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Abstract

We present a simulation-based method for combina-
tional design verification that aims at complete coverage of
specified design errors using conventional ATPG tools. The
error models used in prior research are examined and
reduced to four types: gate substitution errors (GSEs), gate
count errors (GCEs), input count errors (ICEs), and wrong
input errors (WIEs). Conditions are derived for a gate to be
completely testable for GSEs; These conditions lead to
small test sets for GSEs. Near-minimal test sets are also
derived for GCEs. We analyze redundancy in design errors
and relate this to single stuck-line (SSL) redundancy. We
show how to map all the foregoing error types into SSL
Jaults, and describe an extensive set of experiments to eval-
uate the proposed method. Our experiments demonstrate
that high coverage of the modeled design errors can be
achieved with small test sets.

1 Introduction

Design verification is the process of ensuring that a new
design exhibits specified behavior. Many approaches to
design error detection have been proposed based on formal
verification [1]. However, formal verification is impractical
for large logic circuits. In practice, such circuits are verified
by simulation using representative input patterns (tests) [2].
A basic question that we address here is: Which tests
should be applied and what is their efficiency?

Abadir et al. [3] have defined a set of likely design errors
for combinational logic and have shown that complete test
sets for single stuck-line (SSL) faults detect many, but not
all, such errors. Recent research has considered the use of
implementation-independent "universal” test sets [4,5], as
well as random tests [6] for design error detection. In each
case, the number of tests needed for good coverage of
design errors can be excessive, and 100 percent coverage is
not guaranteed. For example, universal tests exploit any
unateness properties of the functions being implemented,
but the tests become exhaustive when, as is often the case,
there are no unate variables.
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In Section 2, we reduce the design errors considered in
the literature to four classes. Then, we study the detection
properties of these error classes. Section 3 describes the
mapping of design errors into SSL faults, as well as the pro-
cess of generating test sets for them using standard ATPG
tools for SSL faults. Section 4 presents the results of apply-
ing our method to representative benchmark circuits.

2 Tests for Design Errors

Many types of design errors have been classified in the
literature [3,5-7]. These error types are not necessarily com-
plete, but they are believed to be common in the design pro-
cess. We condense the errors identified by Abadir et al. [3]
into four categories. (A similar classification is given inde-
pendently in [5]).

* Gate substitution error (GSE): This refers to mistakenly
replacing a gate by another gate with the same number of
inputs. The extra and missing inverter errors of [3,5-7]
are considered as substitution of an inverter for a buffer
and a buffer for an inverter, respectively:

* Gate count error (GCE): This corresponds to incorrectly
adding or removing a gate, and includes the extra and
missing gate errors of [3]. This category is combined
with gate substitution in [5], where, unlike here, XOR
and XNOR gates are not considered. A class of "local”
errors is defined in [6] which includes only some of the
errors in this category.

o Input count error (ICE): This corresponds to using a
gate with more or fewer inputs than required.

* Wrong input error (WIE): This error corresponds to con-
necting a gate input to a wrong signal. The "signal-like-
source" error [6], is a special case of WIE. Although a
WIE may be viewed as a multiple ICE, a multiple ICE
cannot model a WIE in an inverter.

The errors in each category are studied next, and test pat-
terns to detect them are determined. The following assump-
tions are made concerning the design to be verified:

¢ Asin [3,5], we have a gate-level implementation that is
purely combinational.

* The gate types used are AND, OR, XOR, NAND, NOR,
XNOR, BUF (buffer) and NOT.

* Similar to [3,5-6], we have a functional specification of



the design which is completely simulatable, that is, any
input pattern can be applied and produces a completely
specified output.

» At most a single design error is assumed to occur. This
assumption is analogous to the single stuck-line (SSL)
fault assumption, which is the standard model used in
testing for physical faults.

2.1

Let E be the set of all 2* input vectors of an n-input gate
G. We divide E into the disjoint subsets Vy, V..., V,,, where
V, contains all input vectors with exactly & 1s in their binary
representation, 0 <k < ». The disjoint sets V.., Vi, Vous, and
V... are defined as follows:

Notation

Vnull = VO 5 Vall = Vn 5
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For example, in the case of 3-input NAND gate, V,,; =
{000}, V,, = {111}, V,4, = {001,010,100}, and V,,,, = {011,
101, 110}. The sets Vi, Vo, Vous, and V,,,, are called the
characterizing sets or C-sets of G.

Table 1 shows the output for each gate type in response
to its various C-sets. The sets V,,; and V,, are nonempty and
always have cardinality one. For the single-input gates, V,,,,
and V,,; are empty. For multiple-input gates, the set V4
contains at least two elements, while the set V,,,, is empty
only when n = 2, The cardinality of V,,, (V,z) is 2°7' -1
(2*~'~1) when n is odd, and 2""'-2 (2"~!) when n is
even. Finally, v, denotes an arbitrary vector of the set V,.

The above notation enables us to express sets of vectors
in a simple way. For example, the complete test set for SSL
faults on an n-input NAND gateis V,uV,_,. When n = 3,
we can also write these tests as V,,uV, . = {111, 011,
101, 110}. In general, to verify the identity of a gate G, that
is, to determine the tests required for verification, we use the
above notation in conjunction with Table 1.

2.2 Gate Substitution Errors (GSEs)

According to experiments reported in [7], the most fre-
quent design error made by humans is gate substitution,
accounting for around 67% of all etrors. Gate substitution
refers to mistakenly replacing a gate G with another gate G’
that has the same number of inputs. We represent this error
by G/G’. For gates with multiple inputs, a multiple-input
GSE (MIGSE) can have one of six possible forms: G/AND,
G/NAND, G/OR, G/NOR, G/XOR, and G/XNOR. Each
multiple-input gate can have five MIGSEs. For example, all
MIGSEs can occur on an AND gate except G/AND which
is not considered an error. For gates with a single input, i.e.,

Table 1 The responses of the various gate types to

their C-sets.
C-set n=1 neven (nodd and n > 3)
NOT | BUF |} AND | NAND | OR | NOR | XOR | XNOR
Voet] 1] 0 JOO | T(D [OO)]T(]0©] 10D
Vevenl Wa | va fo@©@ | 1(1) j1mlo@io@| 1(1)
Vol /a | najo@ | 1(1) 1)o@ |1()] 0
Van 0 1 1(1) 1 0(0) (1(1){0(0)|0O(1) 1(0)
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buffers and inverters, a single-input GSE (SIGSE) can have
one of two possible forms: G/NOT and G/BUF. Each sin-
gle-input gate can have only one SIGSE. To cover extra/
missing inverters in GSEs, a buffer can be inserted in each
of a gate’s fanout branches as well as inputs with fanout.

It has been suggested that most GSEs can be detected by
a complete test set for SSL faults [3]. Our simulation study
(Section 4) shows that such a test set can cover 80% to
100% of MIGSEs and 100% of SIGSEs. The actual cover-
age of MIGSE:s is a function of the circuit structure, as well
as the types of gates used in the circuit. Our goal is to
achieve 100% coverage for GSEs.

A single-input gate can be identified by one test vector
from either V,,; or V,;. On the other hand, a multiple-input
gate can be identified by three test vectors: one from V,,,
one from V,,,, and one from V,;, (if n is even) or V,,,, (if n is
odd). Hence, three test vectors are sufficient to identify an n-
input gate. Two test vectors suffice in some cases. For
example, an AND gate can be identified by applying one
test vector from V,,; and one from V4,

The number of tests needed to test an n-input gate for
SSL faults is n+1 for the gates AND, NAND, OR, and
NOR, while it is two or three for XOR and XNOR depend-
ing on the parity of n. So, the number of tests needed to test
for SSL faults is greater or equal to the number of tests
peeded to test for MIGSEs in most cases.

We now introduce some further notation to specify the
effects of C-sets on a gate G within a circuit.

Definition 1 If the inputs of a gate G in a circuit C can be
forced to the pattern v by assigning the primary inputs of C,
then G is controllable by v, otherwise, it is uncontrollable by
v. If the output of G with respect to the pattern v is sensitiz-
able to a primary output then the response of v is said to be
observable at G, otherwise, it is unobservable.

Definition 2 A gate G in a circuit C is V-controllable if G is
controllable by at least one vector v in the input vector set V.
If v is also observable at G, then G is excitable by V (V-excit-
able). A gate G is fully excitable if G is excitable by every
nonempty C-set of G, otherwise, it is partially excitable.

To illustrate the above definitions, consider the circuit
shown in Figure 1. G, and G, are both controllable by the
pattern 00, while G; is uncontrollable by 00. The response
to the pattern 00 is observable at G, but it is not observable
at G,. The gate G, is {00,11}-excitable because G; is con-
trollable by 11, and the response of 11 is observable at G;.
On the other hand, G; is not {00}-excitable because G, is
uncontrollable by all the elements of the set {00}. The gates
G,, G, and G, are partially excitable.

The following theorem gives a solution to the verifica-
tion problem for GSEs:

Figure 1 A circuit realizing the XOR function.



Table 2 The test vectors required to verify an n-input
fully excitable gate.

Gate |Fanin n sTe.?s';'l s'gs_'t_z s-l;ets;-s
. ——
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Theorem 1 A necessary and sufficient condition for a test
set S to verify a fully excitable gate is that S produce the test
vectors Ty shown in Table 2 at the inputs of the gate and sen-
sitize the gate output to a primary output.

All gates in a fanout-free circuit are fully excitable. In a
circuit with fanout, it is possible that some input combina-
tions canmot be forced at the inputs of some gates. For
example, no element of V,,; can be forced at the inputs of
the AND gate G, in Figure 1. From Table 1, we see that V,,
is necessary to distinguish a 2-input AND gate from an
XNOR gate, so, the replacement of the AND by an XNOR
gate cannot be detected. This replacement does not change
the function of the circuit, hence it is considered to be a
redundant or undetectable MIGSE. Likewise, some input
combinations can be forced at the inputs of some gates but
their responses cannot be observed. For example, the pat-
tern 00 can be forced at the inputs of G, in Figure 1, but the
response of G, cannot be propagated to the primary output.
The above examples show that it is natural to have gates
which are not fully excitable and therefore have undetect-
able design errors. It also suggests a modification of the test
vectors 77 in Table 2 to verify a partially excitable gate.
Definition 3 If a partially excitable gate G is excitable by all
but one of its nonempty C-sets, then G is strong partially
excitable, otherwise, it is weak partially excitable.

‘Consider again the circuit in Figure 1. The gates G,, G,,
and G; are strong partially excitable because they are excit-
able by two out of the three nonempty C-sets of the respec-
tive gates. An example of a weak partially excitable gate is a
3-input XOR with all inputs connected to a single source. In
this case, the gate is excitable by only two (V,,; and V,;) of
its four C-sets.

Since a strong partially excitable gate G is not excitable
by one of the nonempty C-sets, one of its MIGSEs is unde-
tectable. The remaining four MIGSEs on G can be detected
with at least two vectors; Table 1 implies that an arbitrary
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vector detects only three of G’s five MIGSEs. Therefore, we
have to apply at least three test vectors to G, so that if G is
not controllable by one of the vectors or one of the vectors’
responses is not observable, then the other two will detect
the detectable MIGSEs. This leads to the following result.
Theorem 2 If all gates of a circuit are either fully excitable
or strong partially excitable, then the test set T, shown in
Table 2 will detect all detectable GSEs in the circuit.

A further analysis of T, shows that to verify a weak par-
tially excitable gate, we have to apply the patterns T, shown
in Table 2. Since we cannot always assert that the gates in
the design under test are fully excitable or strong partially
excitable, we may have to apply the patterns T, to detect all
GSEs. Note that a test set generated for GSEs assuming that
the gates are weak partially excitable, will detect all GSEs
in the circuit. On the other hand, a test set generated for
GSEs by assuming the gates are fully excitable or strong
partially excitable may not detect all GSEs.

A complete test set for SSL faults guarantees the detec-

tion of all SIGSEs [3]. Tests for MIGSEs also cover many
SIGSEs. A circuit is SSL-irredundant if it contains no unde-
tectable SSL faults.
Theorem 3 A complete test set T for MIGSEs in an SSL-irre-
dundant circuit is also a complete test set for SIGSEs on all
circuit lines except inputs with fanout if T produces vy at the
input of every AND and NAND gate, v, at the input of every
OR and NOR gate, and their responses are observable.

From this theorem, we conclude that detection of most
SIGSEs is ensured by test sets T, and T but not by 7T,. Our
experiments show that the test set T; detects all SIGSES in
all but one of the considered benchmark circuits.

2.3 Gate Count Errors (GCEs)

We distinguish two types of gate count errors: extra-gate
errors and missing-gate errors. An extra-gate design error
(EGE) is defined as inserting a gate G’ that has its m inputs
taken from the 7 inputs of a gate G and feeding the output of
G’ to G. As a consequence, the number of inputs of gate G
becomes n—m + 1. We represent an EGE by EG(G’,G). It is
casy to see that EG(AND,AND), EG(AND,NAND),
EG(OR,0R), EG(OR,NOR), EG(XOR,XOR), and EG(X-
OR,XNOR) are undetectable or redundant. Explicit test
generation for EGEs is not needed due to the following the-
orem:

Theorem 4 A complete test set for GSEs is also a complete
test set for EGEs.

Most EGEs can also be detected by a complete test set
for SSL faults, but this is not guaranteed. A complete test
set for SSL faults in the circuit of Figure 2 is {000, 100,
001, 010}. This test set does not detect if the XOR gate is an
extra gate. To do this, we need the vector 011.

P B

Figure 2 An example which shows an EGE not
detected by a complete test set for SSL faults.




N=n+m-1

Erroneous circuit

Correct circuit

Figure 3 The missing-gate design error (MGE).

A missing-gate design error (MGE) is defined as remov-
ing a gate G’ that has m inputs and feeds an n-input gate G,
and then changing the inputs of G’ into inputs of G; see Fig-
ure 3. As a consequence, the number of inputs of G
becomes N =n+m-1. We represent the MGE by
MG(G’,G). As in the extra-gate case, the errors MG(AND,
AND), MG(AND, NAND), MG(OR, OR), MG(OR, NOR),
MG(XOR,XOR), and MG(XOR,XNOR) are undetectable.

Consider the problem of finding a minimal set of vectors
that detect all MGEs in an N-input gate G. For each
MG(G’,G), we insert a gate G" as shown in Figure 4, where
G" is chosen so that the function of the circuit is not
changed. For example, if G is an AND or NAND, then G" is
an AND gate. We have to detect the GSE G"/G’ in order to
detect MG(G’,G).

Theorem 5 The test sets VyU Vy_ UV, ,, VouV,UY,,
and Vyu 'V, UV, are each sufficient and near-minimal for
detecting MGEs on an N-input fully excitable AND (or
NAND), OR (or NOR), and XOR (or XNOR) respectively.

The test set given by the above theorem has one test
more than the minimum. For example, the 11-member test
set generated for MGEs in a 4-input NAND gate G is § =
{1111, 1110, 1101, 1011, 0111, 1100, 1010, 1001, 0110,
0101, 0011}. If one of the tests {1110, 1101, 1011, 0111} is
dropped, S still detects all MGEs. However, all MGEs in G
cannot be detected with fewer than 10 vectors. In general,
Theorem 5 gives near-minimal test sets for an N-input fully
excitable gate. It is easy to prove that these test sets detect
all the MGEs of an N-input partially excitable gate with
high probability.

2.4 Input Count Errors (ICEs) and Wrong Input
Errors (WIEs)

Input count errors (ICEs) are classified into extra input
and missing input errors. An extra input design error (EIE)
is defined as the replacement of an n-input gate (n>2) by
an (n + 1)-input gate with the additional input connected to
an arbitrary signal in the circuit. A missing input design
error (MIE) is defined as the replacement of an n-input gate
(n23) by an (n- 1)-input gate with its n—1 inputs con-
nected to an arbitrary subset of the original n inputs. We
represent an EIE of a gate G by El(e,G) where e is the extra
input. We represent an MIE of a gate G by MI(m,G) where
m is the source of the missing input.

N=n+m-1

Figure 4 Reducing the problem of detecting MGEs to
detecting GSEs.
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To test for an EIE at a given input of an AND or NAND
gate, the input must be set to 0 to activate the error, the other
inputs must be forced to 1, and the gate’s output signal must
be propagated to a primary output. This is exactly the
requirement of a test for a stuck-at-1 fault at the input of the
gate in question. Similarly, testing for EIEs at the input x of
an OR or NOR gate is the same as testing for a stuck-at-0
fault at x. To test for an MIE on an AND gate G, the inputs
of G are set to 1, the signal considered to be missing is set to
0, and G’s output signal is propagated to a primary output.
This is more restrictive than a test for stuck-at-0 at the out-
put of G. Similarly, testing for an MIE on a NAND, OR, and
NOR is more restrictive than testing the gate output for
stuck-at-1, stuck-at-1, and stuck-at-0, respectively.

The foregoing tests are complete for AND, NAND, OR,
and NOR gates. Hence, a complete test set for ICEs in a
given circuit detects all SSL faults at AND, NAND, OR,
and NOR gates. A complete test set for ICEs also detects
some SSL faults affecting XOR and XNOR gates. For
example, testing for EIEs at the input of an XOR or XNOR
gate is equivalent to testing for stuck-at-0 fault at the same
input.

A wrong input error (WIE) is defined as a connection of
a gate input to a wrong signal source. We represent a WIE
on a gate G by WI(u,w,G), where u is the wrong input of the
gate and w is the correct input. If a vector v detects
WI(u,w,G), then it must set u and w to opposite values and
propagate the signal at u to a primary output. WIE appears
to be the second most common design error—around 17%
of the errors reported in [7]. The relationship between MIEs
and WIE:s is stated in the following theorem:

Theorem 6 A complete test set for MIEs on gates of type
AND, NAND, OR, or NOR is a complete test set for WIEs on
the same gates.

In practice, we can rarely find a complete test set for
MIEs. The fact that a given MI(x,G) is redundant does not
imply that the WI(u,x,G) is redundant for every u. Also, a
complete test set for MIEs does not guarantee the detection
of WIEs in XOR, XNOR, NOT, and BUF gates. Hence, we
cannot conclude that a test set for MIEs covers all WIEs.

The numbers of ICEs and WIEs in a circuit are very
large—approximately O(k?), where k is the number of dis-
tinct signals in the circuit. Hence, we use simulation to
extract the errors detected by the test set
ST = SSSLUSGSEUSMGE’ where SSSL? SGSE7 and SMGE are
complete test sets for SSL faults, GSEs, and MGEs, respec-
tively. In fact, all EIEs are detected by the test set for SSL
faults alone [3], hence, we only have to generate tests for
the undetected MIEs and WIEs. Our experimental results
show that most MIEs and WIEs are detected by the set S»

A basic question concerning MIEs (WIEs) is the source
of the missing (wrong) input. It must not depend on the
erroneous gate’s output, otherwise, the circuit can become
sequential. Errors that make a combinational circuit sequen-
tial can be detected by a levelization procedure [2].

The coverage relationships for the various design errors
are summarized as follows; A complete test set for MIGSEs



detects all EGEs. On the other hand, a complete test set for
SSL faults detects all EIEs and SIGSEs. Complete test sets
for MIEs, MGEs, and WIEs do not guarantee the detection
of other error types. For example, a test for MIEs detects
many, but not necessarily all, SSL faults.

2.5 Design Error Redundancy

We noted earlier that some design errors are undetect-

able. This leads to a type of redundancy that is quite differ-
ent from that previously studied [8].
Definition4 A gate G in a circuit C has redundant inputs if
the function implemented by C is not changed when a proper
subset of the inputs of G are removed. A circuit C is called
Gl-irredundant if no gate in C has redundant inputs.

GI-redundancy does not imply SSL-redundancy. For
example, a 5-input XOR with all inputs connected to the
same source is Gl-redundant but SSL-irredundant. Simi-
larly, SSL-redundancy does not imply Gl-redundancy. For
example, a buffer whose input is connected to ground is
SSL-redundant but Gl-irredundant.

A redundant design error is one for which no test vector
exists. For example, the substitution of an XNOR gate for
G, in Figure 1 cannot be detected by any input vector.
Hence, the MIGSE G3/XNOR is redundant. The following
theorem characterizes redundant GSEs:

Theorem 7 In a Gl-irredundant and SSL-irredundant cir-
cuit C, the following holds: (1) C has no redundant SIGSEs;
(2) If G/G’ is a redundant MIGSE then every other MIGSE
on G is irredundant, and if Ge {XOR,XNOR} then

G' € {AND, NAND, OR, NOR} and vice versa.

Corollary 1 If the gates in a Gl-irredundant and SSL-irre-
dundant circuit C are restricted to AND, NAND, OR, NOR,
NOT, and BUF, then C has no redundant GSEs.

The number of gates that can have redundant MIGSEs in
a circuit C varies with the circuit structure and the types of
gates in C. For example, fanout-free circuits have no redun-
dant GSEs. On the other hand, a 2-input exclusive-or imple-
mentation using four 2-input NAND gates has four possible
redundant MIGSEs: each NAND gate can be replaced with
an XOR without affecting the overall exclusive-or function.

3 Test Generation

In this section we describe our test generation method for
design errors. In order to use standard ATPG tools, we map
the design errors into SSL faults. The mapping process con-
sists of modifying the circuit’s netlist and injecting a pre-
defined set of SSL faults. A test set is then generated for the
SSL faults in the modified netlist which detects all design
errors in the original netlist.

To map MIGSEs and MGE:s into SSL faults, each gate in
the original netlist is replaced by a functionally equivalent
circuit called a gate replacement module. A few carefully
selected SSL faults are injected in the gate replacement
module, so that the test for each injected fault forces the
input of the gate to be a vector from one of the sets required
to verify the gate. To cover all possible MIGSEs in a circuit,
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o stuck-at-0

Figure 5 The replacement module for detecting
GSEs in a 2-input AND gate.

we must assume that the gates are weak partially excitable.
Consider, for example, the AND replacement module
shown in Figure 5. The faults ¢ stuck-at-0, d stuck-at-0, and
e stuck-at-0 will force the inputs of the AND replacement
module tO V., Vou and v, respectively. These input pat-
terns determine if the AND gate in the circuit is correct or
not, i.e., the presence of any MIGSE on the gate is detected.
The gate replacement modules for MIGSEs and MGEs on
all gate types can be designed systematically in a similar
way.

In general, the requirements to be met by a gate replace-
ment module M(G) of a gate G are the following:

¢ The function of M(G) must be the same as that of G.

* A test for an injected SSL fault in M(G) must force the
input of G to a certain vector that is needed to verify G.

 The injected SSL faults must be sensitizable to the out-
put of M(G).

« If an injected SSL fault in M(G) is detected by a vector
v € V,, then it must be detected by any vector of V;. This
requirement simplifies the detection of the injected SSL
faults by the test generator, and leads to smaller test sets.

The mapping of MIGSEs and MGEs into SSL faults is
many-to-one. Detecting a given set of injected SSL faults
detects a larger set of MIGSEs and MGEs. For example,
detection of the three SSL faults in Figure 5 detects five
MIGSEs. There is a one-to-one correspondence between net
errors (EIEs, MIEs, and WIEs) and SSL faults. The map-
ping of an EIE into an SSL fault is very simple; to detect
whether an AND or NAND gate’s input x is extra, we need
to set x to 0, set every other input to 1, and propagate the
gate’s output signal to a primary output. This is the same as
testing for x stuck-at-1. Also, to test for an extra input in an
OR, NOR, XOR, or XNOR gate, a test for the input stuck-
at-1 is required.

The detection of MIEs and WIEs is performed by insert-
ing a mapping circuit called a net attachment module, as
shown in Figure 6. Let C and C’ be the circuits obtained
before and after adding the net attachment module. The fol-
lowing requirements must be met:

MIE WIE
Equivalent circuit || Design error ~ Equivalent circuit

a a a
=0, sl =00 ol =D s
[ c ¢

Design error

ng]m
/

N %‘ Wi d attagﬁ%nem
Missing até?gdgl]gnt ln;?lrzg Correct module
input input Z
T z d \
d d e ,! e J
e e f ¥,

Figure 6 Mapping MIEs and WIEs into SSL faulis.
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* The function of circuit C must be the same as that of C’.

* A test for the injected SSL fault in the net attachment
module must detect the MIE or WIE.

* The injected SSL fault must be sensitizable in the net
attachment module.

A typical design of the net attachment module for MIEs
is shown in Figure 7a. If G, is an AND or NAND, then G,
must be an XNOR and the fault p stuck-at-1 is injected. On
the other hand, if G, is any of the gates {OR, NOR, XOR,
XNOR}, then G; must be an XOR and the fault p stuck-at-0
is injected. In both cases, the output of G, is independent of
z and hence the function of the circuit is not changed. Also,
the SSL fault is sensitizable to the output of the net attach-
ment module and the vector testing it detects MI(m,G,). A
typical design of the net attachment module for a WIE is
shown in Figure 7b. The output of the net attachment mod-
uleis z = d, hence the circuit function is preserved. The test
for p stuck-at-0 forces opposing values on m and d, and
hence the corresponding WIE will be detected by the same
test.

The overall verification process is divided into two
phases. The first phase checks for gate errors (MIGSEs and
MGE:s) and is shown in Figure 8. The second phase per-
forms the error simulation for net errors (MIEs, WIEs) and
then generates tests for the undetected ones. The flowchart
of phase 2 is similar to that of phase 1. Complete coverage
of net errors may require several iterations through phase 2.
If after checking for all modeled errors, the implementation
is found to match the functional specifications, we can con-
clude with high confidence that the circuit is correct as
designed.

Start

GSEs (Start) MGEs
Netlist modifier o Netlist modifier

& SSL injector

& SSL injector

Test generator

Netlist
NL,
SSL
faults | Test generator

Figure 8 The first phase of the design verification
process.

4 Experimental Results

In this section we describe the experiments performed to
support the preceding analysis; these experiments used the
ATPG tool ATALANTA [9]. To determine the capability of
a given test set to detect design errors and SSL faults, we
developed an error/fault simulator ESIM. The simulator
uses parallel-pattern evaluation and critical path tracing
techniques [2]; It simulates the circuit with multiple vectors
concurrently and determines the detected errors/faults with-
out explicit simulation of each error/fault.

The circuits used throughout the experiments are ISCAS
85 benchmarks [10] and standard TTL circuits [11]. Note
that all the circuits except c432 and c499 are SSL-irredun-
dant. We conducted a preliminary experiment to determine
the coverage of design errors using a complete test set for
all detectable SSL faults. The results in Table 3 show that a
complete test set for SSL faults guarantees the detection of
all SIGSEs and EIEs, confirming results in [3]. The detec-
tion of the other design errors is not guaranteed but they are
likely to be detected because the test set does exercise each
net in the circuit.

Our next experiments are concerned with generating
almost complete test sets for all design errors. They use the
method described in the previous section to generate test
vectors targeting the indicated errors. The modified netlist is
supplied to ATALANTA and a test set is generated. The

Table 3 The percentage of design errors detected using
complete test sets for SSL fauits.

£ [Test[Det'd| Detected | Detected | Detected [/ .
© |[set|SSL GSEs GCEs ICEs WeiEs
O |size|faults|SIGSE|MIGSE| EGE |MGE | EIE | MIE

o175 [100.0] 100.0] 80.0 |100.0] na |100.0|57.5] 68.0
c432 | 46 [ 99.2 [ 100.0| 89.3 |100.0| 95.5 | 98.6 |71.3| 96.4
c432nr| 44 |100.0] 100.0| 89.1 |100.0] 95.5 |100.0(73.1| 96.9
c499 | 52 [ 98.9 [ 100.0| 97.8 | 46.2| 89.6 | 97.8 |88.8| 98.6
c499nr| 52 1100.0| 100.0| 97.9 | 46.2 | 93.8 {100.0|88.8| 98.9
880 | 47 [100.0] 100.0| 90.3 {100.0] 94.6 |100.0|84.9| 98.6
7485 | 25 |100.0] 100.0| 88.4 |100.0| 89.8 [100.0|83.4| 92.7
74181 18 |100.0/ 100.0| 96.2 | 88.9 | 90.6 |[100.0/81.8] 94.0
74283 | 12 {100.0] 100.0| 91.3 {100.0] 84.1 [100.0]74.5] 92.2

Table 4 The percentage of errors detected using the

generated tests.
Tests | Error simulation
- Tests targeting GSEs | targeting | for MIEs and
5 MGEs | WIEs using Sy
(2]
= |[Test pﬂ— pﬂ oA Testi o |Tesf oo oo
O |set|38 |58 |8 |set| 8o |set| B2 Bl
size| O | Oz | A [size) OF [size Q= (o2

c17 5 [100.0]100.0[100.0[ n/a| n/a | 10| 82.5 |95.7
c432 | 34 191.9|99.4 |1100.0| 92 [ 99.8 {170} 86.5 | 98.8
c432nr| 39 | 92.8 |100.0{100.0| 92 | 99.9 [174| 88.8 | 99.5
c499 | 41 {99.8 {100.0| 46.2 | 45 | 97.1 [136| 93.0 | 99.5
c499nr| 39 | 99.8 [100.0| 46.2 | 43 | 98.4 [133| 93.2 |99.7
¢880 | 49 | 92.8 {100.0|100.0{ 66 [100.0{162} 95.0 |99.8
7485 | 14 | 88.4 |100.0{100.0| 47 | 94.4| 85| 89.3 |96.4
74181| 15 {98.5 {100.0{ 88.9 | 36 | 99.5| 69 | 94.9 [ 98.8
74283 10 | 94.7 |100.0{100.0| 31 [100.0] 51 | 88.7 | 95.2
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Table 5 Improved coverage of MIEs and WIEs after
the second phase of test generation.

«= |Tests targeting MIEs not| Tests targeting WIEs
F detected by St not detected by Sy
= Total test | Detected | Total test | Detected
O | setsize | MIEs (%) | setsize | WIEs (%)
c17 13 95.0 12 100.0
c432 184 87.1 206 99.3
c432nr 190 89.9 195 99.6
¢499 228 95.7 147 99.6
c499nr 220 95.8 147 99.8
c880 225 96.5 192 99.9
7485 91 91.2 92 96.4
74181 83 96.6 78 98.9
74283 58 90.0 56 96.4

generated test sets are then evaluated using simulation to
find their coverage of GSEs, as shown in Table 4. Since tests
for MIGSEs cover EGEs (Theorem 4), the results on detect-
ing EGEs are shown in Table 4. The coverage of MGEs
using the generated test set is also shown in Table 4. Testing
for MIEs, and WIEs is performed only for those errors that
are not detected by error simulation using the set
S7 = 855,V Sgse Y Syge- The coverage of EIEs will be the
same as that shown in Table 3 because a complete test set
for SSL faults detects all EIEs. The error simulation results
for MIEs and WIEs also appear in Table 4. Tests are gener-
ated using ATALANTA for the remaining undetected MIEs
and WIEs after the error simulation. ATALANTA reported
that a large percentage of those errors are redundant. After
adding the generated tests to S, the coverage of MIEs and
WIESs is improved, as shown in Table 5.

The coverage of design errors using the generated test
sets is quite high, 80%-100% for most cases. We are confi-
dent that most irredundant design errors are detected. To
explore this further, we analyzed the circuits 7485, 74181,
and 74283. We found that MIGSEs and EGEs not detected
by our test sets are redundant, and hence, these test sets
cover 100% of the detectable MIGSEs and EGEs.

It is difficult to compare the coverage results obtained in
this paper to related work in the literature for the following
reasons: (1) different error models are used; (2) test set sizes
are missing from the results of [6]; and (3) standard bench-
marks are not used in most prior work. Moreover, the CPU
times cannot be accurately compared because ATALANTA
runs on a SUN workstation while ESIM runs on an IBM PC.
The CPU times were found to range from a few seconds to a
few minutes in all cases.

5 Conclusions

We have presented a method for verifying logic circuits
by using standard simulation and ATPG tools. We showed
that all common design errors can readily be mapped into
SSL faults and presented a systematic method to perform
this mapping. Our experimental results show that complete
test sets for SSL faults detect almost all detectable errors.
Our test sets for design errors are small in size and provide
high coverage—the percentage of detected design errors
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from all modeled errors, detectable and redundant, is greater
than 90% for most benchmark circuits. Our experiments
also show that the fraction of redundant design errors is sig-
nificant in practical circuits even when the circuit is SSL-
irredundant. For example, 11.6% of the MIGSEs in 7485
comparator circuit are undetectable.

Our design verification method is directly applicable to
gate-level sequential circuits. All we need is a sequential
ATPG tool that gives test sets for SSL faults with high cov-
erage. We are now extending our verification method to
high-level circuits as well as gate-level design error diagno-
sis. These extensions cannot be easily performed using
BDD-based design verification methods, because of their
high memory requirements and their independence of the
design structural representation.

‘We stress that our design verification method can be used
with any ATPG tool because it does not require modifica-
tion of the test generation program. We ensure full detect-
ability of design errors by injecting SSL faults into a
modified netlist and apply an ATPG program to it. There-
fore future improvements in ATPG tools can be extended
directly to design error detection.
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