
MUTATION-BASED VALIDATION OF HIGH-LEVEL
MICROPROCESSOR IMPLEMENTATIONS

Jorge Campos and Hussain Al-Asaad

Department of Electrical and Computer Engineering
University of California, Davis, CA

E-mail: {jcampos, halasaad} @ece.ucdavis.edu

Abstract

In this paper we present a preliminary method of
validating a high-level microprocessor implementation
by generating a test sequence for a collection of ab-
stract design error models that can be used to compare
the responses of the implementation against the speci-
fication. We first introduce a general description of the
abstract mutation-based design error models that can
be tailored to span any coverage measure for micro-
processor validation. Then we present the clustering-
and-partitioning technique that single-handedly makes
the concurrent design error simulation of a large set of
design errors efficient and allows for the acquisition of
statistical data on the distribution of design errors
across the design space. We finally present a method of
effectively using this statistical information to guide the
ATPG efforts.

1. Introduction

Fierce competition in the computer industry im-

poses tight time-to-market requirements on chip mak-
ers. Thus as implementation complexities increase with
each generation of microprocessors, engineers are
forced to validate a larger design space in a shorter
time frame. This task becomes even more difficult
when the method of validation relies on human efforts
to list the corner cases of the design space to which test
vectors are later generated either manually or automati-
cally. Unfortunately, virtually all automatic test pattern
generation (ATPG) systems inefficiently use the identi-
fied set of corner cases when generating test programs
because they analyze the corner cases in a sequential
fashion. Also, many focus their efforts in validating a
system’s finite state machine or employing formal
methods, but these approaches are impractical for
complete microprocessor implementations. It is for
these reasons that effort must be made to investigate a
new validation paradigm that effectively and efficiently
generates a test program for a given high-level micro-
processor implementation and a corresponding set of
error models that represent the desired coverage meas-
ures.

It is the goal of this research project to create such
a versatile validation system where an already existing
microprocessor hardware description can be inserted
into the validation environment along with a collection
of modeled design errors that guide the ATPG process.
This validation environment will consider all error
models concurrently during every simulation/ATPG
iteration in order to distribute the ATPG efforts evenly
throughout the design space. Our previous research has
focused on creating a novel technique to concurrently
simulate a collection of modeled errors on a high-level
microprocessor implementation, and our results were
encouraging. We are using the knowledge we gained
on this subject to create an effective mutation-based
validation system. The paper proceeds as follows. In
Section 2 we discuss our background on the subject of
concurrent simulations, and we use our findings to pro-
pose the validation system in Section 3. Section 4 in-
troduces how the abstract design errors are to be mod-
eled, and Section 5 presents a novel data structure for
these design errors such that it provides for simulation
efficiency and ATPG effectiveness. Section 6 describes
how the simulation statistics can be used in order to
generate effective tests. Finally, we conclude the paper
and discuss future work in Section 7.

2. Background

In our previous research efforts, we have devel-

oped a method to simulate a collection of modeled de-
sign errors concurrently on a hardware description of a
microprocessor implementation [1]. We have modified
the way signals and condition statements are imple-
mented to efficiently support concurrent propagation of
a set of mutant values across a netlist. We have applied
this simulation technique onto a Motorola 6800 micro-
processor implementation by John E. Kent [open-
cores.org] by creating a software model of the proces-
sor that supports concurrent propagation of mutant
values, and we have collected statistical data from a
random simulation of 300,092 modeled errors.

The simulation results demonstrate that modeled
design errors have a high probability of being dropped
after affecting 10% of the internal signals or less for

1

0

2000

4000

6000

8000

10000

12000

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

Test Vector

D
et

ec
te

d
D

es
ig

n
Er

ro
r C

ou
nt

(A

cc
um

ul
at

ed
)

0

100

200

300

400

500

600

700

800

900

1000

A
ct

iv
e

D
es

ig
n

Er
ro

r C
ou

nt

Detected Error Count

Active Error Count

Figure 1: Detected/Active Error Relationship [1].

this processor implementation. The simulation results
demonstrate that there is a significant correlation be-
tween the number of design errors that are detected per
simulation iteration and the number of design errors
that are active per simulation iteration (Figure 1);
therefore establishing that it is fruitful to focus our
ATPG efforts on maintaining the number of active de-
sign errors at its highest possible value. This trend ob-
viously will not hold when a collection of hard-to-
detect design errors is encountered, at which point a
propagating sequence will need to be generated for
each of these design errors. We have shaped our ATPG
algorithm, which is described later, to have the ability
to identify and address these scenarios as it defines the
goals for each ATPG iteration.

3. Overview of Validation System

Our preliminary concurrent design error simula-

tion environment performs simple event-driven simula-
tions, but it is implemented in a compiler-based tech-
nique. We did this by creating a development library of
constructs such as signals, processes, and some sup-
porting objects that implement the event-driven simula-
tion at run-time such as the FIFOs used for signal
propagations and module executions. The run-time
results are therefore being generated by the compiled
implementation and not a simulator that dynamically
creates an internal representation of the HDL imple-
mentation. Given that the TyVIS simulation environ-
ment is implemented in a similar fashion, our valida-
tion system is being modified to apply our concurrent
simulation techniques onto the SAVANT VHDL ana-
lyzer and the TyVIS simulation kernel [8]. This ap-
proach provides us with a high-performance parser and
simulation environment, and gives us access to a large
array of existing microprocessor implementations.

The goal of this research project is to use the real-
time simulation statistics to guide each ATPG iteration

so it may produce a test sequence that potentially re-
sults in the detection of the greatest number of modeled
design errors. A test sequence that effectively detects a
wide range of modeled simple design errors has a high
probability of implicitly detecting complex design er-
rors in the implementation [6]. To achieve our goal, we
need the following two items in our validation envi-
ronment:

• A tool that simulates the complete set of mod-
eled design errors concurrently on the HDL im-
plementation.

• A tool that identifies the transitions that map the
current state S to the target state S’ of the micro-
processor HDL implementation, and generates a
test sequence that achieves these transitions.

By including both of these tools within the same com-
piled program, our validation environment becomes a
compiled program where the simulation and ATPG
environments are derived from the HDL source code.

A diagram depicting our projected validation proc-
ess is provided in Figure 2. In the description phase, a
microprocessor implementation and a collection of
abstract design error models are created. In the con-
struction phase, the SAVANT VHDL analyzer is used
to convert the microprocessor implementation into a
C++ simulation unit via the publish_cc runtime argu-
ment, and to convert the microprocessor implementa-
tion into an ATPG unit via the publish_atpg runtime
argument. The target block of a dashed arrow denotes
an object produced by the source block of the dashed
arrow.

The strong point of the SAVANT analyzer is that
we can extend it to convert its internal intermediate
representation (IIR) of the microprocessor implementa-
tion into a graph composed of the implementation’s
basic blocks. This graph representation is our current
research focus; it will be used during the constraint-
solving steps of the ATPG system.

2

The simulation/ATPG phase executes the simula-
tion/ATPG program that was generated during the con-
struction phase where a collection of user run-time
configurations and commands act as inputs. The user
specifies what outputs to produce and what modeled
errors to consider during the simulation and ATPG
efforts.

The simulation/ATPG program creates the output
files during the reporting phase. These outputs include
the instruction sequence that detects the optimal set of
modeled errors, the collection of simulation/ATPG
statistical data, and the actual response of the micro-
processor implementation as well as a collection of
responses that correspond to a user-specified set of
modeled errors. The instruction sequence is fed into the
golden model (specification) during the validation
phase to generate the expected response, which is
compared with the actual response. Any detected dis-
crepancy needs to be analyzed to determine if it is a
result of an actual design error, or if it corresponds to
an invalid input sequence.

4. Abstract Design-Error Models

Superscalar microprocessor implementations adopt

many special techniques to achieve a high performance
including register renaming, branch prediction, out-of-
order execution, and simultaneous multithreading.
These microprocessor implementations are therefore
inherently a collection of many disjoint functional
units. Extensive tests are typically applied directly to
each of these units, but any attempt to validate their
functionality when inside the microprocessor imple-
mentation requires that the microprocessor’s coverage
measure affect each of these unit’s control-based cor-
ner cases. Implementing a set of design error models
that span the coverage measure is highly dependent on
the implementation style of the circuit under test, there-
fore forcing us to develop a versatile validation system
where the design error model description can be tai-
lored to any coverage metric.

A design error results in the generation of an erro-
neous value under a specific state of the system. Simi-
lar to some fault injection campaigns [4][5], we are
basing our description of design error models on three
basic characteristics: i) the activation criteria, ii) the
consequence of activation, and iii) error injection. Mul-
tiple design errors are simulated concurrently; therefore
each design error has a unique identification number.

A design error’s activation criteria specify a set of
signals and the conditions that they must meet before
the design error is activated. Once the activation crite-
ria is met, the code segment particular to a design error
is executed which generates a set of mutations for a
corresponding set of injection points. A mutant value is
injected into the specified signal within the netlist im-
mediately after it is generated.

Given that a design error on an implementation of
a modular component will appear on every instantia-
tion of that component, all design error models have to
obey the hierarchical error model [3] where every in-
stantiation of a modular component will have the same
set of design errors with corresponding identification
numbers. This is important because it allows a design
error to simultaneously appear at multiple instantia-
tions of a component and it correctly models aliasing in
the case where these mutant values mask each others’
propagation across the netlist.

A study on bug occurrences in pipelined and su-
perscalar microprocessor implementations [7] shows
that over two-thirds of design errors are related to the
control logic. It is because of this tendency that we are
employing a form of the mutation control error (MCE)
model [1][2]. For the MCE model in this paper, the
processor state (s) and a correct value (vc) of the con-
trol signal (c) act as the activation criteria, signal c is
mutated from vc to a an erroneous value (ve) as a con-
sequence, and injected back into signal c. The complete
set of MCE instantiations on the Motorola 6800 im-
plementation consists of 300,092 modeled errors. The
task of generating a test sequence for each modeled
error sequentially would require a significant amount

Figure 2: Validation process overview.

3

of redundant work, therefore justifying the develop-
ment of our concurrent approach.

5. Clustering and Partitioning

High-level validation through the use of concur-

rent mutation-based simulation techniques provides the
best test sequences when the set of error models com-
pletely span the coverage measures. One reason for this
is that concurrent simulation of a complete set of mod-
eled errors allows a test sequence to drop all detected
errors, thus reducing the number of modeled errors for
which subsequent test sequences need to be generated.
A second reason is that aiming each ATPG iteration at
detecting the maximal number of modeled errors re-
sults in a highly-effective test sequence with high
probabilities of detecting complex design errors.

Unfortunately, supplying a validation system with
a complete set of modeled errors affects the simulation
performance because the simulator is forced to analyze
a larger set of modeled errors per simulation iteration
as it searches for all errors that must be activated. It is
possible to reduce the complexity of the error activa-
tion cycle by reducing the algorithm’s search space. If
we carefully organize the data-structure that contains
the live set of modeled errors, our reward can be two-
fold: (i) we minimize the error-activation cycle, thus
optimizing the simulation, and (ii) we give the ATPG
system information on the distribution of undetected
modeled errors among the design space, thus providing
it with the ability to aim its error-activating efforts at
the activation criteria with the highest density of unde-
tected errors.

We can achieve these stated goals by “clustering
and partitioning” the complete set of modeled design
errors into groups that are organized by their activation
criteria. Before discussing the clustering technique, let
us explore the various possible techniques for generat-
ing mutant values. A mutant generator is a unit within a
simulation environment in charge of activating any
design error when its activation criteria are met by gen-
erating the corresponding mutant value and injecting it
into the netlist. Therefore for each mutant generator,
the collection of signals in the netlist that acts as acti-
vation criteria to any of its modeled design errors needs
to propagate any change in value to this mutant genera-
tor. Also, whenever an activation criterion propagates
into a mutant generator, the mutant generator needs to
search through its set of design errors and identify
every design error that needs to be activated. This
method of generating mutant values provides us with
three implementation alternatives:

• Centralized mutant generator: Only one unit in
the simulation environment is in charge of gen-
erating mutant values. This results in the lowest
propagation complexity because the propagation

overhead imposed by concurrent error-model
simulation is at most one extra propagation step
per internal signal. Unfortunately, the design er-
ror search space is linear with respect to the
number of undetected design errors.

• Distributed mutant generators: One mutant gen-
erator is assigned to each modeled design error.
Even though this reduces the search space per
mutant generator to its minimum, it results in a
maximum propagation complexity because the
propagation overhead imposed by concurrent er-
ror-model simulation on a signal is proportional
to the number of design errors to which it acts as
activation criteria.

• Hybrid (clustered) mutant generators: Design
errors are “clustered” into groups that have
common activation criteria, therefore maintain-
ing the propagation complexity and search space
per mutant generator at feasible levels.

In a validation system where multiple error models
are being used, the hybrid mutant generation technique
gives us the flexibility of keeping design errors of dis-
joint activation criteria in separate clusters and allows
us to optimize the search algorithm of each mutant
generator by introducing a “partitioning” technique.
Our partitioning scheme reduces the search space per
mutant generator by selecting the signal that acts as the
most common activation criteria in that cluster and
designating this signal as the partitioning point. Once
we have chosen a partitioning point per cluster, we can
organize each cluster as a hash table where the value of
the partitioning point is used as the hashing key.

Now that we have defined the data structure and
discussed the run-time implementation of our cluster-
ing-and-partitioning technique, we need to introduce
the method by which we organize the design errors into
clusters and partitions. Given that our underlying goal
is to create partitions where the included design errors
have at least one common signal in their activation
criteria, we can implement clustering-and-partitioning
using the following steps:

1) Generate a table where the rows represent the
signals that act as activating criteria in the sys-
tem and the columns represent the set of mod-
eled design errors under consideration. For
any modeled error, the set of intersecting
points specifies the set of signals that collec-
tively denote that modeled error’s activation
criteria. Initially, each of these signals and
modeled errors are marked unselected.

2) Identify the unselected signal that intersects
with the greatest number of unselected mod-
eled errors, and mark this signal as selected.

3) Group all unselected modeled design errors
that intersect with the selected signal into a

4

cluster, and mark each of these modeled errors
as selected.

4) For this new cluster, set the selected signal as
the partitioning point and partition the cluster
into a hash table where the activation criterion
of the partitioning point is used as the hashing
key.

5) If unselected design errors exist, then return to
step 2 to perform another iteration.

An example for clustering and partitioning is pro-
vided under Figure 3 where Si denotes a signal and αi
denotes a modeled design error. In this example, the
first cluster consists of the set of modeled errors {α1,
α2, α3, α5} with partitioning point S5, and the second
cluster consists of the set of design errors {α4, α6} with
partitioning point S4.

In practice, each possible value for the partitioning
point usually has a nonempty set of corresponding de-
sign errors. An example of this is the mutation control
error (MCE) model [1][2] where the state signal is cho-
sen as the partitioning point. The state signal occurs in
every MCE design error, therefore selecting it as the
partitioning point results in an efficient data structure
when the key is used directly as the index. This is be-
cause the performance of searching for the design er-
rors to be activated remains independent of the size of
the state-space. The only factors that grow along with
the state space are the hash table size and the total
number of design errors.

6. Automatic Test Pattern Generation

We can take advantage of the clustering-and-
partitioning data structure by using an ATPG algorithm
that gives priority to any partition whose activating test
sequence has the highest probability of detecting the
most design errors. We introduced in Section 2 that it is
fruitful to focus our ATPG efforts on maintaining the
number of active design errors at its highest possible
value, which correlates to generating a test sequence
for the partition with the greatest number of undetected
design errors.

This results in the algorithm provided under Figure
4 which has the role of aiming the ATPG efforts at the
activation criteria with the highest density of unde-
tected design errors (deterministic-activation), and only
performing deterministic-propagation in the case where
probabilistic-propagation is insufficiently effective.
Line 1 sorts the list of partitions into the order of de-
scending member size to ensure that any unsuccessful
attempt to generate a test for a partition P is followed
by an attempt on the next best partition during the sub-
sequent iteration of the while loop. Line 6 attempts to
generate a test sequence that activates an inactive de-
sign error in P, and any failed attempt results in the
removal of that design error from P (fault dropping).
These dropped design errors are marked as unexcitable.
Line 10 handles the case where the activation criteria
for the partition P is already met, which is expected to
happen whenever probabilistic propagation on the set
of active modeled errors from P is insufficiently effec-
tive. Therefore line 10 is used to generate a test se-
quence that propagates an active design error in P to a
primary output, and any failed attempt results in the
removal of that design error from P. These dropped
design errors are marked as undetectable.

At the start of the ATPG effort, it is expected that
deterministic activation on the dominant partition will
be effective in causing the detection of enough design

 α1 α2 α3 α4 α5 α6
S1 X X
S2 X
S3
S4 X X X ←Iteration 2
S5 X X X X ←Iteration 1
S6 X
S7 X
S8 X

Figure 3: Clustering-and-partitioning example.

────────────────────────────
Precondition:
 Lp = list of all partitions from every cluster

ATPG-ITERATION(Lp)
1. Sort Lp into descending order of member size
2. P ← first partition in Lp
3. SUCCESS ← false
4. while P exists and SUCCESS = false
5. if activation criteria for P is not met
6. then TP ← generate activation pattern(s)
 for any inactive error in P
 while dropping errors from
 unsuccessful ATPG attempts
7. if activation is successful
8. then SUCCESS ← true
9. else P ← next partition in Lp
10. else TP ← generate propagation pattern(s)
 for any active design error in
 P while dropping errors from
 unsuccessful ATPG attempts
11. if propagation is successful
12. then SUCCESS ← true
13. else P ← next partition in Lp
14. if SUCCESS
15. then return TP
16. else fail
────────────────────────────
Figure 4: Algorithm for each ATPG iteration.

5

errors from this partition so as to demote it from its
dominant status. The probabilistic-propagation tech-
nique will continue to be effective for as long as there
are enough design errors with simple propagation re-
quirements. Whenever the ATPG-ITERATION algo-
rithm encounters a partition that has an insufficient
number of design errors with simple propagation re-
quirements, the deterministic activation iteration will
be followed by a deterministic propagation iteration on
the same dominant partition.

7. Conclusions and Future Work

In this paper we have presented a method of vali-
dating a high-level microprocessor implementation by
generating a test sequence for a collection of abstract
design error models that can be used to compare the
response of the implementation with the response of
the specification. We first introduced a general descrip-
tion of the abstract mutation-based design error model
that can be tailored to span any coverage measure for
microprocessor validation. Then we presented the clus-
tering-and-partitioning technique that single-handedly
makes the concurrent design error simulation of a large
set of design errors efficient and allows for the acquisi-
tion of statistical data on the distribution of modeled
design errors across the design space during the con-
current simulation of modeled errors. We then pre-
sented a method of effectively using this statistical in-
formation to guide the ATPG efforts whose results are
expected to achieve a high design error detection rate
based on the observations made in [1]. An overview of
the validation process has also been provided where the
microprocessor implementation and the collection of
modeled design errors are used to create a test se-
quence whose ability to detect the modeled simple de-
sign errors correlates to a high probability of implicitly
detecting complex design errors [6].

Our immediate future goals constitute of finalizing
the framework for converting a microprocessor’s
VHDL implementation into a stand-alone ATPG unit,
and implementing it by extending the SAVANT VHDL
analyzer [8]. Given that mutation-based error model-
ing can lead to an overwhelming number of possible
modeled errors, we will continue our research by using
this mutation-based validation system to perform an
extensive study on microprocessor coverage measures
and their corresponding effective error models. As a
result, our ultimate goal is to provide a novel micro-
processor validation system that is driven by a versatile
VHDL simulation/ATPG system, and is empowered by
effective microprocessor-specific design error models.

Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No.
0092867.

References

1. Jorge Campos and Hussain Al-Asaad, “Concurrent

Design Error Simulation for High-Level
Microprocessor Implementations,” Proc.
AUTOTESTCON, 2004, pp. 382-388.

2. Hussain Al-Asaad, Lifetime Validation of Digital
Systems via Modeling and Test Generation, Ph.D.
Dissertation, University of Michigan, Ann Arbor,
1998.

3. Li-C. Wang, Magdy S. Abadir, and Jing Zeng,
“On Logic and Transistor Level Design Error De-
tection of Various Validation Approaches for
PowerPC Microprocessor Arrays,” Proc. VLSI
Test Symposium, 1998, pp. 260-265.

4. Eric Jenn, Jean Arlat, Marcus Rimen, Joakim
Ohlsson, and Johan Karlsson, “Fault Injection into
VHDL Models: The MEFISTO Tool,” Digest of
Papers: International Symposium on Fault-
Tolerant Computing, 1994, pp. 66-75.

5. L. Berrojo, I. Gonzalez, F. Corno, M. S. Reorda,
G. Squillero, L. Entrena, and C. Lopez, “New
Techniques for Speeding-up Fault-Injection Cam-
paigns,” Proc. Design Automation and Test in
Europe, 2002, pp. 847-852.

6. Richard A. DeMillo, Richard J. Lipton, and Fre-
derick G. Sayward, “Hints on Test Data Selection:
Help for the Practicing Programmer,” IEEE Com-
puter, pp. 34-41, April 1978.

7. Miroslav N. Velev, “Collection of High-Level
Microprocessor Bugs from Formal Verification of
Pipelined and Superscalar Designs,” Proc. Inter-
national Test Conference, 2003, pp. 138-147.

8. Philip A. Wilsey, Dale E. Martin, and Krishnan
Subramani , “SAVANT/TyVIS/WARPED: Com-
ponents for the Analysis and Simulation of
VHDL,” VHDL Users' Group Spring Conference,
1998, pp. 195-201.

9. Chia-C. Yen, Jing-Y. Jou, and Kuang-C. Chen, “A
Divide-and-Conquer-Based Algorithm for Auto-
matic Simulation Vector Generation,” IEEE De-
sign and Test of Computers, Vol. 21, No. 2, pp.
111-120, March/April 2004.

10. Ghassan Al-Hayek and Chantal Robach, “From
Design Validation to Hardware Testing: A Unified
Approach,” Journal of Electronic Testing: Theory
and Applications, Vol. 14, pp. 133-140, February-
April 1999.

6

