
Distributed Reconfiguration of Fault Tolerant VLSI
Multipipeline Arrays with Constant Interstage Path Lengths

Hussain Al-Asaad, Mankuan Vai , and James Feldman

Department of Electrical and Computer Engineering
Northeastern University

Boston, MA 02115

Abstract

A new fault tolerant multipipeline array
architecture and its diagnosis/reconfiguration
algorithm will be presented. This multipipeline
array design methodology is characterized by
constant, fault distribution independent interstage
path lengths. Other features include a low hardware
overhead and a high survival rate when it is
compared to existing approaches.

1: Introduction

The pipeline stages of a multipipeline array are
separated from each other by interconnection
networks as shown in Fig. 1. Interconnection
networks ranging from simple feed-through
connections to crossbar interconnections can be used.
A balanced tradeoff between the degree of fault
tolerance and the overhead should be located.

Fig. 1 A general model of multipipeline arrays.

The problems of reconfiguring functional
pipelines out of an array with faults have received
much attention [1-6]. Some reconfiguring
algorithms assume fault-free switches and
interconnections. A representative algorithm is
described in [1]. This algorithm works in phases.
Each phase consists of sequentially setting rows of
switches. For an N M multipipeline array, N
sequential phases are required.

Other algorithms consider switch and
interconnect faults. The algorithm proposed in [6]

does not produce optimal results and is complex and
difficult to be implemented distributively. Another
algorithm based on finding the maximum flow in a
flow network is presented in [2]. This algorithm,
while being optimal, suffers from its complexity and
difficulty in a distributed implementation

Another problem with known reconfiguring
algorithms is that the interconnection lengths of a
reconfigured array could become significantly longer
than the original array.

2: New multipipeline array design
methodology

The design methodology in this paper provides a
fault distribution independent interconnection length
between pipeline stages. Fig. 2 uses a 3 4
multipipeline array to show this new architecture. It
is obvious that all interconnects are of equal lengths
except for the wraparound ones.

Fig. 2 The new multipipeline architecture
illustrated for a 3 4 array.

A function that maps the PE’s in a logical
architecture into a corresponding physical array has
been developed so that all the interconnections can
be made into equal lengths by rearranging the PE’s.
Let (a, b) be the indices of a PE in the logical
architecture and (x, y) be the PE indices in the
physical implementation. The coordinates a and x
are vertical indices (0 a, x N - 1) and b and y are
horizontal indices (0 b, y M - 1). The following

1

mapping function guarantees constant length
interconnections:

x =

2

2

a, if b is even, N is even, a (N - 1) / 2,

2a, if b is even, N is odd, a (N - 1) / 2,

2N - 1 - 2a, if b is even, N is even, a > (N - 2) / 2,

2N - 1 - 2a, if b is even, N is odd, a > (N - 1) / 2,

2a + 1, if b is odd, N is even, a (N - 2) / 2,

2a + 1, if b is odd, N is odd, a (N - 3) / 2,

2N - 2a - 2, if b is odd, N is even, a > (N - 2) / 2,

N - 2a - 2, if b is odd, N is odd, a > (N - 3) / 2,

and y = b . Fig. 3 demonstrates the mapping of the

logical array in Fig. 2 into a physical array with
constant length interconnects.

Fig. 3 The mapping of the array in Fig. 2.

The fault model considered here assumes that
the reconfiguration control is fault-free due to its
simplicity. Multipipeline diagnosis can be classified
into being distributed or host driven.

The structure of a PE module designed for a
distributed diagnosis is shown in Fig. 4. The
multiplexer, self testing circuit, status flip-flop FS,
and interconnections are assumed to be fault free.
The status of each PE is determined by a self testing
circuit.

Fig. 4 The structure of a PE module.

The responsibility of error diagnosis can also be
assigned to the host. With the help of a host,
interconnection faults can also be detected.
Diagnosis can thus be performed whether or not the
assumption of fault-free interconnections is retained.

With the interconnections assumed to be fault
free, the module shown in Fig. 4 can be modified to
handle the host control of the status flip-flops by
connecting all the status flip-flops in a column of
PE's into a scan path. The host will set the status
flip-flops according to the result of applying test

vectors to the multipipeline, and activate the
execution of the reconfiguration algorithm.

A bypassing path between the input and output
of each PE can be provided as shown in Fig. 5 to test
the interconnections. The contents of flip-flops FU
and FD will be propagated to the upper and lower
input PE's of the previous stage, respectively. A
fault in this module will be represented by the values
of FU and FD according to Table 1.

Fig. 5 The module structure modified for testing
interconnections.

Table 1 Different types of faults indicated by
the values of FU and FD.

Type of Fault FU Value FD Value
No fault Good Good

PE is faulty Bad Bad
MUX is faulty Bad Bad

DEMUX is faulty Bad Bad
Line a is faulty Bad Good
Line b is faulty Good Bad
Line c is faulty Bad Bad
Line d is faulty Bad Bad
Line e is faulty Good Good
Line f is faulty Bad Bad
Line g is faulty Bad Bad

The host will set the status flip-flops according
to the result of applying interconnection and PE test
vectors, and activate the execution of the
reconfiguration algorithm.

The reconfiguration algorithm is implemented
in the control part of a module. Each module
communicates with its two neighbors from the
previous stage and its two neighbors in the next
stage. The control signals are illustrated in Fig. 6.

X receives two pipeline engagement requests
I_REQ_U and I_REQ_D from A and B, respectively.
It uses O_ACK_U and O_ACK_D to acknowledge
one of these requests. X also receives the status of C
and D by acknowledgment signals I_ACK_U and
I_ACK_D, respectively. Based on the reconfigura-
tion algorithm and its status, X will use O_REQ_U
or O_REQ_D to request either C or D to be engaged
in its pipeline.

2

Fig. 6 Control signals between modules.

In the case of using a single status flip-flop, if X
in stage i is faulty it will not acknowledge any of the
requests from A and B in stage i - 1. Similarly if both
acknowledgment signals from the two closest
modules C and D of the next stage i + 1 are negated,
there will be no acknowledgement. On the other
hand if X in stage i is healthy and at least one of the
acknowledgment signals from C and D in stage i + 1
is asserted, a pipeline containing module X as its
stage i can be formed. The module acknowledges one
request, if it exists, to A or B in stage i - 1 with a
preference assigned to the upper module. The
module will also request one of C and D in stage i +
1 to be engaged in the pipeline with a preference
given to the upper module.

Alternatively if two status flip-flops are used to
represent the status of a PE, the reconfiguration
algorithm will be modified slightly. If FU is set,
then X in stage i cannot acknowledge the request
from the upper module A in stage i - 1. If FD is set,
then X cannot acknowledge the request from the
lower module B in stage i - 1.

Two examples demonstrating these two
algorithms are shown in Figs. 7a and b, respectively.
The best solutions have been found in both
examples.

(a)

(b)

Fig. 7 Reconfiguration examples obtained with
(a) the distributed algorithm and (b) the host-

driven algorithm.

3: Evaluation

We use the common figures of merit: simplicity,
efficiency, area, and locality (as described in [7]), as
well as reliability, to compare this (HJM) with the
multipipeline design (GUPTA) described by GUPTA
et al. in [1]. A non-fault tolerant design and a design
with crossbar interconnections between stages (MIN
and MAX, respectively) are also included.

Both HJM and GUPTA are fast because of their
hardware implementation, but HJM is simpler. HJM
is a parallel distributed algorithm in which each PE
performs the reconfiguration in parallel. GUPTA
needs a sequence of reconfiguration phases.

A simulation is conducted for an 8 8
multipipeline to compare the efficiency of HJM to
GUPTA. The expected number of recovered
pipelines, normalized to the total number of
pipelines supplied, is plotted as a function of F (the
ratio of faulty PE's to all PE's) and shown in Fig. 8.
It is concluded from this result that GUPTA has a
better performance than HJM if F > 0.1. However, F
is typically less than 0.1 in the case of a run time
operation [8], so both algorithms have approximately
equal performance for run time operations.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

F

N
o.

 o
f r

ec
ov

er
ed

 p
ip

el
in

es HJM
GUPTA
MAX
MIN

Fig. 8 The expected number (normalized) of
survived pipelines.

HJM design uses simple multiplexers (2 T-
gates) instead of the switches (10 T-gates) typically
used. HJM does not need the control logic that
controls the reconfiguration phases in GUPTA.

The biggest advantage of HJM over GUPTA is
its locality. The interconnection length between any
consecutive stages is always a constant in HJM.

The reliability of HJM is compared to that of
GUPTA. The reliability is calculated using a
Markovian model for an 8 8 multipipeline. A
system failure occurs when the number of working
pipelines dropped below a certain number Sm. The
reliability of a multipipeline is defined as follows:

R(t) = Prob {S(t) Sm},

3

where S(t) is the number of survived pipelines at
time t. The results of a simulation are provided in
Fig. 9, which show that HJM has a reliability
comparable to GUPTA. Simulations are also
performed by varying M, N, and P (failure
probability of a PE). The results are shown in Fig.
10.

To emphasize on the fact that the yield rate is
approximately constant, the yield is plotted for M = 8
and different values of N and P and shown in Fig.
11. Each curve in Fig. 11 corresponds to a different
set of N and P and can be used as a design guideline
for fault tolerant multipipelines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

Time

R
el

ia
b

ili
ty

GUPTA

HJM

MAX

MIN

Fig. 9 The reliability of an 8 8 multipipeline
with a PE failure rate of 0.1 failure per unit time

and Sm = 6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of pipelines

N
o

. o
f

su
rv

iv
ed

 p
ip

el
in

es

3,0.1

4,0.1

5,0.1

3,0.2

4,0.2

5,0.2

3,0.3

4,0.3

5,0.3

Fig. 10 The normalized number of survived
pipelines for HJM.

4: Conclusion

A new design for fault-tolerant multipipelines
was developed. This design is simpler than other
designs described in the literature. A special
advantage of the new design is that it guarantees
uniform interconnect lengths that are independent of
the fault distribution. Other features include a less
overhead, a comparable efficiency, and a good
reliability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time

Y
ie

ld
 r

at
e

N=4

N=6

N=8

N=10

N=12

N=14

N=16

N=18

N=20

Fig. 11 The expected yield of an N 8
multipipeline.

References

[1] R. Gupta, A. Zorat, I. Ramakrishnan,
“Reconfigurable Multipipelines for Vector
Supercomputers,” IEEE Transactions on
Computers, Vol. 38, No. 9, September 1989,
pp. 1297-1307.

[2] H. Lin, F. Lombardi, M. Lu, “On the Optimal
Reconfiguration of Multipipeline Arrays in
the Presence of Faulty Processing and
Switching Elements,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
Vol. 1, No. 1, March 1993, pp. 76-79.

[3] P. Koo, F. Lombardi, Y. Shen, “Approach for
the Reconfiguration of Multipipeline Arrays,”
IEE Proceedings-E, Vol. 138, No. 3, May
1991, pp. 131-137.

[4] Y. Choi, “Reconfigurable VLSI/WSI
Multipipelines,” Parallel Computing, Vol. 17,
1991, pp. 941-952.

[5] Y. Choi, “Fault Diagnosis of Reconfigurable
Multipipelines Using Boundary Scans,”
Computers & Electrical Engineering, Vol. 18,
No. 2, 1992, pp. 119-130.

[6] Y. Choi, “Reconfigurable Multipipelines,”
International Conference on Parallel
Processing, 1991, pp. 556-570.

[7] M. Chean, J. Fortes, “A Taxonomy of
Reconfiguration Techniques for Fault-
Tolerant Processor Arrays,” IEEE computer,
January 1990, pp 55-69.

[8] B. Johnson, Design and Analysis of Fault
Tolerant Digital Systems, Addison-Welsley
Publishing Company, Reading, MA., 1989.

4

