
1

Abstract—A mutation-based validation paradigm that can han-
dle complete high-level microprocessor implementations is pre-
sented. First, a control-based coverage measure is presented that is
aimed at exposing design errors that incorrectly set control signal
values. A method of automatically generating a complete set of
modeled errors from this coverage metric is presented such that the
instantiated modeled errors harness the rules of cause-and-effect
that define mutation-based error models. Finally, we introduce a
new automatic test pattern generation technique for high-level
hardware descriptions that solves multiple concurrent constraints
and is empowered by concurrent programming.

1 INTRODUCTION

The task of creating a validation paradigm is an open-ended
problem. An enormous amount of research has already been per-
formed to study the sub-topics that are incorporated into a valida-
tion system including coverage metrics, design error modeling,
finite state machine (FSM) analysis, equivalence checking at vari-
ous layers of abstraction, and various automatic test pattern genera-
tion (ATPG) techniques. Validation systems for high-level
microprocessor implementations also tend to borrow techniques
from compiler technologies and software testing; these techniques
include topics such as data-dependency graphs, assertion-based
software testing, and mutation-based software testing. All these
above mentioned techniques and others act as pieces that can be
used to create ground-breaking validation methodologies, but sig-
nificant effort has not been made to conceptualize a novel method
of integrating these pieces to produce a validation paradigm that
can impact a wide range of validation-based problems.

It is the goal of our research to create such a versatile validation
paradigm by adopting mutation-based testing as a means to trans-
late design errors from an abstract point-of-view into a physical
one. This translation can be done by first identifying how such
abstract design errors affect the system under validation, then pro-
ducing design error models that follow the rules of cause-and-effect
similar to that of physical fault models. This approach is advanta-
geous because a collection of modeled errors can be efficiently
simulated on a hardware description concurrently by incorporating
high-level fault-list propagation into the simulation system.
Another significant advantage, if we visualize an undetected mod-
eled error’s location to be its activation criteria (activation site), is
that each test sequence can be aimed at the corner of the design
space with the greatest density of undetected modeled errors.

The basis for this mutation-based approach comes from an
adaptation of the Coupling Effect [4] in software testing, which
allows us to argue that a test sequence capable of exposing simple
design errors is also implicitly capable of exposing hard-to-detect
design errors [2]. To completely develop this mutation-based vali-
dation paradigm (MVP), it is necessary to describe the steps of the
validation process in the following order: (i) coverage measure
selection, (ii) design error modeling, (iii) instantiating a set of mod-
eled errors from each design error model, and (iv) concurrent mod-
eled error simulation/automatic test pattern generation.

We next introduce various simulation-based validation environ-

ments that do not represent the complete set of existing environ-
ments, but introduce some good examples.
SymFony [12]. Many common validation environments that
employ symbolic automatic test pattern generation methods rely on
a gate-level implementation that has been previously synthesized.
The drawback of this approach is that it forces the symbolic meth-
ods to be applied onto the complete implementation at the logic-
gate level. This is a drawback because symbolic methods are only
capable of generating a solution to circuits that contain few regis-
ters.

SymFony attempts to circumvent this limitation by extracting
circuit macros from the gate-level implementation, which act as
reduced problems for the symbolic solver. It employs two main
algorithms: Forbidden is used to identify all reachable states, and
Justify is used to generate the implications required by the FAN
solver. To improve the run-time performance, a pre-processing
phase is used to identify (from the synthesized gate-level imple-
mentation) F macros that will be used by Forbidden and J macros
that will be used by Justify. At the register-transfer level, SymFony
consider control macros that are composed of each FSM state regis-
ter, and data-path macros that are composed of data registers/data-
manipulating combinational logic.

SymFony’s ATPG process can be applied to only small and
medium circuits because the Forbidden pre-processor computes the
FSM for the complete circuit, and the input/output constraint BDDs
(derived from the logic BDDs) are intersected with the complete
FSM BDDs (FSM next-state and FSM output BDDs) during each
symbolic solver process. The Forbidden algorithm prunes out the
invalid state configurations as a preprocessor step, but an effort is
not made to prune the state space prior to performing the expensive
operations that intersect BDDs.
Genesys-Pro [13]. Unlike many other verification tools, the Gene-
sys-Pro verification tool is capable of performing verification on
complete processor systems by implementing model-based test pat-
tern generation. The model-based approach provides the building
blocks found in processor implementations to simplify the effort of
creating a processor model. A processor model is composed of a
declarative description, and testing knowledge for this model. A
processor model is verified through the use of a test template lan-
guage, such that a test template describes architecture-level charac-
teristics that should be tested. This test template is converted into a
verification program via the model-based test pattern generator
(implemented by a pseudorandom test pattern generator) that uses
the model’s included testing knowledge. The strength of this tech-
nique is that it allows a validation engineer to create test templates
that are not burdened by implementation details. This, of course,
requires significant human foresight when creating the testing
knowledge included with the processor model itself. Applying
human effort into generating this testing knowledge is only advan-
tageous when there is extra manpower or when the model belongs
to a family of processors with long lifetime expectancy. Further-
more, it cannot be guaranteed that the modeling engineer has not
left out important corner cases that are difficult to stimulate.
μGP [14]. Some validation environments employ an instruction
library that contains a collection of mini-programs (known as pro-
gram macros) that are capable of exercising interesting corners of

MVP: A MUTATION-BASED VALIDATION PARADIGM

Jorge Campos and Hussain Al-Asaad
Department of Electrical and Computer Engineering

University of California, Davis, CA
E-mail: {jcampos, halasaad} @ece.ucdavis.edu

2

the processor. These program macros can be combined in various
sequences to achieve test programs that are more effective than
purely random test generation methods. This approach requires that
the simulation method connect the processor implementation onto a
simulated memory unit that contains the test program, as opposed to
forcing a fixed test sequence into the processor’s primary inputs.

The methods in μGP employ an instruction library, and achieve
effective test programs via a genetic algorithm. The program mac-
ros used in μGP are fine-grained such that it does not render a
sequence of program macros incapable of stimulating interesting
interactions among the instructions in a pipeline. The goal of μGP is
therefore to use a genetic algorithm to generate a test program
(composed of a sequence of program macros) that achieves high
design coverage. μGP implement the genetic algorithm as follows:
μGP first generate μ individual test programs by combining pro-
gram macros in a random order—this set of test programs act as the
first generation. Then for each generation, λ new individual test
programs are generated by pairing the existing test programs and
generating their offspring through mutation and crossover opera-
tions. The next generation is then defined by rating the set of μ + λ
test programs with a fitness function that is based on the coverage
metric, and eliminating all but the highest-rating μ test programs.

The quality of the test program generated by the validation sys-
tem can only be as good as the set of program macros that define it.
It is therefore dependent on the validation engineer to develop a
diverse enough set of program macros such that a combination of
program macros exists for every corner of the design.

In our previous work [1], we have developed a method to simu-
late a collection of modeled errors concurrently on a high-level
hardware description. This method is implemented by giving sig-
nals and variables a fault list, such that mutant values from modeled
errors are injected into corresponding fault lists upon activation,
and removed from the fault list once they have propagated to an
observation point.

We have introduced our “clustering and partitioning” technique
as a data structure that minimizes the simulation overhead caused
by error injection [2]. Clustering and partitioning balances the
trade-off between signal propagation overhead and modeled error
activation overhead by clustering modeled errors that have common
signals in their activation criteria, and partitioning these clusters
based on the value for the signals in the activation criteria. Each
cluster acts as another target for fault list propagation, and is parti-
tioned using hashing-and-chaining. As a result, this data structure
allows the simulation environment to only consider the partitions
that correspond to the current processor state during modeled error
activation.

We have also proposed a method to identify the most effective
ATPG goals based on the statistical information on the distribution
of modeled errors that is obtained from the clustering and partition-
ing data structure [2]. Observations on our simulation results have
made it clear that there is a strong correlation between the number
of active modeled errors per simulation iteration and the number of
detected modeled errors per simulation iteration. This observation
allows us to argue that it is fruitful to focus our ATPG efforts on
activating the largest number of modeled errors per ATPG iteration
(deterministic activation and probabilistic propagation) for as long
as there are sufficient modeled errors that are easy to detect. Once
we reach to a state where there are not enough modeled errors that
are easy to be detected, our ATPG effort switches to deterministic
activation and propagation.

2 COVERAGE MEASURE SELECTION

An exhaustive coverage metric would attempt to apply every
possible input vector onto every state of the design which often
leads to the state explosion problem. Other FSM-based coverage
metrics include state coverage, transition coverage, and path-cover-

age [15][16]. The path coverage metric encapsulates transition cov-
erage, and can potentially be more complex than the exhaustive
coverage metric. It attempts to exercise every possible state
sequence that is within a given length.

With the use of hardware description languages (HDLs) came a
series of code-based coverage metrics (synonymous to FSM cover-
age metrics) for circuit designs including line coverage, transition
coverage, and path coverage [5][15].

A validation paradigm should employ a good coverage metric
because an inefficient coverage metric will require too many test
pattern generation iterations, and an over-simplified coverage met-
ric will sacrifice the effectiveness of the resulting test sequence. A
control-based coverage measure is being employed for our muta-
tion-based validation paradigm, and the reasoning behind it is as
follows. A microprocessor’s explicit processor state can be defined
by combining all the control registers. A simple 16-bit processor
with a 5-stage pipeline would therefore consist of a state register
that is at least 64 bits wide (each of the last four pipeline stages con-
tains a control register that holds the currently residing instruction).
The state register would be even larger for superscalar microproces-
sor implementations because they employ a distributed control
methodology through many disjoint and cooperating functional and
control units. Any attempt to even perform a complete state cover-
age would face the wrath of the state explosion problem, so a more
effective method must be employed. Given that modern superscalar
microprocessor implementations are modular by nature, it is rea-
sonable to request for each of these functional and control units to
be validated against their description before the microprocessor is
validated as a whole. With this request, the microprocessor-wide
validation problem is reduced to one of validating the control sig-
nals that merge these units together. A study on bug occurrences in
pipelined and superscalar microprocessor implementations [9]
shows that over two-thirds of design errors are related to the control
logic.

At this point, it is obvious that the control-based coverage met-
ric becomes one which ensures that every possible value for each of
the control signals is exercised for every possible processor state.
This may seem like an even harder coverage metric to employ than
the state coverage metric. However, we can actually reduce the state
space by ignoring those processor states which do not assert control
signal values that cannot be asserted by other processor states. The
general implementation technique for this coverage metric is dis-
cussed in the next section.

3 DESIGN ERROR MODELING

A design error results in the generation of an erroneous value
under a specific state of the system; therefore we can harness this
cause-and-effect characteristic to define the design error construct.
Similar to some fault injection techniques [7][8], the description of
a design error model is based on three basic characteristics: (i) the
activation criteria, (ii) the consequence of activation, and (iii) error
injection. Multiple design errors are to be simulated concurrently;
therefore each design error must have a unique identification num-
ber.

A design error’s activation criteria specify a set of signals and
the conditions that they must satisfy before the design error is acti-
vated. Once the activation criteria is met, the code segment particu-
lar to a design error is executed and generates a set of mutations for
a corresponding set of injection points. A mutant value is injected
into the specified signal immediately after it is generated.

Given that a design error on an implementation of a modular
component will appear on every instantiation of that component, all
design error models have to obey the hierarchical error model [6]
where every instantiation of a modular component will have the
same set of design errors with corresponding identification num-
bers. This is important because it allows a design error to simulta-

3

neously appear at multiple instantiations of a component if
necessary, and it correctly models aliasing in the case where these
mutant values mask each others’ propagation across the circuit.

It is possible to automate the generation of modeled design
errors such that they span the control-based coverage measure of
Section 2. In fact, performing automated generation of these mod-
eled errors is expected to be most influential for superscalar proces-
sor implementations because of their inherent complexity. If one
were to analyze the data dependency of a control signal onto the set
of registers (data and control) and primary inputs, one would see
that each control signal is dependent on only a subset of those
sources. It is therefore possible to prune the state space without con-
sequences as follows: For each control signal c, first identify the set
of control registers that affect the value of that control signal and
denote this set as s. Then for every correct value vc of control signal
c under every possible value of s, generate a set of modeled errors
that mutates c from vc to all erroneous values ve (such that vc ≠ ve)
and inject their corresponding ve back into c.

This error modeling technique follows closely from the modi-
fied MCE model [2], but it is more effective because it only gener-
ates useful modeled errors for every control signal by first
identifying the relevant control registers. The set of relevant control
registers for a particular control signal can be found easily by ana-
lyzing that control signal’s set of prospect states. A prospect state is
introduced and defined in Section 6 and can be generated as dis-
cussed there.

4 HIGH-LEVEL ATPG
Once a set of modeled errors has been generated as specified in

the previous section, they are simulated on the hardware description
under validation to rate the effectiveness of the test sequence. In our
previous work, we have developed an efficient method of simulat-
ing modeled errors on a high-level hardware description [1], and we
have proposed a method of identifying the ATPG goals that result in
the most effective test sequence per ATPG iteration. This combina-
tion of simulation efficiency and ATPG effectiveness allows us to
employ a deterministic ATPG algorithm as opposed to the pseudo-
random algorithms that are widely used. The efficiency of our
ATPG algorithm is demonstrated in Section 10.

Many researchers have attempted innovative methods for auto-
matically identifying the register(s) on which a microprocessor’s
FSM is based [5]. The motive is that the test pattern generation
efforts are greatly simplified when a processor’s complete FSM has
been predetermined. Once an FSM is identified, a test sequence that
maps the current processor state to a target state can be generated by
identifying the corresponding transition sequence. The work in [5]
identifies an FSM by searching for the control signals that change
most frequently and denoting these signals as control states. It also
acknowledge that other control signals also play an influence on the
FSM, and so denote these signals as state associative control sig-
nals. This approach, however, was developed for processors with
micro-architectural implementations which inherently rely on an
explicit FSM. For superscalar implementations, it is advantageous
to conceptualize a microprocessor’s control functionality to be
implemented by numerous interacting FSMs.

The current proposed method for generating a set of predefined
FSMs involves having the user provide basic architectural informa-
tion. First of all, the user would identify the dominant control regis-
ters that should be considered for ATPG by attaching an attribute to
the corresponding signals in the hardware description; FSMs will
only be generated for these control registers. User-configured con-
trol registers are an example of control registers that do not require
pre-defined FSMs because they behave like data registers. The user
would also specify the range for each of the listed control registers
so it may be accessed at runtime; this step is believed to be a rea-
sonable request given that microprocessor implementations are usu-

ally accompanied by useful documentation. The range for these
control registers can be specified by partially-defined vectors [5].
An n-bit register that is missing explicit range information will have
to be assigned an initial exhaustive 2n-valued range. As the FSM for
the register is identified, the range is pruned out. Any control regis-
ter that holds the op-code serves as an example of a control register
that requires a pre-specified range—the range is the complete set of
possible instructions.

The process of identifying the FSM for a particular control reg-
ister involves first identifying its relationship to primary inputs and
internal registers, such that this information is stored through a set
of data dependency graphs (DDGs). These DDGs are generated via
the methods discussed in Section 5. For the purpose of our valida-
tion environment (MVP), the FSM input is identified using the
DDG and can be any primary input or control register. There usu-
ally are multiple assignment statements for each control signal,
such that each assignment statement is activated by a given set of
control requirements; therefore each DDG is naturally accompanied
by a corresponding set of control requirements.

An FSM graph for an n-bit register has a total number of transi-
tions equal to 22n. Fortunately, the allowable set of values for a con-
trol register in a microprocessor implementation is usually a subset
of the complete range of values that it can hold. We can therefore
use a predefined range for a control register to reduce the size of its
FSM graph.

The FSM can be identified for a given control register by apply-
ing simple ATPG methods for every acceptable combination of
FSM state and output; this technique can employ any logic-gate-
level ATPG algorithm such that the FSM state is predefined and the
goal is to find any acceptable FSM input value. Given that the pro-
cess of identifying a set of FSMs that exist in the microprocessor
implementation uses the same techniques as the run-time ATPG
process, it should become clear that the goal for this preprocessing
step is to invest effort to obtain the solutions to the reoccurring
ATPG problems for long-term benefit. Designating too many con-
trol registers with attributes will overburden the preprocessor, but
designating too few control registers will overburden the runtime
ATPG process with redundant problems and backtracking. Perform-
ing case studies with the finalized validation environment should
result in interesting data that hopefully gives insight as to what
combination of control registers can achieve a balance for optimal
performance.

At this point, it is clear that our MVP relies on giving modeled
errors the capability to specify multiple concurrent constraints.
Each constraint will therefore specify one or more paths in the HDL
code that serve as candidates for test pattern generation (not all pos-
sible combinations of paths for a modeled error can be satisfied due
to conflicting control requirements in the set of constraints). In fact,
it is expected that when automatic generation of modeled errors is
used, many of the modeled errors will contain an activation criteria
that cannot be asserted. Therefore it is necessary to identify the
combinations of code paths that do not lead to a solvable problem
as a means to prune the search space and to identify the modeled
errors that cannot be activated.

It is expected that the microprocessor implementations under
consideration will be hierarchical in nature, therefore forcing an
error model specification that resides in an embedded module to be
implemented at every instantiation of that module. To complicate
the situation even further, an error model specification might
include activation criteria that span multiple module instantiations,
therefore requiring a global technique of gathering the control
requirements for each activation criterion (constraint). It is possible
to collapse hierarchical implementations of hardware descriptions
into a collection of interconnected processes [17], and in fact many
simulation environments rely on this to implement a distributed
simulation system [10]. Analyzing a flattened implementation for

4

test pattern generation is appealing because it can be solved by ana-
lyzing a single layer of scope. However, analyzing the implementa-
tion in its hierarchical format is beneficial because a multi-threaded
solution can be used in a depth-first fashion to efficiently identify
the combinations of code paths for a collection of constraints that
can be possibly satisfied.

The researchers in [11] have attempted to satisfy a set of con-
straints for large high-level circuits by dividing it into smaller, inde-
pendent, cascaded problems. Each time the hybrid solver is not able
to solve one of the individual components; their software tool will
divide that component into two cascaded components and attempt
to solve the end-most component first. This transforms a large cir-
cuit problem into one of cascaded circuit components. The limita-
tion with this cascaded-circuit decomposition scheme is that it
requires a component’s FSM to be capable of satisfying the follow-
ing component’s input constraints. To facilitate this, the compo-
nent’s FSM should have the ability to preserve its state.

MVP decomposes a circuit into the subset of control registers on
which the set of constraints are dependent. Unlike the work in [11],
the ATPG methods of MVP do not require a control register’s FSM
to have the ability to preserve its state. The reasoning behind this is
that satisfying a set of constraints on a sequential circuit will most
likely require a sequence of test vectors. As a result, a set of con-
straints will be satisfied by starting the ATPG process at any target
state that satisfies these constraints. Then these constraints are justi-
fied to bring the target state one step closer to the current state. Dur-
ing each intermediate step, the set of constraints will require
specific control requirements in order to reach the appropriate
assignment statements in the hardware description; these control
requirements are used as the constraints for the next ATPG iteration
(the previous time frame).

5 EXTRACTING PROSPECT CODE PATHS

As previously mentioned, an activation criteria denotes a collec-
tion of signal instantiations, and a corresponding set of values that
these signals are required to satisfy. These activation criteria are
used as the initial set of ATPG goals. Before attempting to identify
the sets of implications that satisfy the ATPG goals, we can reduce
the search space by first identifying, for each ATPG goal, the basic
blocks that can assign the required value onto the required signal.
For each of these identified basic blocks, we need to extract the
guards (sensitivity list from process statements, and conditions
from condition statements) that allow this block to be reached and
combine the identified guard constraints to form the set of control
requirements. Let us therefore define a prospect code path as one of
the many assignment statements that may be able to satisfy an
ATPG goal’s constraint, such that the assignment statement can be
reached when the identified control requirements are satisfied. A
prospect code path for an ATPG goal will therefore contain: (i) the
data dependency between the constraint’s signal to the set of regis-
ters and primary inputs, and (ii) the control requirements that allow
its corresponding assignment statement to be reached. A prospect
code path can be conceptualized as one of many possible high-level
cones of logic (local to a module) for a given signal or variable. It is
important to mention that generating a prospect code path for an
ATPG goal is performed independently of all other prospect code
path generations for other goals, and it only need consider the scope
of the module in which the ATPG goal exists.

Some control registers can retain their values across clock
cycles when they are provided with a feedback loop or their assign-
ment statements have extra control guards. In order to give the test
pattern generation algorithm more flexibility in choosing when to
defer the justification of a control register’s value, the code paths
that preserve a control register’s value will not be generated explic-
itly. Instead, all prospect code paths that correspond to an assign-
ment statement which modifies the register’s value will be

appended by a deferrable flag. When this flag is set, the prospect
code path will be provided with the control requirements that allow
the control register’s justification to be deferred. If the control reg-
ister has a feedback loop, the control requirements that allow this
feedback loop to defer its justification will be the control require-
ments that correspond to the code path that activates this feedback
loop. If the control register’s assignment statements have extra
guards that can prevent any of its statements from being reached,
the control requirements that defer its justification can be found by
creating a conjunction of negated guards for all its assignment state-
ments. If this control requirement evaluates to false unconditionally,
then it is clear that the control register’s justification cannot be
deferred.

To implement the environment that extracts the prospect code
paths for a given module, a statement tree (Figure 1) can be created
that preserves the structural integrity of all statements in the module
and is able to provide an absolute path and control requirements to a
given statement. The tree is implemented by a collection of State-
mentList nodes that contains a series of statements, and the control
requirement for any of these statements to be reached. The root
level only contains the concurrent items in the module and thus
does not impose any control requirements. Any of these concurrent
items can be a statement outside of process declarations, or they can
be a process declaration. All other levels contain sequential items.
A process is created into a sequential node by inserting all state-
ments in the order in which they appear, such that a child State-
mentList node is created for any nested condition statements and a
link to it is inserted in its place. Conditional assignment statements
that exist outside of a process can themselves be converted into a
process for their implementation [10][17], which allows us to
extract the prospect code path for such a statement as we would for
an assignment statement in a process.

A prospect code path is created in the form of a DDG as it is
extracted from the module specification, and it includes the control
requirements for that code path. Limiting the test pattern generation
algorithm to RTL microprocessor implementations allows us to
reject designs that employ loops in their processes. For each con-
straint, all assignment statements to the signal in that constraint will
result in a set of prospect code paths.

A process will be spawned to convert an assignment statement
into a prospect code path as follows: If the statement contains a
non-shared variable, then this variable will be replaced by the previ-
ous assignment statement to that variable within the current code
path. Shared variables will not be supported because of their nonde-
terministic behavior when multiple processes modify the same
shared variable at the same simulation iteration [17]. If the state-

Figure 1 Diagram depicting statement tree of nested
condition statements.

 s.t. Y: set of signals,
Z: set of non-shared variables

Control requirements:
Scope for variables in Z:

x f Y Z,()=

C3 C5∪
B3 S1…Sj 1–[] B5 S1…Sk 1–[]∪

S1 Si SmS2
Control requirements: ϕ

B1

Control requirements: C2
B2

S1 Sj SnS2
Control requirements: C3B3

Control requirements: C4
B4

S1 Sk SpS2
... ...

Control requirements: C5
B5

Control requirements: C6
B6

5

ment contains an internal signal, then this signal will be replaced by
any assignment statement to it. There may be numerous assignment
statements whose control requirements do not conflict with those of
a selected prospect code path, so a new prospect code path needs to
be generated for each of these alternatives.

The program segment of Figure 2 is from the Motorola 6800
microprocessor implementation from John E. Kent [opencores.org];
it is a process whose purpose is to update the value to the program
counter (PC) register. This is the only location in the microproces-
sor implementation where the PC register is written to, and generat-
ing the initial DDG for the signal pc gives us Figure 3. Notice that
temppc and tempof are both variables, and the assignment statement
to signal pc lies at the end of the process. Therefore when
generating the DDGs for an ATPG goal on signal pc, any
assignment to temppc and any assignment to tempof earlier in the
process may be used as long as their control requirements do not
conflict. The complete set of prospect code paths for an assignment
to signal pc is generated and the resulting eight DDGs are shown in
Figure 4.

The leaf nodes of all the DDGs in Figure 4 are constants, signals
corresponding to registers, or primary input signals. Any of the
prospect code paths deduced from these eight DDGs may be used to
satisfy the ATPG goal on signal pc, and obviously some choices are
better than others. By inspection we see that DDGs (e) and (f) may
be used in sequence to effectively satisfy a constraint on signal pc,
primarily because they have access to primary input signals. These
eight DDGs are not the complete set of prospect code paths because
the control requirements have not been expanded to register signals
and primary inputs (pc_ctrl is a control signal, not a control-register

pc_mux: process(clk, pc_ctrl, pc ,out_alu, data_in, ea)
variable tempof: std_logic_vector(15 downto 0);
variable temppc: std_logic_vector(15 downto 0);
begin

case pc_ctrl is
when add_ea_pc =>

if ea(7)=‘0’ then tempof:=“00000000” & ea(7 downto 0);
else tempof:=“11111111” & ea(7 downto 0);
end if;

when inc_pc =>
tempof:=“0000000000000001”;

when others=>
tempof:=“0000000000000000”;

end case;
case pc_ctrl is
when reset_pc =>

temppc:=“1111111111111110”;
when load_ea_pc =>

temppc:=ea;
when pull_lo_pc =>

temppc(7 downto 0):=data_in;
temppc(15 downto 8):=pc(15 downto 8);

when pull_hi_pc =>
temppc(7 downto 0):=pc(7 downto 0);
temppc(15 downto 8):=data_in;

when others =>
temppc:=pc;

end case;
if clk'event and clk = '1' then

pc <= temppc + tempof;
end if;

end process;

Figure 2 Example process implementation which
uses signals and variables [opencores.org].

Figure 3 Incomplete DDG for signal pc.
temppc tempof

+

pc

Control requirements
clk’event && clk = 1

signal). The DDGs occur in the following number of prospect code
paths after pc_ctrl is expanded: (a):1, (b):1, (c):12, (d):56, (e):3,
(f):3, (g):1, (h):1. Therefore a total of 78 prospect code paths would
be generated as a result of a constraint on signal pc. We next discuss
the possible techniques for an effective ATPG.

6 GENERATING PROSPECT STATES

At this point, we have for each ATPG goal a collection of pros-
pect code paths that are capable of performing the desired signal
assignment. For each of these code paths, we have a collection of
control constraints that need to be satisfied in order for the required
assignment statement to be reached. It is possible to narrow down
the search space into a collection of target microprocessor states
that can possibly satisfy the set of ATPG goals. A prospect state can
be conceptualized as a HDL-based state such that each process in
an implementation activates a specific code path, and the control
requirements of all processes do not contradict one other. It can also
be conceptualized as one of many possible high-level cones of logic
that traverse module boundaries. These set of prospect states can be
generated by cross-referencing the sets of control requirements for
all ATPG goals to identify all combinations of prospect code paths

Figure 4 Possible DDGs for an ATPG goal on signal pc.

+

pc

Control requirements
clk’event && clk = 1 &&

0x“FFFE” 0x“0000”

pc_ctrl = reset_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = load_ea_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = inc_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = latch_pc

+

pc

ea 0x“0000”

+

pc

pc 0x“0001”

+

pc

pc 0x“0000”

(a) (b)

(c) (d)

+

pc

0x“0000”&

pc (15:8) data_in

+

pc

0x“0000”&

data_in pc (7:0)

+

pc

&pc

0x“00” ea (7:0)

+

pc

&pc

0x“FF” ea (7:0)

Control requirements
clk’event && clk = 1 &&
pc_ctrl = pull_lo_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = pull_hi_pc

Control requirements
clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&

Control requirements
clk’event && clk = 1 &&
pc_ctrl = add_ea_pc &&

ea (7) = ‘0’ ea (7) != ‘0’

(e) (f)

(g) (h)

6

that can satisfy the ATPG goals without resulting in a contradiction
between control constraints.

Mutation-based modeled errors will commonly have multiple
constraints as their activation criteria that must be satisfied concur-
rently. The set of constraints can reside in distinct module instantia-
tions within the microprocessor implementation, but each of the
prospect code paths has a scope that does not reach past its module
instantiation. Each prospect state serves as a specific focal point for
the constraint solver such that each ATPG goal’s relation to the set
of registers and microprocessor primary inputs are directly speci-
fied by the collection of DDGs. Therefore the scope of each pros-
pect code path needs to be expanded when generating the complete
prospect states. It has previously been stated in Section 5 that each
module instantiation contains a statement tree and contains refer-
ences to all its embedded modules. Therefore the collection of pros-
pect states can be generated as follows: Each module instantiation
is responsible for creating a prospect code path for every ATPG
goal that resides inside itself. It is also responsible for generating
the complete set of prospect states from the set of prospect code
paths that reside inside itself; these prospect states have a domain
that does not surpass its module’s scope.

Each module instantiation uses the prospect states it receives
from its children to generate the prospect states with its level of
scope. When a module instantiation receives a prospect state from
any of its children, it will first replace the child module’s PI signals
with the corresponding local signals as specified by the port map.
Then it will continue to replace internal signals in the prospect state
until all signal references correspond to its primary inputs or any
register; a similar process to the generation of prospect code paths
of Section 5. After this, it merges the prospect state from its child
with its own (if it exists) into an expanded set of prospect states. It
does this by cross referencing the control requirements from all its
local prospect states with those of all its child’s prospect states to
generate all acceptable merges. Once it merges its own prospect
states with those of all its children, each of these prospect states
encompass all ATPG goals that lie at or below this point in the mod-
ule hierarchy tree.

The prospect state generation technique is clearly a problem that
can be optimized through concurrent programming. More specifi-
cally, each prospect code path can be generated by an independent
process because by definition they are independent of all other pros-
pect code paths. Furthermore, the creation of partial prospect states
can be implemented by having each prospect code path generating
process transfer control into a merge() operation local to its module.
This merge() operation will merge the prospect code path into its
local node such that the partial prospect state is accessed through
mutual exclusion. Once the final merge() operation of a module has
finished executing, it will transfer control to the parent module
through the use of a merge() operation that itself will access that
module’s local prospect state through mutual exclusion.

A prospect code path will initially have data and control infor-
mation that is represented by a DDG with a structure inherited from
the hardware description. This DDG structure can vary, and some
structures are easier to solve than others. Given that we are repre-
senting possible solutions by using range information as discussed
in Section 7, we would prefer to avoid operators that impose solu-
tions with multiple disjoint ranges of values. An example of such an
operator is the inequality operator. A statement A/=B returns a true
Boolean value if A<B or A>B, therefore doubling the number of
explicit value ranges. Let us define such operators as “disjoining”
operators. Instead of solving a DDG by transferring multiple value
ranges across DDG operators as a result of disjoining operators, we
can restructure a DDG into an equivalent graph that does not con-
tain these disjoining operators. Table 1 contains the set of disjoining
operators that we avoid in our DDG representation, and defines the
replacement statements that are used for the operators.

In our restructured DDG representation, we make an explicit
distinction between Boolean operators and bitwise operators
because they produce distinct disjoining effects when taking a (two)
value range(s) as their operand(s). As an example, a Boolean NOT
operator applied to an equality operator will double the number of
explicit value ranges as previously stated, while a bitwise NOT
operator applied onto a literal will simply invert every bit in its
operand.

Also in our restructured DDG representation, there is only one
disjoining operator that we allow to remain in our DDG structure as
it binds all disjoint range of values into a set. We use the Boolean
OR operator to reference the DDG structures that define a specific
explicit value range, and a set of these DDG structures is linked by
a chain of Boolean OR operators. As a result, we get a DDG struc-
ture in the form of a disjunction of conjunctions, such that each con-
junction defines a specific explicit range in values. More
specifically, all nodes in a conjunction share the range in values for
the variables and signals they refer to. The nodes in our restructured
DDG follow a hierarchy (Figure 5).

Once disjoining operator nodes are replaced by their equivalent
DDG structure, we must propagate all Boolean OR and Boolean
AND operators towards the first two layers in the DDG.

7 REPRESENTING A RANGE IN VALUES

Discrete and real data types are the easiest to represent as a
value range, given that their range can be explicitly defined by a
minimum and a maximum value. Bitvector literals, however, are
more difficult to represent. In Section 4 we discussed how the user
would specify the explicit range in values for specific control regis-
ters in the form of partially-defined bitvectors. This specification
forces bitvector operators to support a value range that is specified
in the form of a set of partially-defined bitvectors.

A partially-defined bitvector is an array of bits, such that each
bit can have a value of zero (0), one (1), or don’t-care (x). An x
value signifies that the corresponding bit can be used as a 0 or a 1.
As a result, we can reduce the number of bitvectors required to rep-
resent a given set of values by merging pairs of bitvectors that differ
by only one bit into a partially-defined bitvector. Thus a range of
values exists as a set of partially-defined bitvectors.

This partially-defined bitvector set can be stored as a tertiary
search tree, such that each insertion attempts to reduce the tree by
removing bitvectors that are masked by the inserting bitvector, or
by merging the inserting bitvector with another bitvector that has at
most one corresponding bit with an inverted value. Whenever
merging is required, the bitvector in the tree that initiates the merge
is removed, and a new insertion operation is performed with the
merged bitvector as the operand.

The std_logic libraries for VHDL allow performing relational
and addition operations on std_logic_vector types with integer
types. As a result, we require a method to convert an integer value

Table 1 Replacements for some disjoining operators.

Operation Equivalent
Statement Operation Equivalent

Statement
not A<B A>=B not A=B A>B or A<B

not A<=B A>B not A/=B A=B
not A>B A<=B A/=B A>B or A<B

not A>=B A<B abs A A or (-A)

Figure 5 Operator hierarchy for DDG structure.

OR Operators
AND Operators

Relational Operators {=, >, >=, <, <=}
Computational Operators {Bitwise, shift, arithmetic}

Literals/Identifiers

{Boolean
Operators

7

range into a partially-defined bitvector set. To do this, we can
develop a method to generate a partially-defined bitvector set which
enforces a minimum (maximum). Consequently, we can generate a
partially-defined bitvector set which enforces an integer value range
by generating them for the minimum and the maximum, and then
intersecting both sets to generate a partially-defined bitvector set
that forms an intersection between both sets.

To generate a partially-defined bitvector set for the minimum,
we begin by replacing all ‘0’ bits with an ‘x’ and insert a copy of
this bitvector into the new set. From here on, while there is a
sequence of ‘1’s (starting with the least significant bit) that is fol-
lowed by at least one ‘x’: replace this sequence of ‘1’s by ‘x’s,
replace the proceeding ‘x’ with a ‘1’, and insert a copy of this
bitvector into the set. The final insertion is a bitvector in the form of
a series of ‘x’s that is appended by a series of ‘1’s. Similarly, to gen-
erate a partially-defined bitvector set for the maximum, we begin by
replacing all ‘1’ bits with an ‘x’ and insert a copy of this bitvector
into the new set. From here on, while there is a sequence of ‘0’s
(starting with the least significant bit) that is followed by at least
one ‘x’: replace this sequence of ‘0’s by ‘x’s, replace the proceeding
‘x’ with a ‘0’, and insert a copy of this bitvector into the set. The
final insertion is a bitvector in the form of a series of ‘x’s that is
appended by a series of ‘0’s. An example where a partially-defined
bitvector set for an integer range is generated is shown in Figure 6.

An ordinary bitwise operation is easily performed across par-
tially defined bitvector sets by applying the operation onto all pairs
of partially-defined bitvectors from both sets. This process does
generate a large number of partially-defined bitvectors, but this set
is usually reduced substantially after it is inserted into the tertiary
search tree.

Implementing arithmetic operations on partially defined bitvec-
tors is the most difficult part of developing support for partially-
defined bitvectors. Let us analyze the truth table for a single-bit
adder as shown in Table 2 to discuss the implementation details.
Scenarios V, VI, and IX provide alternative outputs that cannot be
represented in a single partially-defined bitvector. It is therefore
necessary to “split” the addition operation at this point into two
independent addition operations, such that each independent addi-
tion operation produces its own solution in the form of a partially-
defined bitvector. At the end of the addition operation, all the indi-
vidual partially-defined bitvectors are inserted into the same set,
and therefore the set is once again reduced by the insertion process.

Min 11 (00001011): Smin = {xxxx1x11, xxxx11xx, xxx1xxxx,
xx1xxxxx, x1xxxxxx, 1xxxxxxx}

Max 13 (00001101): Smax = {0000xx0x, 0000x0xx, 00000xxx}
Range [11,13]: SR Smin Smax∩ 00001011 0000110x,{ }= =

Figure 6 Generating a partially-defined bitvector set
for an integer range.

Table 2 1-bit addition for a partially-defined bitvector.
A B Cin Cout Sum A B Cin Cout Sum

I: 0 0 0 0 0 VII: 1 1 1 1 1
II: 0 0 1 0 1 VIII: 1 1 x 1 x
III: 0 0 x 0 x 1 x 0 V

0 1 0 II 1 x 1 VIII
IV: 0 1 1 1 0 IX: 1 x x 1 0
V: 0 1 x 0 1 x 1

1 0 x 0 0 III
0 x 0 III x 0 1 V
0 x 1 V x 0 x VI

VI: 0 x x 0 1 x 1 0 V
x 0 x 1 1 VIII

1 0 0 II x 1 x IX
1 0 1 IV x x 0 VI
1 0 x V x x 1 IX
1 1 0 IV X: x x x x x

Other arithmetic operations, such as negation and subtraction, are
implemented using the addition operator.

8 EXTRACTING STATE TRANSITIONS

All prospect states that reach the outer-most module instantia-
tion will consist of DDGs and control requirements that only con-
sist of constants, microprocessor primary inputs, and register
signals. The first ATPG iteration will invest its energy in perform-
ing blind decisions when justifying values on ordinary signals. But
for all ATPG iterations afterwards, the ATPG goals will constitute
solely of control and data registers. This can be exploited to per-
form smart ATPG decisions by using a pre-computed FSM for each
control register.

The pre-computed FSMs for control registers can be used to
identify all the transition sequences under a given length that can
map the current state for a given register onto the target state for
that register. Before a test sequence can be generated that maps all
current register states onto a set of target register values, it is neces-
sary to cross reference transition sequences of equal length for dis-
tinct control registers. This is necessary to generate sets of
transition sequences that are complete (all transition sequences have
equal length, and one sequence exists for all FSMs that are relevant
to the prospect state) and compatible (no conflicts exist between
control requirements in the set).

If a set of complete and compatible transition sequences for all
relevant registers (control and data) can be generated a priori, it
would be possible to distribute the problem of solving each time
frame among a set of server solvers in order to take advantage of
the commonality of distributed workstations. With this approach,
each server process would be given a collection of register values
for two consecutive time iterations so it may identify the implica-
tions on the primary inputs that map the first time frame to the sec-
ond.

9 SOLVING A PROSPECT STATE

The previous sections discuss how to extract all possible pros-
pect states, and how to identify the state transition sequence that can
reach a particular prospect state. This section discusses how a pros-
pect state can be solved to identify the PI signal values that can map
the target state one step closer to the current state. This could be
used to perform either the initial blind test pattern generation pro-
cess, or a smart test pattern generation process that abides by the
identified state transition sequence.

By definition, if a VHDL implementation were to allow a signal
to be assigned values from distinct code statements at a given state
(control requirements), a bus contention will be observed. As a
result, if the collection of code blocks that result from a set of con-
straints cannot be merged into disjoint DDGs, then the design can
be rejected because it allows for bus contentions. There are designs
that allow for multiple concurrent assignments to a signal at a given
set of control requirements (state) by ensuring that at most one of
these assignment statements asserts a non-high-impedance value.
To allow this situation, we can generate the DDG by using only the
assignment statements that do not assert a high-impedance value.

As previously mentioned, a prospect state is composed of a data
requirement and a control requirement, such that both are imple-
mented as a DDG. Also, it has been mentioned that a DDG is
restructured into a disjunction of conjunctions, therefore allowing
all nodes in a conjunction to share the range in values for the vari-
ables and signals they refer to. A data requirement (ATPG goal) is
implemented as an equality statement (signal = value), therefore
multiple data requirements are implemented as a conjunction of
equality statements. Furthermore, to identify the set of value ranges
that satisfy all equality statements in a data requirement simply
requires a true value to be pushed into the root of the data require-
ment DDG.

8

10 PRELIMINARY SETUP AND RESULTS

The core of MVP’s implementation has been implemented in
14.6K lines of C++ code and is currently being maintained under
OS X Tiger using gcc 4.0. It is compiled as a library using GNU’s
autotools (autoconf, aoutomake, and libtool) such that any struc-
tural VHDL implementation can be converted into an ATPG unit by
translating it into a series of C++ objects that use MVP’s library.
The results obtained are executed on a dual 2.5GHz PowerPC
workstation.

MVP’s implementation has been simplified and streamlined by
promoting design consistency. The work of the solver process is
actually performed when generating a DDG, expanding its scope,
and reducing its size by eliminating all conjunctions whose vari-
ables and signals experience data contradictions. This technique is
used to generate both the control dependencies and data dependen-
cies for a prospect state, and when merging prospect states local to a
hierarchical unit into a global set. Therefore once a prospect state
reaches the global scope, a solution to the ATPG problem is
extracted directly from any global prospect state. Obtaining any
solution from any global prospect state implements the blind ATPG
approach. A NULL set of global prospect states signifies the prob-
lem has no solution.

MVP is currently capable of generating and solving prospect
states that correspond to multiple simultaneous constraints; these
prospect states represent the target architectural states that can sat-
isfy the collection of simultaneous constraints. MVP, however, is
not yet capable of generating an FSM for a given microprocessor
implementation. FSM analysis should soon follow, as it will exploit
the efficiency in generating and solving prospect states.

Six constraints (listed in Table 3) have been selected for ATPG
from the Motorola 6800 microprocessor implementation that was
introduced in Section 5. Constraints I and II were chosen to repre-
sent scenarios involving the FSM. Constraints III and IV were cho-
sen to represent the problem of solving for unique corner-cases,
such that their values are not commonly used by the implementa-
tion. Similarly, constraints V and VI were each used to represent a
signal-value pair that is very commonly encountered. These six
constraints create a diverse set of test scenarios, and their results are
described next.

Results from the six testbench setups are provided in Table 4.
Notice that even though the solution for constraint IV has less pros-
pect states than constraint III, it still requires more computation
time. This extra computation time is due to its dependency on a bit-
vector, and is a result of the extra complexity of handling bit-vector
information. A similar argument can be said about constraints I and
II, as the processor's micro-architectural state is highly-dependent
on the op_code signal.

The solutions in Table 4 correspond to the process of identifying
every target architectural state that can satisfy a given set of con-

Table 3 List of individual constraints used.
Constraint Characteristic

I state <= int_pcl_state FSM-based
II state <= vect_hi_state FSM-based
III nmi_ctrl <= set_nmi Low-occurrence
IV alu_ctrl <= alu_cpx Low-occurrence
V cc_ctrl <= load_cc High-occurrence
VI acca_ctrl <= latch_acca High-occurrence

Table 4 ATPG performance/results.
I II III IV V VI

Prospect
States 11 15 6 3 273 318

Execution
Time 2m 4.99s 2m 9.80s 7.91s 35.22s 1m 0.24s 46.68s

straints. This ability to provide such detailed and complete informa-
tion should be proper justification for the required execution time.
Later optimizations will reduce this execution time, and future work
will use this solver algorithm to generate an FSM for a given micro-
processor implementation.

ACKNOWLEDGMENT

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0092867.

REFERENCES

[1] J. Campos and H. Al-Asaad, “Concurrent Design Error Simu-
lation for High-Level Microprocessor Implementations,”
Proc. AUTOTESTCON, 2004, pp. 382-388.

[2] J. Campos and H. Al-Asaad, “Mutation-Based Validation of
High-Level Microprocessor Implementations,” Proc. HLDVT,
2004, pp. 81-86.

[3] J. Campos and H. Al-Asaad, “Search-Space Optimizations for
High-Level ATPG”, To appear in Microprocessor Test and
Verification Workshop, 2005.

[4] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on test
data selection: Help for the practicing programmer”, IEEE
Computer, vol. 11, April 1978, pp. 34-41.

[5] J. Shen and J.A. Abraham, “An RTL abstraction technique for
processor microarchitecture validation and test generation”,
Journal of Electronic Testing: Theory and Applications, vol.
16, February-April 2000, pp. 67-81.

[6] Li-C. Wang, Magdy S. Abadir, and Jing Zeng, “On Logic and
Transistor Level Design Error Detection of Various Validation
Approaches for PowerPC Microprocessor Arrays,” Proc.
VLSI Test Symposium, 1998, pp. 260-265.

[7] E. Jenn et al., “Fault Injection into VHDL Models: The
MEFISTO Tool,” Digest of Papers: International Symposium
on Fault-Tolerant Computing, 1994, pp. 66-75.

[8] L. Berrojo et al., “New Techniques for Speeding-up Fault-
Injection Campaigns,” Proc. Design Automation and Test in
Europe, 2002, pp. 847-852.

[9] M. N. Velev, “Collection of High-Level Microprocessor Bugs
from Formal Verification of Pipelined and Superscalar
Designs,” Proc. International Test Conference, 2003, pp. 138-
147.

[10] P. A. Wilsey, D. E. Martin, and K. Subramani, “SAVANT/
TyVIS/WARPED: Components for the Analysis and Simula-
tion of VHDL,” VHDL Users' Group Spring Conference,
1998, pp. 195-201.

[11] C.-C. Yen, J.-Y. Jou, and K.-C. Chen, “A Divide-and-Con-
quer-Based Algorithm for Automatic Simulation Vector
Generation,” IEEE Design and Test of Computers, Vol. 21,
March-April 2004, pp. 111-120.

[12] F. Corno et al., “SymFony: A Hybrid Topological-Symbolic
ATPG Exploiting RT-Level Information,” IEEE Transactions
on Computer-Aided Design, Vol. 18, February 1999, pp.191-
202.

[13] A. Adir et al., “Genesys-Pro: Innovations in Test Program
Generation for Functional Processor Verification,” IEEE
Design and Test of Computers, Vol. 21, March-April 2004,
pp.84-93.

[14] F. Corno et al., “Automatic Test Program Generation: A Case
Study,” IEEE Design and Test of Computers, Vol. 21, March-
April 2004, pp.102-109.

[15] S. Tasiran and K. Keutzer, “Coverage Metrics for Functional
Validation of Hardware Designs,” IEEE Design and Test of
Computers, Vol. 18, July-August 2001, pp.36-45.

[16] D. Moundanos, J. A. Abraham, and Y. V. Hoskote, “Abstrac-
tion Techniques for Validation Coverage Analysis and Test
Generation,” IEEE Transactions on Computers, Vol. 47, Janu-
ary 1998, pp.2-14.

[17] IEEE Standard VHDL Language Reference Manual. New
York, NY, 1993.

