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Abstract 
 

In this paper we present a preliminary method of 
validating a high-level microprocessor implementation 
by generating a test sequence for a collection of ab-
stract design error models that can be used to compare 
the responses of the implementation against the speci-
fication. We first introduce a general description of the 
abstract mutation-based design error models that can 
be tailored to span any coverage measure for micro-
processor validation. Then we present the clustering-
and-partitioning technique that single-handedly makes 
the concurrent design error simulation of a large set of 
design errors efficient and allows for the acquisition of 
statistical data on the distribution of design errors 
across the design space. We finally present a method of 
effectively using this statistical information to guide the 
ATPG efforts. 

 
1. Introduction 

 
Fierce competition in the computer industry im-

poses tight time-to-market requirements on chip mak-
ers. Thus as implementation complexities increase with 
each generation of microprocessors, engineers are 
forced to validate a larger design space in a shorter 
time frame. This task becomes even more difficult 
when the method of validation relies on human efforts 
to list the corner cases of the design space to which test 
vectors are later generated either manually or automati-
cally. Unfortunately, virtually all automatic test pattern 
generation (ATPG) systems inefficiently use the identi-
fied set of corner cases when generating test programs 
because they analyze the corner cases in a sequential 
fashion. Also, many focus their efforts in validating a 
system’s finite state machine or employing formal 
methods, but these approaches are impractical for 
complete microprocessor implementations. It is for 
these reasons that effort must be made to investigate a 
new validation paradigm that effectively and efficiently 
generates a test program for a given high-level micro-
processor implementation and a corresponding set of 
error models that represent the desired coverage meas-
ures. 

It is the goal of this research project to create such 
a versatile validation system where an already existing 
microprocessor hardware description can be inserted 
into the validation environment along with a collection 
of modeled design errors that guide the ATPG process. 
This validation environment will consider all error 
models concurrently during every simulation/ATPG 
iteration in order to distribute the ATPG efforts evenly 
throughout the design space. Our previous research has 
focused on creating a novel technique to concurrently 
simulate a collection of modeled errors on a high-level 
microprocessor implementation, and our results were 
encouraging. We are using the knowledge we gained 
on this subject to create an effective mutation-based 
validation system. The paper proceeds as follows. In 
Section 2 we discuss our background on the subject of 
concurrent simulations, and we use our findings to pro-
pose the validation system in Section 3. Section 4 in-
troduces how the abstract design errors are to be mod-
eled, and Section 5 presents a novel data structure for 
these design errors such that it provides for simulation 
efficiency and ATPG effectiveness. Section 6 describes 
how the simulation statistics can be used in order to 
generate effective tests. Finally, we conclude the paper 
and discuss future work in Section 7. 

 
2. Background 

 
In our previous research efforts, we have devel-

oped a method to simulate a collection of modeled de-
sign errors concurrently on a hardware description of a 
microprocessor implementation [1]. We have modified 
the way signals and condition statements are imple-
mented to efficiently support concurrent propagation of 
a set of mutant values across a netlist. We have applied 
this simulation technique onto a Motorola 6800 micro-
processor implementation by John E. Kent [open-
cores.org] by creating a software model of the proces-
sor that supports concurrent propagation of mutant 
values, and we have collected statistical data from a 
random simulation of 300,092 modeled errors. 

The simulation results demonstrate that modeled 
design errors have a high probability of being dropped 
after affecting 10% of the internal signals or less for 
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Figure 1: Detected/Active Error Relationship [1]. 

this processor implementation. The simulation results 
demonstrate that there is a significant correlation be-
tween the number of design errors that are detected per 
simulation iteration and the number of design errors 
that are active per simulation iteration (Figure 1); 
therefore establishing that it is fruitful to focus our 
ATPG efforts on maintaining the number of active de-
sign errors at its highest possible value. This trend ob-
viously will not hold when a collection of hard-to-
detect design errors is encountered, at which point a 
propagating sequence will need to be generated for 
each of these design errors. We have shaped our ATPG 
algorithm, which is described later, to have the ability 
to identify and address these scenarios as it defines the 
goals for each ATPG iteration. 

 
3. Overview of Validation System 

 
Our preliminary concurrent design error simula-

tion environment performs simple event-driven simula-
tions, but it is implemented in a compiler-based tech-
nique. We did this by creating a development library of 
constructs such as signals, processes, and some sup-
porting objects that implement the event-driven simula-
tion at run-time such as the FIFOs used for signal 
propagations and module executions. The run-time 
results are therefore being generated by the compiled 
implementation and not a simulator that dynamically 
creates an internal representation of the HDL imple-
mentation. Given that the TyVIS simulation environ-
ment is implemented in a similar fashion, our valida-
tion system is being modified to apply our concurrent 
simulation techniques onto the SAVANT VHDL ana-
lyzer and the TyVIS simulation kernel [8]. This ap-
proach provides us with a high-performance parser and 
simulation environment, and gives us access to a large 
array of existing microprocessor implementations. 

The goal of this research project is to use the real-
time simulation statistics to guide each ATPG iteration 

so it may produce a test sequence that potentially re-
sults in the detection of the greatest number of modeled 
design errors. A test sequence that effectively detects a 
wide range of modeled simple design errors has a high 
probability of implicitly detecting complex design er-
rors in the implementation [6]. To achieve our goal, we 
need the following two items in our validation envi-
ronment: 

• A tool that simulates the complete set of mod-
eled design errors concurrently on the HDL im-
plementation. 

• A tool that identifies the transitions that map the 
current state S to the target state S’ of the micro-
processor HDL implementation, and generates a 
test sequence that achieves these transitions.  

By including both of these tools within the same com-
piled program, our validation environment becomes a 
compiled program where the simulation and ATPG 
environments are derived from the HDL source code. 

A diagram depicting our projected validation proc-
ess is provided in Figure 2. In the description phase, a 
microprocessor implementation and a collection of 
abstract design error models are created. In the con-
struction phase, the SAVANT VHDL analyzer is used 
to convert the microprocessor implementation into a 
C++ simulation unit via the publish_cc runtime argu-
ment, and to convert the microprocessor implementa-
tion into an ATPG unit via the publish_atpg runtime 
argument. The target block of a dashed arrow denotes 
an object produced by the source block of the dashed 
arrow. 

The strong point of the SAVANT analyzer is that 
we can extend it to convert its internal intermediate 
representation (IIR) of the microprocessor implementa-
tion into a graph composed of the implementation’s 
basic blocks. This graph representation is our current 
research focus; it will be used during the constraint-
solving steps of the ATPG system. 
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The simulation/ATPG phase executes the simula-
tion/ATPG program that was generated during the con-
struction phase where a collection of user run-time 
configurations and commands act as inputs. The user 
specifies what outputs to produce and what modeled 
errors to consider during the simulation and ATPG 
efforts. 

The simulation/ATPG program creates the output 
files during the reporting phase. These outputs include 
the instruction sequence that detects the optimal set of 
modeled errors, the collection of simulation/ATPG 
statistical data, and the actual response of the micro-
processor implementation as well as a collection of 
responses that correspond to a user-specified set of 
modeled errors. The instruction sequence is fed into the 
golden model (specification) during the validation 
phase to generate the expected response, which is 
compared with the actual response. Any detected dis-
crepancy needs to be analyzed to determine if it is a 
result of an actual design error, or if it corresponds to 
an invalid input sequence. 

 
4. Abstract Design-Error Models 

 
Superscalar microprocessor implementations adopt 

many special techniques to achieve a high performance 
including register renaming, branch prediction, out-of-
order execution, and simultaneous multithreading. 
These microprocessor implementations are therefore 
inherently a collection of many disjoint functional 
units. Extensive tests are typically applied directly to 
each of these units, but any attempt to validate their 
functionality when inside the microprocessor imple-
mentation requires that the microprocessor’s coverage 
measure affect each of these unit’s control-based cor-
ner cases. Implementing a set of design error models 
that span the coverage measure is highly dependent on 
the implementation style of the circuit under test, there-
fore forcing us to develop a versatile validation system 
where the design error model description can be tai-
lored to any coverage metric. 

A design error results in the generation of an erro-
neous value under a specific state of the system. Simi-
lar to some fault injection campaigns [4][5], we are 
basing our description of design error models on three 
basic characteristics: i) the activation criteria, ii) the 
consequence of activation, and iii) error injection. Mul-
tiple design errors are simulated concurrently; therefore 
each design error has a unique identification number. 

A design error’s activation criteria specify a set of 
signals and the conditions that they must meet before 
the design error is activated. Once the activation crite-
ria is met, the code segment particular to a design error 
is executed which generates a set of mutations for a 
corresponding set of injection points. A mutant value is 
injected into the specified signal within the netlist im-
mediately after it is generated. 

Given that a design error on an implementation of 
a modular component will appear on every instantia-
tion of that component, all design error models have to 
obey the hierarchical error model [3] where every in-
stantiation of a modular component will have the same 
set of design errors with corresponding identification 
numbers. This is important because it allows a design 
error to simultaneously appear at multiple instantia-
tions of a component and it correctly models aliasing in 
the case where these mutant values mask each others’ 
propagation across the netlist. 

A study on bug occurrences in pipelined and su-
perscalar microprocessor implementations [7] shows 
that over two-thirds of design errors are related to the 
control logic. It is because of this tendency that we are 
employing a form of the mutation control error (MCE) 
model [1][2]. For the MCE model in this paper, the 
processor state (s) and a correct value (vc) of the con-
trol signal (c) act as the activation criteria, signal c is 
mutated from vc to a an erroneous value (ve) as a con-
sequence, and injected back into signal c. The complete 
set of MCE instantiations on the Motorola 6800 im-
plementation consists of 300,092 modeled errors. The 
task of generating a test sequence for each modeled 
error sequentially would require a significant amount 

Figure 2: Validation process overview. 
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of redundant work, therefore justifying the develop-
ment of our concurrent approach. 

 
5. Clustering and Partitioning 

 
High-level validation through the use of concur-

rent mutation-based simulation techniques provides the 
best test sequences when the set of error models com-
pletely span the coverage measures. One reason for this 
is that concurrent simulation of a complete set of mod-
eled errors allows a test sequence to drop all detected 
errors, thus reducing the number of modeled errors for 
which subsequent test sequences need to be generated. 
A second reason is that aiming each ATPG iteration at 
detecting the maximal number of modeled errors re-
sults in a highly-effective test sequence with high 
probabilities of detecting complex design errors. 

Unfortunately, supplying a validation system with 
a complete set of modeled errors affects the simulation 
performance because the simulator is forced to analyze 
a larger set of modeled errors per simulation iteration 
as it searches for all errors that must be activated. It is 
possible to reduce the complexity of the error activa-
tion cycle by reducing the algorithm’s search space. If 
we carefully organize the data-structure that contains 
the live set of modeled errors, our reward can be two-
fold: (i) we minimize the error-activation cycle, thus 
optimizing the simulation, and (ii) we give the ATPG 
system information on the distribution of undetected 
modeled errors among the design space, thus providing 
it with the ability to aim its error-activating efforts at 
the activation criteria with the highest density of unde-
tected errors. 

We can achieve these stated goals by “clustering 
and partitioning” the complete set of modeled design 
errors into groups that are organized by their activation 
criteria. Before discussing the clustering technique, let 
us explore the various possible techniques for generat-
ing mutant values. A mutant generator is a unit within a 
simulation environment in charge of activating any 
design error when its activation criteria are met by gen-
erating the corresponding mutant value and injecting it 
into the netlist. Therefore for each mutant generator, 
the collection of signals in the netlist that acts as acti-
vation criteria to any of its modeled design errors needs 
to propagate any change in value to this mutant genera-
tor. Also, whenever an activation criterion propagates 
into a mutant generator, the mutant generator needs to 
search through its set of design errors and identify 
every design error that needs to be activated. This 
method of generating mutant values provides us with 
three implementation alternatives: 

• Centralized mutant generator: Only one unit in 
the simulation environment is in charge of gen-
erating mutant values. This results in the lowest 
propagation complexity because the propagation 

overhead imposed by concurrent error-model 
simulation is at most one extra propagation step 
per internal signal. Unfortunately, the design er-
ror search space is linear with respect to the 
number of undetected design errors. 

• Distributed mutant generators: One mutant gen-
erator is assigned to each modeled design error. 
Even though this reduces the search space per 
mutant generator to its minimum, it results in a 
maximum propagation complexity because the 
propagation overhead imposed by concurrent er-
ror-model simulation on a signal is proportional 
to the number of design errors to which it acts as 
activation criteria. 

•  Hybrid (clustered) mutant generators: Design 
errors are “clustered” into groups that have 
common activation criteria, therefore maintain-
ing the propagation complexity and search space 
per mutant generator at feasible levels. 

In a validation system where multiple error models 
are being used, the hybrid mutant generation technique 
gives us the flexibility of keeping design errors of dis-
joint activation criteria in separate clusters and allows 
us to optimize the search algorithm of each mutant 
generator by introducing a “partitioning” technique. 
Our partitioning scheme reduces the search space per 
mutant generator by selecting the signal that acts as the 
most common activation criteria in that cluster and 
designating this signal as the partitioning point. Once 
we have chosen a partitioning point per cluster, we can 
organize each cluster as a hash table where the value of 
the partitioning point is used as the hashing key. 

Now that we have defined the data structure and 
discussed the run-time implementation of our cluster-
ing-and-partitioning technique, we need to introduce 
the method by which we organize the design errors into 
clusters and partitions. Given that our underlying goal 
is to create partitions where the included design errors 
have at least one common signal in their activation 
criteria, we can implement clustering-and-partitioning 
using the following steps: 

1) Generate a table where the rows represent the 
signals that act as activating criteria in the sys-
tem and the columns represent the set of mod-
eled design errors under consideration. For 
any modeled error, the set of intersecting 
points specifies the set of signals that collec-
tively denote that modeled error’s activation 
criteria. Initially, each of these signals and 
modeled errors are marked unselected. 

2) Identify the unselected signal that intersects 
with the greatest number of unselected mod-
eled errors, and mark this signal as selected. 

3) Group all unselected modeled design errors 
that intersect with the selected signal into a 
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cluster, and mark each of these modeled errors 
as selected. 

4) For this new cluster, set the selected signal as 
the partitioning point and partition the cluster 
into a hash table where the activation criterion 
of the partitioning point is used as the hashing 
key. 

5) If unselected design errors exist, then return to 
step 2 to perform another iteration. 

An example for clustering and partitioning is pro-
vided under Figure 3 where Si denotes a signal and αi 
denotes a modeled design error. In this example, the 
first cluster consists of the set of modeled errors {α1, 
α2, α3, α5} with partitioning point S5, and the second 
cluster consists of the set of design errors {α4, α6} with 
partitioning point S4.  

In practice, each possible value for the partitioning 
point usually has a nonempty set of corresponding de-
sign errors. An example of this is the mutation control 
error (MCE) model [1][2] where the state signal is cho-
sen as the partitioning point. The state signal occurs in 
every MCE design error, therefore selecting it as the 
partitioning point results in an efficient data structure 
when the key is used directly as the index. This is be-
cause the performance of searching for the design er-
rors to be activated remains independent of the size of 
the state-space. The only factors that grow along with 
the state space are the hash table size and the total 
number of design errors. 
 

6. Automatic Test Pattern Generation 
 

We can take advantage of the clustering-and-
partitioning data structure by using an ATPG algorithm 
that gives priority to any partition whose activating test 
sequence has the highest probability of detecting the 
most design errors. We introduced in Section 2 that it is 
fruitful to focus our ATPG efforts on maintaining the 
number of active design errors at its highest possible 
value, which correlates to generating a test sequence 
for the partition with the greatest number of undetected 
design errors. 

This results in the algorithm provided under Figure 
4 which has the role of aiming the ATPG efforts at the 
activation criteria with the highest density of unde-
tected design errors (deterministic-activation), and only 
performing deterministic-propagation in the case where 
probabilistic-propagation is insufficiently effective. 
Line 1 sorts the list of partitions into the order of de-
scending member size to ensure that any unsuccessful 
attempt to generate a test for a partition P is followed 
by an attempt on the next best partition during the sub-
sequent iteration of the while loop. Line 6 attempts to 
generate a test sequence that activates an inactive de-
sign error in P, and any failed attempt results in the 
removal of that design error from P (fault dropping). 
These dropped design errors are marked as unexcitable. 
Line 10 handles the case where the activation criteria 
for the partition P is already met, which is expected to 
happen whenever probabilistic propagation on the set 
of active modeled errors from P is insufficiently effec-
tive. Therefore line 10 is used to generate a test se-
quence that propagates an active design error in P to a 
primary output, and any failed attempt results in the 
removal of that design error from P. These dropped 
design errors are marked as undetectable. 

At the start of the ATPG effort, it is expected that 
deterministic activation on the dominant partition will 
be effective in causing the detection of enough design 

 α1 α2 α3 α4 α5 α6  
S1 X     X  
S2   X     
S3        
S4  X  X  X ←Iteration 2
S5 X X X  X  ←Iteration 1
S6 X       
S7    X    
S8     X   

 
Figure 3: Clustering-and-partitioning example. 

──────────────────────────── 
Precondition: 
 Lp = list of all partitions from every cluster 
 
ATPG-ITERATION(Lp) 
1. Sort Lp into descending order of member size 
2. P ← first partition in Lp 
3. SUCCESS ← false 
4. while P exists and SUCCESS = false 
5. if activation criteria for P is not met 
6. then TP ← generate activation pattern(s) 
 for any inactive error in P 
 while dropping errors from 
 unsuccessful ATPG attempts 
7. if activation is successful 
8. then SUCCESS ← true 
9. else P ← next partition in Lp 
10. else TP ← generate propagation pattern(s) 
 for any active design error in 
 P while dropping errors from 
 unsuccessful ATPG attempts 
11. if propagation is successful 
12. then SUCCESS ← true 
13. else P ← next partition in Lp 
14. if SUCCESS 
15. then return TP 
16. else fail 
──────────────────────────── 
Figure 4: Algorithm for each ATPG iteration. 
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errors from this partition so as to demote it from its 
dominant status. The probabilistic-propagation tech-
nique will continue to be effective for as long as there 
are enough design errors with simple propagation re-
quirements. Whenever the ATPG-ITERATION algo-
rithm encounters a partition that has an insufficient 
number of design errors with simple propagation re-
quirements, the deterministic activation iteration will 
be followed by a deterministic propagation iteration on 
the same dominant partition. 
 

7. Conclusions and Future Work 
 

In this paper we have presented a method of vali-
dating a high-level microprocessor implementation by 
generating a test sequence for a collection of abstract 
design error models that can be used to compare the 
response of the implementation with the response of 
the specification. We first introduced a general descrip-
tion of the abstract mutation-based design error model 
that can be tailored to span any coverage measure for 
microprocessor validation. Then we presented the clus-
tering-and-partitioning technique that single-handedly 
makes the concurrent design error simulation of a large 
set of design errors efficient and allows for the acquisi-
tion of statistical data on the distribution of modeled 
design errors across the design space during the con-
current simulation of modeled errors. We then pre-
sented a method of effectively using this statistical in-
formation to guide the ATPG efforts whose results are 
expected to achieve a high design error detection rate 
based on the observations made in [1].  An overview of 
the validation process has also been provided where the 
microprocessor implementation and the collection of 
modeled design errors are used to create a test se-
quence whose ability to detect the modeled simple de-
sign errors correlates to a high probability of implicitly 
detecting complex design errors [6]. 

Our immediate future goals constitute of finalizing 
the framework for converting a microprocessor’s 
VHDL implementation into a stand-alone ATPG unit, 
and implementing it by extending the SAVANT VHDL 
analyzer [8].  Given that mutation-based error model-
ing can lead to an overwhelming number of possible 
modeled errors, we will continue our research by using 
this mutation-based validation system to perform an 
extensive study on microprocessor coverage measures 
and their corresponding effective error models.  As a 
result, our ultimate goal is to provide a novel micro-
processor validation system that is driven by a versatile 
VHDL simulation/ATPG system, and is empowered by 
effective microprocessor-specific design error models. 
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