hardware description will be significantly large. Also,
it is expected that some signals (in particular, control
signals) will have a separate assignment statement
within each block of the case statement. These large
case statements will be the limiting factor for MVP’s
performance because such a signal will require the cor-
responding assignment statement and control require-
ments to be analyzed for every block in the case
statement.

If a case statement contains a “when others
=>” block, its control requirements (guard) will be the
conjunction of the negated guards of all explicit cases.
This block’s control requirements will therefore be a
conjunction of disjoining operators, where a disjoining
operator is an operator that imposes a disjoint range of
values onto any identifier operand. Our goal is to con-
vert this graph into a disjunction of conjunctions such
that each conjunction defines a contiguous range of
values for all discrete identifiers within it, therefore we
must restructure the DDG into an equivalent graph that
is free of disjoining operators.

Restructuring the graph into our desired form
forces us to recursively replace each sub-tree rooted at
a disjoining operator with an equivalent tree that is free
of disjoining operators, but is bigger in size. An ine-
quality operator is replaced by a disjunction of
relational operators , which
unfortunately is a complete tree with twice the number
of leaf nodes than the original. The size complexity is
exacerbated by the modified graph’s conjunction of
disjunctions structure. Performing a brute-force
restructuring process to convert this graph into a dis-
junction of conjunctions through the use of DeMor-
gan’s Theorem produces a graph that is exponential in
size in terms of the number of disjoining operators.
This size complexity quickly becomes a burden
because restructuring requires an exponential runtime
complexity, and soon thereafter becomes a limitation
because it may easily consume all available memory.

Figure 1(a) depicts an example DDG produced by
the “when others =>” block of a case statement
for signal A, such that the guards for the case state-
ment’s two explicit cases are: (i) “when 1 =>” and
(ii) “when 3 =>”. Figure 1(b) shows the restructured
DDG (with no optimization) using the method
described earlier. We next estimate the size of the
restructured DDG that represents the control require-
ments for the “when others =>” block of a case

A B≠
A B<() OR A B>()()

3

statement with n explicit cases.
On a case statement with n explicit cases, the

“when others =>” block will have a guard that is
a conjunction of n inequality operators. Each inequality
operator is replaced as follows:

. So a conjunction of
n inequality operators will be a conjunction of disjunc-
tions, and each disjunction will have 2 operators. An
example of this conjunction of disjunctions is ((A < 1)
OR (A > 1)) AND ((A < 3) OR (A > 3)) AND ((A < 4)
OR (A > 4)).

We then perform DeMorgan's Theorem to propa-
gate the OR operators above the AND operators start-
ing at the end of the tree. The operators in each
disjunction will be duplicated many times as they are
being placed into conjunctions (distributive property).
Every conjunction in the final tree will have one rela-
tional operator from each original disjunction, and
hence, each conjunction will have n operators. In order
to determine how many operators there are in the final
tree, we need to determine the number of final conjunc-
tions, in other words, how many combinations we can
have such that exactly one relational operator is taken
from each original disjunction (either > or <). For each
original disjunction, there are 2 choices and since there
are n original disjunctions, then there are possible
combinations. With conjunctions in the final tree
and each conjunction has n operators, therefore there
are operators. Each operator has 2 leaves, so
there are leaves. Since a complete tree with
k leaves has nodes and since the OR-AND
part of the DDG is a complete tree, then the overall
DDG has a total of nodes.

Figure 7 shows the exponential runtime of the
solver due to the brute-force restructuring process dis-

cussed in this section, under the line labeled Reduce
None.

4. Experimental Setup

Our focus for this paper is to optimize the restruc-
ture-and-solve process for large case statements. We
wish to analyze the performance of our solver when a
constraint is placed on a signal that appears on every
block of the case statement (including the “when
others =>” block), such that only the “when
others =>” block is able to satisfy the constraint.
This will force our ATPG algorithm to analyze a large
set of possible scenarios (prospect states) as it identi-
fies the input requirements. We wish to study this test
scenario because it will force the restructure-and-solve
process to completely analyze the “when others
=>” block’s control requirements, as it will not reduce
to false. Figure 2 shows the VHDL description of the
used test circuit, where multiple instances were made
such that each instance had a distinct number of
explicit cases in the case statement.

These test circuit instances were then converted
into C++ library elements by using our simple parser.
We created a simple ATPG test bench for each test sce-
nario such that the same constraint was inserted into
the ATPG unit for all scenarios. Figure 3 shows this
simple test bench for a test circuit with 100 explicit
cases in the case statement, and illustrates the simplic-
ity of inserting constraints into the ATPG unit prior to
extracting the ATPG implications. Multiple constraints
can be inserted into the ATPG unit prior to extracting a
solution; the multi-threaded solver does not initiate
until extract_globalStateSet() is called.

Figure 1 A sample DDG: (a) Before and (b) after restructure (with no optimization).
(a) (b)

AND

OR

A 1 A 3 A 1 A 3

< < < >

AND

OR

AND

OR

A 1 A 3 A 1 A 3

> < > >

AND

AND

A 1 A 3

NOT

= =

NOT

A B≠() A B<() OR A B>()()⇒

2n

2n

n 2n×
n 2n 1+×

2k 1–()

3n 2+()x2n 1–

4

The graphs under Figure 7 demonstrate the grad-
ual improvements in our solver’s runtime complexity
for the test bench set described above after each series
of optimizations. The initial performance of our solver
demonstrated by the graph labeled “Reduce None”
forced us to re-think our solver strategy, and demon-
strates the necessity for the optimizations presented in
this paper. All tests have been performed on a Dual
2.5GHz G5 workstation under OS X Tiger using gcc
4.0. MVP has been implemented as a library using
GNU’s autotools (autoconf, automake, lib-

tool) in 15K lines of C++ code. The test circuits sim-
ilar to Figure 2 were converted from VHDL into C++
library elements, such that they implement stand-alone
ATPG units that make use of MVP’s libraries. Each test
bench was run on top of the BSD time utility to deter-
mine the time used to execute each test bench only.

5. Optimizations

In this section, we describe the optimizations per-
formed on DDGs in order to reduce the size of the
ATPG search space.

5.1. Unconditionally False Sub-Trees

The performance limitation described in Section 3
was caused by the complexity of restructuring a DDG
into a disjunction of conjunctions that does not contain
disjoining operators. Analyzing the restructured graph
of Figure 1 brought to our attention the presence of
sub-trees that can be removed early in the restructuring
process because they evaluate to false. We can say that
these sub-trees are unconditionally false. We can iden-
tify trees that are unconditionally false by attempting to
force a Boolean true value onto any Boolean operator
or relational operator. A sub-tree will only be able to
satisfy the true value if the range of values imposed
onto all identifiers at that sub-tree intersects with the
range of values imposed on corresponding identifiers
at all other sub-trees of the same conjunction. These
operators will return a value of SUCCES if successful,
and will return a value of FAIL otherwise.

Applying DeMorgan’s Theorem to propagate a
Boolean OR operator above a Boolean AND operator
begins with a DDG sub-tree rooted at a Boolean AND
operator and results in an equivalent sub-tree that is
rooted at a Boolean OR operator. In order to optimize
the algorithm that restructures a DDG, we had the
Boolean AND operator perform a reduce() opera-
tion on the sub-tree rooted at the Boolean OR operator
that was generated by applying DeMorgan’s Theorem.
This reduce() operation recursively travels down to
all relational operators and attempts to force a true
value onto these operators. It replaces any of these rela-
tional operators with a Boolean false literal if a FAIL
value is received in return. The reduce() algorithm
reduces Boolean AND and Boolean OR nodes that are
connected to a Boolean literal (an unconditional value)
accordingly as it recursively returns back to the node it
was called on.

This optimization effectively reduces the size
complexity of the restructure process. Figure 4 depicts
the graph of Figure 1 after it is restructured using this

type num_type is (zero, one, two, ...);
entity MTV05 is

port (in_val: in num_type;
clk: in std_logic;
out_val: out integer);

end;
architecture MTV05_ARCH of MTV05 is
begin

converter : process(clk, in_val)
begin

if clk'event and clk = '1' then
case in_val is
when one => out_val <= 1;
when two => out_val <= 2;

.

.

.
when others => out_val <= 0;
end case;

end if;
end process;

end MTV05_ARCH;

Figure 2 The test circuit used.

#include "mtv05_100.h"
#include <mATPG/pStateSet.h>
#include <iostream>

using namespace std;

int main()
{

mtv05 cut;
cut.insert_constraint("MTV05/out_val", "0");
pStateSet *s = cut.extract_globalStateSet();

if (s) { //if solution exists:
cout<<"A solution was extracted!"<<endl;
cout<<"A set with "<< s->list_size();
cout<<" prospect states was generated.\n";
s->print_pStateSet_prefix(cout);

}
else cout<<"No solution was extracted.\n";

}

Figure 3 ATPG testbench.

5

optimized algorithm. This optimization made the runt-
ime complexity of the restructure process feasible, as it
allows prospect states for most common constraints to
be solved within several seconds.

However, a complex data dependency on a con-
straint will identify a series of signals whose value may
depend on the circuit’s architectural state. Such a data
dependency will force the ATPG unit to analyze the
same control requirements a series of times, once for
each identified signal. If all of these identified signals
are dependent on a large explicit FSM, the large case
statement that implements the FSM will therefore be
analyzed a series of times. This will multiply the com-
putation time demonstrated by the second graph of Fig-
ure 7 (labeled Reduce False), and will render the
runtime complexity of the restructure algorithm to be
unacceptable.

5.2. Unconditionally True Sub-Trees

To further optimize our restructure algorithm, we
similarly analyzed the restructured graph of Figure 4.
This brought to our attention the presence of sub-trees
that can be removed early in the restructuring process
because they evaluate to true. These sub-trees occur
when a comparison on an identifier does not reduce the
range of values imposed on that identifier, therefore we
can say that these sub-trees are unconditionally true.
The reduced graph of Figure 4 is provided in Figure 5.

Enabling our reduce() operation to identify
sub-trees that are unconditionally true required modi-
fying a dyadic operator’s method of solving its sub-
tree. Now, a sub-tree returns EXPENDABLE if it is

unconditionally true, returns FAIL if it is uncondition-
ally false, and returns SUCCESS otherwise. An opera-
tor is EXPENDABLE if its child(ren) is(are)
expendable, returns SUCCESS if no data contradiction
is encountered, and returns FAIL otherwise. An identi-
fier is EXPENDABLE if the range of values imposed
on it encapsulates the range of values imposed onto the
same identifier at a different sub-tree of the same con-
junction, returns SUCCESS if the range of values
imposed onto it intersect the range of values imposed
onto the same identifier at a different sub-tree of the
same conjunction, and returns FAIL otherwise. Simi-
larly, a literal returns EXPENDABLE if the range of
values imposed onto it matches its value exactly, and
returns FAIL otherwise. Figure 6 shows how a rela-
tional operator is reduced based on whether it is uncon-
ditionally true or unconditionally false.

This optimization effectively reduces the size
complexity and runtime complexity of the restructure
process. The third graph of Figure 7 (labeled Reduce
True and False) depicts the computation time of the
optimized reduce() algorithm. With this new algo-
rithm, solving the constraint of Figure 3 on the circuit
of Figure 2 with 100 explicit cases took 0.11 seconds
using a single thread of execution. Furthermore, its
runtime complexity appears to be linear given that a
case statement with 20 explicit cases required 0.02 sec-
onds for a solution to be reached, and one with 50
explicit cases required 0.05 seconds.

6. Discussion

Performing the reduce() operation during the
restructuring process results in two significant advan-
tages. First, it allows a prospect state to be solved effi-

Figure 4 The sample DDG after reducing the
unconditionally false sub-trees.

A 1 A 3

< <

AND

OR

AND

OR

A 1 A 3 A 1 A 3

> < > >

AND

Figure 5 The sample DDG after reducing the
unconditionally false (and true) sub-trees.

A 1

<

OR

AND

OR

A 1 A 3

A 3> <

>

6

ciently. Second, a prospect state’s implications on the
circuit’s set of registers and primary inputs will have
been identified once the restructure process terminates.
As was mentioned earlier, the restructure process calls
the reduce() algorithm on a sub-tree that was modi-
fied via DeMorgan’s Theorem. It does this as a means
to reduce this sub-tree before it performs DeMorgan’s
Theorem at higher levels in the graph (and thus, propa-
gating the OR operators to the top of the tree). Calling
reduce() will have the productive side-effect of
forcing all conjunctions within that sub-tree to identify
the range of values for all identifiers within it. This
optimizes the solver because sub-trees are solved and
reduced when they are small, and conjunctions that are
joined into a greater conjunction via DeMorgan’s The-
orem can have any data contradictions immediately
exposed based on each sub-graph’s previously solved
range in values.

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No.
0092867.

References

[1] J. Campos and H. Al-Asaad, “Mutation-based valida-
tion of high-level microprocessor implementations,”
Proc. International High-Level Design Validation and
Test Workshop, 2004, pp. 81-86.

[2] A. Adir et al., “Genesys-Pro: Innovations in test pro-
gram generation for functional processor verification,”
IEEE Design and Test of Computers, Vol. 21, pp. 84-93,
March-April 2004.

[3] F. Corno et al., “Automatic test program generation: A
case study,” IEEE Design and Test of Computers, Vol.
21, pp. 102-109, March-April 2004.

[4] F. Corno, et al., “SymFony: A hybrid topological-sym-
bolic ATPG exploiting RT-level information,” IEEE
Transactions on Computer-Aided Design, Vol. 18, pp.
191-202, February 1999.

[5] J. Campos and H. Al-Asaad, “Concurrent design error
simulation for high-level microprocessor implementa-
tions,” Proc. AUTOTESTCON, 2004, pp. 382-388.

[6] J. Campos and H. Al-Asaad, “MVP: A mutation-based
validation paradigm,” Proc. International High-Level
Design Validation and Test Workshop, 2005, pp. 27-34.

[7] M. Abramovici, M Breuer, and A. D. Friedman, Digital
Systems Testing and Testable Design, IEEE Press, New
York, 1990.

[8] G. Andrews, Concurrent Programming: Principles and
Practice, Addison-Wesley Publishing Company, Menlo
Park, California, 1991.

DDG *DDG_RelationalOperators::reduce()
{ //Attempt to force a value of true onto this relational operator:
 bind_result_type result = this->force_solution(new Boolean_ValueRange(true));
 switch (result) {
 case FAIL: //If a contradiction was encountered (unconditionally false):
 disconnect();
 return (new DDG_BooleanLiteral(false))->connect();
 break;
 case EXPENDABLE: //If this sub-tree did not produce useful results (unconditionally true):
 disconnect();
 return (new DDG_BooleanLiteral(true))->connect();
 break;
 case SUCCESS: //This sub-tree is necessary:
 return this;
 break;
 }
}

Figure 6 Optimized reduce() algorithm for relational operators.

0

2

4

6

8

0 20 40 60 80 100

Input Size (Case statement length)

Reduce None
Reduce False
Reduce True and False

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Figure 7 Simulation results.

