
LIFETIME VALIDATION OF DIGITAL SYSTEMS
VIA FAULT MODELING AND TEST GENERATION

by

Hussain Said Al-Asaad

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1998

Doctoral Committee:

Professor John P. Hayes, Chairman
Professor Richard B. Brown
Professor Trevor N. Mudge
Professor Karem A. Sakallah
Dr. Brian T. Murray, General Motors Research

 1998
Hussain Said Al-Asaad

All Rights Reserved
--

For my family
ii

r his

have

his

rating

ittee

llah,

cant

avid

ark

yed,

ily

not

ade

mar

ges

nter,
ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my advisor John P. Hayes fo

continuous guidance throughout my career. His vision, wisdom, and research style

been always an inspiration for me. Also, I would like to thank Dr. Brian T. Murray for

continuous support and advice, especially because I have learned a lot from coope

with him on several research projects. Furthermore, I would like to thank my comm

members for their time and effort: Professor Trevor Mudge, Professor Karem Saka

and Professor Richard Brown.

During my stay at Michigan, numerous friends and colleagues have made signifi

contribution to my learning process including: Gheith Abandah, Shawn Blanton, D

Van Campenhout, Krish Chakrabarty, Amit Chowdhary, Avaneendra Gupta, M

Hansen, Jonathan Hauke, Hyungwon Kim, Chih-Chieh Lee, Matt Postiff, Saqib S

Steve Raasch, and Hakan Yalcin. I thank them all for their help.

I would like to thank my mother, Wasfieh, and father, Said, as well as my entire fam

for their love and support throughout my education. Without their prayers, I would

have achieved anything. Furthermore, I would like to thank my friends who have m

my stay at Michigan unforgettable including Hassan and Salwa El-Hor, Zahra Jishi, O

Qasaimeh, Ghassan Shahine, and Gameel Zindani.

Finally, I would like to gratefully acknowledge the financial support, at different sta

of my research work, of the National Science Foundation, General Motors R&D Ce

DARPA, and the University of Michigan EECS department.
iii

... ii

iii

. vi

. ix

xi

. 1

.... 2
.. 8
. 11
. 20
24
. 26

. 28
. 42
. 47
.. 51

. 52
54
57
. 66
72

.. 78
TABLE OF CONTENTS

DEDICATION ..

ACKNOWLEDGMENTS ..

LIST OF FIGURES ..

LIST OF TABLES ...

LIST OF APPENDICES ..

CHAPTER

1 INTRODUCTION ...

1.1 System Development ..
1.2 Design Verification ..
1.3 Manufacture Testing ..
1.4 On-Line Testing ...
1.5 Lifetime Validation ...
1.6 Thesis Outline ..

2 GATE-LEVEL DESIGN VALIDATION ... 28

2.1 Tests for Design Errors ..
2.2 Verification Test Generation ..
2.3 Experimental Results ...
2.4 Discussion ...

3 HIGH-LEVEL DESIGN VALIDATION ... 52

3.1 Introduction ..
3.2 Design Error Collection ..
3.3 Error Modeling ..
3.4 Coverage Evaluation ..
3.5 Mutation Control Errors ..
3.6 Discussion ...
iv

2

82
.. 85
... 87
.. 93
102

06

106
107

110

37
4 BUILT-IN VALIDATION .. 8

4.1 Built-In Self-Test (BIST) ..
4.2 Test Generator Design ...
4.3 Scalable Test Generators ..
4.4 Design Examples ..
4.5 Discussion ...

5 CONCLUSIONS .. 1

5.1 Thesis Contributions ...
5.2 Future Research ..

APPENDICES ..

BIBLIOGRAPHY ... 1
v

... 2

.... 3

..... 4

.... 5

12

. 14

.. 19

. 22

. 25

. 32

.. 35

.. 36

.. 36

. 42
LIST OF FIGURES

 Figure 1.1 Lifetime of a typical system-on-a-chip (SOC).

 Figure 1.2 Microprocessor design at the (a) behavioral, (b) RTL,
and (c) gate levels. ..

 Figure 1.3 Examples of data preparation and transcription faults.

 Figure 1.4 A NOR gate and its transistor implementation.

 Figure 1.5 A 2-input multiplexer circuit. ..

 Figure 1.6 A high-level design example: (a) behavioral and (b) RTL.

 Figure 1.7 Use of fault simulation in test generation. ..

 Figure 1.8 Taxonomy of on-line testing methods for microcontrollers.

 Figure 1.9 Block diagram of the proposed design verification method.

 Figure 2.1 Circuit realizing the XOR function. ...

 Figure 2.2 Example showing an EGE that is not detected by a
complete test set for SSL faults. ..

 Figure 2.3 The missing-gate design error (MGE). ...

 Figure 2.4 Reducing the problem of detecting MGEs to detecting GSEs.

 Figure 2.5 The replacement module for detecting GSEs in a
2-input AND gate. ..

 Figure 2.6 Generation of the detection signals for ann-input gate. 43
vi

. 45

. 45

. 46

. 46

... 47

... 56

.. 57

.. 61

. 62

66

. 68

.. 69

... 69

. 71

. 74

.. 75

78
 Figure 2.7 Gate replacement module for detecting GSEs in (a) a 2-input
XOR and (b) ann-input AND (n odd). ... 44

 Figure 2.8 Gate replacement module for detecting MGEs in a 3-input
AND gate. ..

 Figure 2.9 Mapping MIEs and WIEs into SSL faults. ..

 Figure 2.10 A net attachment module (a) for MIEs and (b) for WIEs.

 Figure 2.11 (a) Latch and (b) line replacement modules to detect ELEs
and MLEs, respectively. ...

 Figure 2.12 First phase of the design verification process.

 Figure 3.1 Sample error report. ...

 Figure 3.2 Number of errors detected per day for the duration
of one class project. ...

 Figure 3.3 High-level model of the 74283 carry-lookahead adder.

 Figure 3.4 High-level model of the c880 ALU. ..

 Figure 3.5 Experimental set-up to evaluate the proposed design
verification methodology. ...

 Figure 3.6 RTL block diagram of the LC-2 microprocessor.

 Figure 3.7 An example of an actual design error that is dominated
by an SSL error. ..

 Figure 3.8 An example of (a) an actual design error for which no
dominated modeled error was found, and (b) an instruction
sequence that detects the actual error. ..

 Figure 3.9 Block diagram of the DLX microprocessor. ..

 Figure 3.10 Example of an actual design error, its detection requirements,
and the corresponding dominated MCE. ..

 Figure 3.11 The microprocessor validation algorithm. ..

 Figure 3.12 A test sequence for most MCEs in the
ADD DR, SR1, SR2 instruction. ...
vii

. 80

... 83

... 85

... 88

90

... 92

98

01

12

117
 Figure 3.13 Deployment of proposed design verification methodology.

 Figure 4.1 Generic BIST scheme. ...

 Figure 4.2 Basic structure of a test generation circuit. ..

 Figure 4.3 General scalable circuit. ...

 Figure 4.4 Scalable incrementer and the corresponding test sequence and
test generator (twisted ring counter) for (a) n = 3 and (b) n = 4.

 Figure 4.5 General structure of TG(n) and its state behavior.

 Figure 4.6 High-level model of then-bit CLA. .. 93

 Figure 4.7 Scalable test generator and response monitor for ann-bit CLA. 97

 Figure 4.8 High-level model for the 74181 4-bit ALU. ...

 Figure 4.9 Test generator for ann-bit 74181-style ALU. 100

 Figure 4.10 High-level model for the multiply-add unit. ... 1

 Figure 4.11 Test generator for ann × n-bit multiply-add unit. 103

 Figure A.1 Error simulation algorithms for GROUP1 and GROUP2 errors. 1

 Figure A.2 Output generated by a sample run of ESIM. ...
viii

.... 30

44

48

9

49

50

. 51

. 56

. 70

71

74
LIST OF TABLES

 Table 2.1 Responses of the various gate types to their C-sets.

 Table 2.2 The test vectors required to verify ann-input gate. 33

 Table 2.3 Possible redundant MIGSEs on ann-input partially excitable gate. 41

 Table 2.4 Equations forn-input gate replacement modules for GSEs.

 Table 2.5 Design error coverage in combinational benchmarks using
complete SSL test set generated by ATALANTA.

 Table 2.6 Design error coverage in combinational benchmarks using
verification tests generated by ATALANTA. ... 4

 Table 2.7 Improved coverage of MIEs and WIEs after the second
phase of test generation using ATALANTA. ...

 Table 2.8 Design error coverage in combinational benchmarks using
verification tests generated by ATTEST. ..

 Table 2.9 Design error coverage in sequential benchmarks using
verification test sequences generated by ATTEST.

 Table 3.1 Actual error distributions from three groups of design projects.

 Table 3.2 Actual design errors and the corresponding dominated
modeled errors for LC-2. ...

 Table 3.3 Actual design errors and the corresponding dominated
modeled errors for our DLX implementation. ..

 Table 3.4 Actual design errors and the number of corresponding
dominated MCEs for LC-2. ..
ix

.. 77

. 94

.. 95

... 96

. 99

02

.. 104

113

. 113

114

15

5

16

118

118

120
 Table 3.5 Simulation of the instruction ADD DR, SR1, SR2: control
signal values and corresponding datapath actions.

 Table 4.1 Condensed representation of complete test sets in (a)MCLG(2)
and (b)MPGX(2). (c) Specific test sequence for the CLA that
follow the SC style. ..

 Table 4.2 Complete and minimal SC-style test sequence for the 74283
4-bit CLA and the corresponding responses. ..

 Table 4.3 Mapping of the CLA test sequence to the TR counter’s
output sequence. ...

 Table 4.4 Complete and near-minimal SC-style test sequence for the
74181 ALU. ...

 Table 4.5 Complete and near-minimal SC-style test sequence for the
multiply-add unit. .. 1

 Table 4.6 Summary of the scalable test generator examples.

 Table A.1 Numbers of faults and design errors in the circuits used in
the experiments. ..

 Table A.2 The percentages of SSL faults and design errors detected
using exhaustive test sets. ..

 Table A.3 The percentages of SSL faults and design errors detected
in the 4-bit 74283 adder circuit using random test sets.

 Table A.4 The percentages of SSL faults and design errors detected
using complete SSL tests generated by ATALANTA. 1

 Table A.5 The CPU times in seconds spent on a SUN SPARC 20 by
ESIM using complete SSL tests generated by ATALANTA. 11

 Table A.6 The percentage of IP faults detected using complete SSL
tests generated by ATALANTA. .. 1

 Table A.7 Characteristics of the circuits used in the experiments.

 Table A.8 Gate type distribution in the selected circuits.

 Table B.1 Summary of instruction formats and semantics of the LC-2.
x

xi

LIST OF APPENDICES

APPENDIX A ERROR/FAULT SIMULATOR ESIM ... 111

APPENDIX B THE LC-2 MICROPROCESSOR .. 119

lgo-

ing

lures.

uire

pli-

iple,

tes a

imu-

faults.

fault

oing

earch

xten-

-level

d sim-
ABSTRACT

LIFETIME VALIDATION OF DIGITAL SYSTEMS VIA FAULT
MODELING AND TEST GENERATION

by

Hussain Said Al-Asaad

Chair: John P. Hayes

The steady growth in the complexity of digital systems demands more efficient a

rithms and tools for design verification and testing. Design verification is becom

increasingly important due to shorter design cycles and the high cost of system fai

During normal operation, digital systems are subject to operational faults, which req

regular on-line testing in the field, especially for high-availability and safety-critical ap

cations. Fabrication fault testing has a well-developed methodology that can, in princ

be adapted for efficient design validation and on-line testing. This thesis investiga

comprehensive “lifetime” validation approach that uses fabrication fault testing and s

lation techniques, and accounts for design errors, fabrication faults, and operational

The validation is achieved by the following sequence of steps: (1) explicit error and

modeling, (2) model-directed test generation, and (3) test application.

We first present a hardware design validation methodology that follows the foreg

validation approach. We analyze the gate-level design error models used in prior res

and show how to map them into single stuck-line (SSL) faults. We then describe an e

sive set of experiments, which demonstrate that high coverage of the modeled gate

errors can be achieved with small test sets obtained with standard test generation an

have

jects,

peri-

ained

rther

roach

tion

est

ally

sed

full

sent a

ly for

eet the

are

head
ulation tools for fabrication faults. Due to the absence of published error data, we

systematically collected design errors from a number of microprocessor design pro

and used them to construct high-level error models suitable for design validation. Ex

mental results indicate that very high coverage of actual design errors can be obt

with test sets that are complete for a small number of design error models. We fu

present a new error model for control errors in microprocessors and a validation app

that uses it.

We next show how to achieve built-in validation by embedding the test applica

mechanism within the circuit under test (CUT). This is realized by built-in self-t

(BIST), a design-for-testability technique that places the testing functions physic

within the CUT. We demonstrate how BIST, which in the past has been typically u

only for fabrication faults, can be applied to on-line testing. On-line BIST can provide

error coverage, bounded error latency, low hardware and time redundancy. We pre

method for the design of efficient test sets and test generators for BIST, especial

high-performance scalable datapath circuits. The resultant test generator designs m

following goals: scalability, small test set size, full fault coverage, and very low hardw

overhead. We apply our method to various datapath circuits including a carry-looka

adder, an arithmetic-logic unit, and a multiplier-adder.

. Cir-

ities.

ome

lexity

thods

t its

t of

ivide

ccu-

also

T

half

s to

of a

, and

sting

Built-

isms

d is
CHAPTER 1
INTRODUCTION

The field of digital systems has undergone a major revolution in recent decades

cuits are shrinking in physical size while growing both in speed and range of capabil

This rapid advancement is not without serious problems, however. Especially worris

are verification and testing, which become more important as the system comp

increases and time-to-market decreases. The inadequacy of existing verification me

is illustrated by the 1994 Pentium microprocessor’s FDIV design error, which cos

manufacturer (Intel) an estimated $500 million [29]. The FDIV error involved a se

missing entries in a lookup table used in the hardware algorithm implementing the d

operation, and caused the Pentium’s floating-point divide instructions to produce ina

rate results for certain input data [61]. The inadequacy of existing testing methods is

illustrated by the 1990 breakdown of AT&T’s long distance network, which cost AT&

around $75 million [38].

Due to the high cost of failure, verification and testing now account for more than

of the total lifetime cost of an integrated circuit (IC) [111]. Increasing emphasis need

be placed on finding design errors and physical faults as early as possible in the life

digital system, new algorithms need to be devised to create tests for logic circuits

more attention should be paid to synthesis for test and on-line testing. On-line te

requires embedding logic that continuously checks the system for correct operation.

in self-test (BIST) is a technique that modifies the IC by embedding test mechan

directly into it. BIST is often used to detect faults before the system is shipped an

potentially a very efficient way to implement on-line testing.
1

2

hat is

roach

sys-

tem’s

s. We

-chip

SOC-

e 1.1

ses:

ept is

sign

etailed

tion is

ioral

ch as

n turn

mask

arly

ails of
This thesis presents a comprehensive validation approach for digital systems t

based on fault modeling and test generation. Contrary to most prior research, the app

aims at detecting design errors and physical faults throughout the lifetime of a digital

tem. In this chapter, we review the types of faults and errors that arise during the sys

lifetime, and the relevant methods for detecting and simulating these faults and error

then discuss our proposed approach to lifetime validation.

1.1 System Development

Digital systems are manufactured on either a single chip, called a system-on-a

(SOC), or on several chips. In this thesis, we assume that digital systems follow the

style, however, the results can be easily extended to multiple-chip systems. Figur

shows the lifetime of a typical IC-based digital system (SOC) divided into three pha

design, manufacturing, and operation. During the design phase, an initial design conc

transformed in a top-down manner into an IC specification (mask layout). The de

phase for a new system involves an extensive requirements analysis, resulting in a d

system specification describing what the system must do. Then a behavioral descrip

prepared, which describes the system’s operation in detail. Following the behav

design, a register-transfer level (RTL) design is created that includes modules su

buses, registers, logic blocks, and finite state machines. The RTL components are i

implemented using gate-level components, such as gates and flip-flops. Finally, a

layout targeting a certain IC technology, such as CMOS, is generated.

Systems designed in the above fashion are said to behierarchical. We use the term

module to refer to a design block at any abstraction level whose function is cle

defined. A module at a certain level of the system’s hierarchy abstracts away the det

Design

RTL design

Behavioral design

Logic design

Finished
Chip fabrication

Useful life

IC

Packaging

Specifications

Design Manufacturing Operation

Wearout

Figure 1.1 Lifetime of a typical system-on-a-chip (SOC).

concept IClayout
mask

3

rar-

rent

ces-

s the

ehav-

cess

e and

design

igure

tools

final
the lower level which implements it. An example is given in Figure 1.2, where the hie

chical structure of a microprocessor is shown along with some modules at diffe

abstraction levels. Figure 1.2a shows a behavioral Verilog description of the micropro

sor and Figure 1.2b shows the RTL design of its datapath module. Figure 1.2c show

gate-level netlist of one of the multiplexers in the datapath module. Designs at the b

ioral and register-transfer levels are often considered ashigh-level.

Computer-aided design (CAD) tools are normally used throughout the design pro

for synthesis, optimization, and verification. Synthesis tools speed up the design cycl

reduce the human design effort and cost. For example, a synthesis tool transforms a

from a higher level of abstraction, such as the microprocessor behavioral design in F

1.2a, to a lower one such as the gate-level design in Figure 1.2c. Optimization

enhance the design quality, while verification tools ensure the correctness of the

design.

D
at

a
bu

s

Address bus

Register file

ALU

Merge

Mux

Flags

Mux

Mux

Mux

Mux

Detect

Extend

Increment

REG1 REG2

0123

0
1

2
3

0 1

0 1

01 2

Latch

MAR

PC IR

Datapath

module cpu(clock,clear,dbus,abus,write_mem_bar,read_mem_bar);

input clock,clear;
inout [15:0] dbus;
output [15:0] abus;
output write_mem_bar,read_mem_bar;
wire [15:0] ir_out;
wire [2:0] R1,R2,W,flags_out;
wire [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;

datapath DP(clock,clear,dbus,abus,ir_out,flags_out,R1,R2,W,RE1,RE2,WE,
 S3,S2,S1,S0,M, load_pc_bar, load_ir_bar, load_mar_bar,
load_flags_bar, load_reg1_bar,load_reg2_bar,sel_rf_mux, sel_pc_mux,
sel_mar_mux, sel_ab_mux,sel_alu_mux,reg2_to_dbus_bar,zero_or_sign,
trapvec_bar);

control CO(clock,clear,write_mem_bar,read_mem_bar,R1,R2,W,RE1,RE2,WE,
S3,S2,S1,S0,M,load_pc_bar,load_ir_bar, load_mar_bar, load_flags_bar,
load_reg1_bar,load_reg2_bar, sel_rf_mux, sel_pc_mux,sel_mar_mux,
sel_ab_mux, sel_alu_mux,reg2_to_dbus_bar,zero_or_sign,trapvec_bar,
ir_out,flags_out);

endmodule

module control(........);

.

.
 case (machine_state)

 `IFETCH_STATE:
 begin
 read_mem_bar_temp = 1’b0;
 write_mem_bar_temp = 1’b1;
 RE1_temp = 1’b0;
 RE2_temp = 1’b0;
.

endmodule

}

G2

G4

G3

c

d

s

z

(a)

(b)

(c)

Figure 1.2 Microprocessor design at the (a) behavioral, (b) RTL, and (c) gate levels.

MUX

4

yout

aged

nor-

the

uring

pera-

” by

t aid in

n pro-

faults

esign

Data

ran-

hout

e con-

s are

ause it

gn pro-

ource

. Bugs
The manufacturing phase in the lifetime of a digital system takes the IC mask la

and yields a finished IC. First, the system is fabricated on a chip and then it is pack

into the finished IC that is ready to be used. The final phase of the system’s lifetime is

mal operation, where the system performs its intended job.

Faults occur throughout the lifetime of a digital system. They can be classified by

phase in which they occur as follows: design faults (more commonly called designerrors)

which appear in the design phase, fabrication faults which appear in the manufact

phase, and operational faults which occur during normal operation. Fabrication and o

tional faults are normally considered to be “physical” faults.

Design faults. The three major types of design faults in a system are those “inherited

the system, those made by human designers, and those made by the computers tha

the design process [18]. Inherited faults are those that exist before starting the desig

cess. For example, conflicting specifications are considered as inherited faults. These

cannot be completely eliminated because no system is completely new. Human d

faults fall into two major categories: data preparation faults and transcription faults.

preparation faults usually result from making wrong decisions, miscalculations, etc. T

scription faults are the result of transferring data from one medium to another wit

changing its content. Faults due to mistakes in keying design data into a computer ar

sidered transcription faults. Examples of data preparation and transcription fault

shown in Figure 1.3. Human design faults must be detected as early as possible bec

costs a lot to detect and correct them later. They can happen at any stage of the desi

cess and can remain undiscovered throughout the lifetime of the system. The third s

of design faults is the CAD system used to automate and speed up the design cycle

// Instruction decoding
// Decoding of register file inputs
// Decoding of R1

 if (ir_out[15:12] == 4'b1101)
 R1_temp = 3'b111;
 else
 R1_temp = ir_out[8:6];

// Instruction decoding
// Decoding of register file inputs
// Decoding of R1

 R1_temp = ir_out[8:6];

// Instruction decoding
// Decoding of register file inputs
// Decoding of R1

 if (ir_out[15:12] == 4'b1101)
 R1_temp = 3'b110;
 else
 R1_temp = ir_out[8:6];

Correct code Data preparation fault Transcription fault

Figure 1.3 Examples of data preparation and transcription faults.

5

rrect

or on

they

com-

OS

havior

s

-

ther

ping

rica-

nor-

mag-

mple,

oduce

ing of

ecially

con-

nsid-
in the CAD software (simulators, translators, layout generators, etc.) can lead to inco

design. A hardware malfunction in the CAD workstation such as a bad storage sect

the disk can also cause design faults.

Fabrication faults. These defects are not directly attributable to human error; instead

result from an imperfect manufacturing process. For example, shorts and opens are

mon defects in the manufacture of very large-scale integrated (VLSI) circuits using CM

technology, the industry standard. These defects can have a severe effect on the be

of an IC. For example, if the transistorT2 of the NOR gate circuit shown in Figure 1.4 i

shorted, then there will be a direct conducting path from VDD to GND, whenAB= 01. Such

a path will not only produce an erroneous value at the outputZ, but also may cause the over

all integrated circuit to fail due to the increase in static power consumption and heat. O

CMOS fabrication defects include incorrect transistor threshold voltage, improper do

profiles, mask alignment errors, and poor encapsulation. Accurate identification of fab

tion defects is important in improving the manufacturing yield [64].

Operational faults. Most of these faults are caused by external disturbance during the

mal operation of the digital system. Common sources of operational faults are electro

netic interference, operator mistakes, environmental extremes, and wearout. For exa

if a digital system is subjected to extreme temperature variations, the system can pr

incorrect results. Moreover, excessive temperature and humidity accelerate the ag

components. Some operational faults arise due to the movement of the system, esp

in mobile applications. Also, some IC faults are due to electron migration, where metal

nectors inside an IC package thin out with time and break. Operator mistakes are co

A

B

A B

T1

T2

T3 T4

Z

VDD

GND

A

B
Z

Figure 1.4 A NOR gate and its transistor implementation.

6

ad to

st

m

ce

lt

e

t

h

s.

der

it

epen-

for

trike

cteris-

f pub-

nal

ot all,

o five

esting

HDL

r test

h as
ered in this class because an operator may provide incorrect commands which le

system failure.

Operational faults are usually classified according to their duration:

• Permanentfaults remain in existence indefinitely if no corrective action is taken.

Many of these are residual design or manufacturing faults. Those that are not mo

frequently occur during changes in system operation, for instance, after syste

start-up or shutdown, or as a result of a catastrophic environmental disturban

such as a collision.

• Intermittentfaults appear, disappear, and reappear repeatedly. They are difficu

to predict, but their effects are highly correlated. Most intermittent faults are du

to marginal design or manufacturing. The system works well most of the time, bu

fails under atypical environmental conditions.

• Transientfaults appear and disappear quickly, and are not correlated with eac

other. They are most commonly induced by random environmental disturbance

To detect faults, we need to apply input stimuli (tests) that will force the circuit un

test to fail. A circuit is said to fail if the function it implements differs from the function

was designed to implement. Fault models provide a consistent and technology-ind

dent mechanism for how a logic function might fail, as well as a standard yardstick

measuring the quality of a set of tests. In developing a fault model, it is important to s

a balance between accuracy and complexity. The model must also match the chara

tics of the design level(s) at which it is used.

The modeling of design errors has rarely been considered before due to the lack o

lished error data. Abadir et al. [2] defined a set of likely design errors for combinatio

logic and have shown that complete test sets for fabrication faults detect many, but n

such errors. In Chapter 2, we reduce most of the known gate-level design errors t

classes. Al Hayek and Robach [15] have adapted mutation errors from the software t

method called mutation testing, to hardware design verification in the case of small V

modules. Mutation testing [44][45] generates tests that distinguish a program unde

from its mutants, where a mutant is created by injecting a small error (mutation) suc

7

ersial

test set

rrors.

mall

ast.

fixed

ault

ctly,

er of

r all

lt in a

ve

not

cro-

ffects

igher-

atta-

ng to
changing an add to subtract. The rationale for the approach is based on two controv

hypotheses: 1) programmers write programs that are close to correct ones, and 2) a

that distinguishes a program from all its mutants is also sensitive to more complex e

Current mutation-testing tools are slow and are only suitable for testing relatively s

programs [112].

Developing fault models for fabrication faults has received a lot of attention in the p

The most common such fault model is thesingle stuck-line(SSL) fault model [4], under

which any single signal line in a logic-level system model can become permanently

(stuck) at a logical 1 or 0 value. It is a simple, technology-independent, logical f

model. While it represents only a small number of different manufacturing faults dire

tests derived for SSL faults detect most faults occurring in practice. Since the numb

SSL faults is proportional to the number of lines in the circuit, it is feasible to conside

possible SSL faults, even in large-scale designs.

Another model for fabrication faults is theinput pattern(IP) fault model [22], under

which a fault changes a module’s response to some input pattern. Formally, an IP fau

single-output moduleM changes the response ofM to the input patternV from FV to FV.

The number of IP faults in a circuitC is proportional to , whereG is the number of

modules inC andp is the average number of inputs to the modules. Afunctional faultin a

moduleM changes the function implemented byM into a known faulty function, and can

be represented by a set of IP faults. On the other hand, acell fault in M changes the func-

tion implemented byM into an unknown faulty function. To detect a cell fault, exhausti

testing ofM is needed.

Few formal higher-level fabrication fault models exist, and those that do are often

sufficient to detect all actual faults. Thatte and Abraham [108] classified faults in mi

processors according to their effect on some register-level components. These e

include such symptoms as register decoding errors, and data transfer errors. Other h

level fault models are extensions of the gate-level fault models. For example, Bh

charya and Hayes [21] extended the SSL fault model to include all bits of a bus, leadi

the concept of bus faults.

G 2
p×

8

fault

com-

nput

hether

faults

ults,

ed or

: for-

tness

pos-

uracy

on for

plex

5],

f the

-level

ce an

eth-

then

arge

ning,

o use

DD-

od is
Since operational faults and fabrication faults are physical in nature, fabrication

models are also used for operational faults. The SSL fault model is also the most

monly used model for operational faults.

Testing is the process of error/fault detection. It involves exercising a system with i

patterns (test vectors) and observing the resulting response vectors to ascertain w

the system behaves correctly. Testing methods can be classified by the types of

addressed: design verification for design faults, manufacture testing for fabrication fa

and on-line testing for operational faults.

1.2 Design Verification

Design verification is the process of ensuring that a design exhibits certain requir

“correct” behavior. There are two broad approaches to hardware design verification

mal methods and simulation-based methods. Formal methods try to verify the correc

of a system by using mathematical proofs [117]. Such methods implicitly consider all

sible behavior of the models representing the system and its specification. The acc

and completeness of the system and specification models are a fundamental limitati

any formal method. Furthermore, formal methods are not yet feasible for large, com

designs due to their excessive time and memory requirements.

An example of a formal verification method is boolean comparison [28][94][11

where verification becomes proving the equivalence of two logical representations o

same design. Most proposed algorithms for boolean comparison apply to gate

designs and are based on ordered binary decision diagrams (OBDDs) [28]. Sin

OBDD is a canonical representation of a logic function, OBDD-based verification m

ods aim at constructing the OBBD for each of the two design representations and

proving their equivalence. These algorithms often fail for large circuits due to the l

memory requirements for storing the OBDDs.

Recently, Kunz and Pradhan [71][72] introduced a procedure called recursive lear

which they use to prove the equivalence of two gate-level designs. The main idea is t

structural methods to capture similarity between two sub-circuits and then use an OB

based functional approach to prove the equivalence of the two circuits. Such a meth

9

en

lence

a cir-

tests

-

y

ly

of

,

u-

y

-

rds

sts

o

rs

lt

lation

t cover

mple,
useful for verifying the functionality of a circuit after simple modifications have be

made to the circuit. However, recursive learning cannot be used to verify the equiva

of two designs at different levels of abstraction.

Simulation-based design verification tries to uncover design errors by detecting

cuit’s faulty behavior when tests (simulation vectors) are applied. Several types of

can be used for verification:

• Exhaustive tests: Simulation using all possible input combinations as tests is a

possibility, at least for small combinational circuits.

• Focused tests: These are hand-written by the designers focusing on basic function

ality and important exceptional or “corner” cases in the design. These tests ma

be effective; however, the process of generating such tests is far from being ful

automated. Recently, tools have been developed to assist in the generation

focused tests [35][58].

• Random tests: Random vectors can cover a substantial number of design faults

but their coverage is uncertain even with very large test sets [65]. Random sim

lation provides a cheap way to take advantage of the billion-cycles-a-da

simulation capacity of networked workstations available in many big design orga

nizations. Sophisticated systems have been developed that are biased towa

corner cases, thus improving the quality of the tests significantly [7].

• Universal tests: Implementation-independent “universal” test sets [24][36]

exploit any unateness properties of the functions being implemented, but the te

become exhaustive when, as is often the case, there are no unate variables.

• Physical-fault-oriented tests: Another approach is to use specific, deterministic

test sets generated for a physical (fabrication) fault model like the SSL model t

verify the design. It has been shown that many, but not all, gate-level design erro

can be detected by using test sets derived for SSL faults [2]. We verify this resu

experimentally in Chapter 2.

Instead of the usual binary values for the tests described above, symbolic simu

[63] uses logical expressions for the state and input variables. The expressions mus

all valid test cases and avoid those that violate the circuit’s input constraints. For exa

10

n bus

ints

obabi-

tab-

etic

rith-

sual

actual

uch as

posed

sting

66],

rela-

nder-

cation

ls. An

hich

too

d an

ure of

, the

is, and

an be

ors. In

e use
the expressions must cover the test cases {00, 01, 10} and avoid {11} for the selectio

of a 3-input multiplexer. This technique is suitable for applications where input constra

can be easily determined. Another simulation-based comparison approach, called pr

listic design verification [62], uses integer values for input variables. This method es

lishes a transformation from the boolean function realized by a circuit to an arithm

function. To compare two gate-level designs, the circuits are first transformed to a

metic functions and then simulated with integer values for inputs instead of the u

binary values.

Common to all the tests mentioned above is that they are not targeted at specific

design errors. This poses the problem of quantifying the effectiveness of a test set, s

the number of errors detected or “covered”. Various coverage metrics have been pro

to address this problem. These include code coverage metrics from software te

[7][20][32], finite state machine coverage [58][66][96], architectural event coverage [

and observability-based metrics [46]. A shortcoming of all these metrics is that the

tionship between the metric and the detection of actual design errors is not well u

stood.

To overcome the problems of the above approaches, model-based design verifi

attempts to model design errors directly and generate tests for the synthetic mode

example of model-based design verification is Al Hayek and Robach’s method [15] w

was adapted from mutation testing [44]. Although mutation testing is considered

costly for wide-scale industrial use, it is one of the few approaches that has yielde

automatic test generation system for software testing, as well as a quantitative meas

error coverage (mutation score) [68].

Although model-based design verification is intended for design error detection

generated deterministic test sets also appear to be useful for error location, diagnos

correction [39][40][73]. This is the case since these test sets (simulation vectors) c

surprisingly small and can guarantee the detection of broad categories of design err

contrast, random vectors [59][98] do not guarantee the detection of all errors, and th

of exhaustive tests [98] is rarely feasible.

11

no

orrect

ct to

tech-

esign

mal-

rate

uni-

, test-

of the

an be

failure

d on

te an

rnal

n and

ate-

idely

e is

it

the
Design verification via model-based testing suffers from a major limitation. Since

complete set of design error models is known, a system that passes the testing is c

only with respect to the considered error models. Hence, correctness with respe

unmodeled errors cannot be guaranteed. In spite of this, simulation is an effective

nique for design verification, and experience has shown that it helps discover most d

errors early in the design process.

1.3 Manufacture Testing

Manufacture testing, also called acceptance testing, deals with the detection of

functions in a digital system due to fabrication faults. In principle, it is possible to gene

tests without the use of an explicit fabrication fault model. For example, exhaustive,

versal, and random tests can be used to detect fabrication faults. However, in practice

ing usually employs a fault model, and tests are generated to detect all occurrences

modeled faults. If the system passes the tests, it is declared free from faults and c

shipped to customers. Otherwise, the system is diagnosed to identify the causes of

and improve the yield of future production.

Most deterministic fabrication-fault-oriented test generation algorithms are base

the following three basic steps: (1) activate the currently selected fault, (2) propaga

error signal from the site of the fault to an observable output, and (3) justify the inte

signals by assigning values to the primary inputs. We next describe the test generatio

fault simulation methods used in prior research.

Gate-level test generation. The most studied approaches to test generation employ g

level structural models; nearly all commercial test generators do so. The most w

known gate-level test generation algorithms are theD-algorithm and PODEM (Path Ori-

ented DEcision Making) [4].

If a line in a circuit is 0 (1) when it should be 1 (0), the error signal value on that lin

represented by the symbolD (D) for discrepancy. Consider the 2-input multiplexer circu

in Figure 1.5. A stuck-at-1 fault at the output of gateG2 can be activated by attempting to

make the output 0. A signal on this line will be detected as an error if it is assigned

12

ing

sat-

fica-

the

fault

along

ify a

t justi-

are

em to

flict.

plete
valueD. The faultG2 stuck-at-1 is activated by assigning 0 to one or both ofsandc. Since

the output ofG2 is not a primary output, we need to propagate theD error signal from the

output ofG2 to the primary outputz so that it can be observed. This is done by assign

values to signals in the circuit to sensitize the output ofG2 to G3’s output, i.e. by assigning

0 to the output ofG4. The error propagation process just described is calledD-propaga-

tion. After propagating the error, we need to assign the primary inputs of the circuit to

isfy the assignments made to internal signals. So, we need to assign 0 to inputd to satisfy

the value 0 atG4’s output. This process of determining complete and consistent speci

tions of circuit signal values is called justification. After justification is completed,

values of the primary input signals form the test for the fault. Hence the test for the

G2 stuck-at-1 isscd = 000.

TheD-algorithm provides a systematic implementation of theD-propagation and justi-

fication steps described above. In the case ofD-propagation, severalD’s (D’s) may be

propagated simultaneously, since sometimes an error signal must be propagated

more than one path to reach an observable output. In theD-algorithm, theD-propagation

and justification operations make only local assignments of signal values. To just

value on the output of gateG, theD-algorithm makes assignments to the inputs ofG. If

these are not primary inputs, assignments to them become objectives for subsequen

fication steps.

Both D-propagation and justification involve decisions or choices. Whenever there

several alternative ways to justify a line or propagate an error, we choose one of th

try. But in doing so we may select a decision that leads to an inconsistency or con

Therefore most search strategies use backtracking to systematically explore the com

G2

G4

G3

c

d

s

z

Figure 1.5 A 2-input multiplexer circuit.

Stuck-at-1 fault site

Sensitized path

D

0

1

0

D

00

13

sting

t gen-

s at

s the

. The

ary

a

ent

tion,

last

tracks

ossi-

DEM.

ation

eci-

hes

ulat-

satis-

nous

trans-

lled

hav-

ector

ircuit.
space of possible solutions and recover from incorrect decisions. Most gate-level te

algorithms use chronological backtracking where after a conflict is detected, the tes

eration algorithm returns to and alters the last decision made.

The D-Algorithm uses a greedy value assignment policy—it assigns signal value

the earliest opportunity. This reduces the number of signal evaluations but this make

decision-making more vulnerable to conflicts and hence increases backtracking

PODEM test generation algorithm avoids this problem by backtracking only at prim

inputs. PODEM does not justify internal values explicitly, as in theD-algorithm. To sat-

isfy an internal objective such as aD or D on some internal line, a value is assigned to

primary input and the circuit is simulated. If the simulation proves that the assignm

does not satisfy the objective, PODEM assigns another input value. If during simula

two values conflict on a line, the algorithm backtracks by changing the value of the

assigned input. When both values have been tried unsuccessfully, the algorithm back

to the next-to-last assigned input. In this way, PODEM can exhaustively explore all p

ble circuit states, but only implicitly.

A number of test generation techniques have been developed that extend PO

Their goal is to reduce the number of backtracks by identifying choices a test gener

algorithm might make that cannot lead to a solution, without actually pursuing every d

sion. For example, the FAN algorithm [4] seeks to identify conflicts at fanout branc

within a circuit, thereby avoiding backtracks at the primary inputs and the cost of sim

ing large parts of the circuit. Conflicting assignments at fanout branches cannot be

fied by any assignment at primary inputs.

The D-algorithm and PODEM can be extended to generate tests for synchro

(clocked) sequential circuits. The extension is based on a modeling technique which

forms a sequential circuit into an iterative combinational array, one cell of which is ca

a time frame. In this transformation a flip-flop is modeled as a combinational element

ing an additional inputq to represent its current state and an additional outputq+ to repre-

sent its next state, which becomes the current state in the next time frame. An input v

of the iterative combinational array represents an input sequence for the sequential c

14

nd

ration

f high-

mul-

l high-

ntial

ing

a

h-

ce

(2)

-

High-level test generation. Due to the high complexity of gate-level test generation a

the hierarchical nature of the design process, several high-level or functional test gene

methods have been introduced. The design is then described by an interconnection o

level (RTL) modules, which include word gates, decoders, multiplexers, encoders, de

tiplexers, tristate buffers, comparators, 1-bit adders, and buses. An example of a smal

level design is shown in Figure 1.6. High-level test generation has the following pote

advantages:

• Fast module evaluation: Since modules are described at the functional level, they

can be evaluated faster than their gate-level equivalents. For example, evaluat

the code in Figure 1.6a is faster than evaluating the approximately 90 gates in

gate-level equivalent of Figure 1.6b.

• High-level implication: Implication at the high level may lead to finding values of

signals where low-level implication fails. For example,A = 0 andD = 5 in Figure

1.6b imply thatB = 5. However, it is not possible to reach to this implication using

an equivalent gate-level design of Figure 1.6b.

• Unique sensitization: At the high level, efficient procedures can be developed to

determine the signals necessary to propagate fault effects at the inputs of a hig

level module to its outputs. For example, to propagate a fault effect from inputC

of the multiplexer in Figure 1.6b, we need to sets to 0. Moreover, a propagation

check routine may also be developed to anticipate conflicts earlier and hen

reduce the number of backtracks.

• Reduced backtracking: This is due to the following: (1) high-level descriptions

enclose reconvergent fan-out and hence leads to fewer poor decisions, and

module-level decision making leads to improved global implication and conse

A
D

D

M
U

X

A

B

C
D

s

Figure 1.6 A high-level design example: (a) behavioral and (b) RTL.

8

8 8

8

8

cin = 0 cout

0

1

{cout, C} = A + B;
If (s == 1’b0)

D = C;
else

D = B;

(a) (b)

15

SSL

an

cture

level

hose

hose

to its

dule.

SSL

nera-

ran-

atterns

heu-

ide

ut(s)

n of

t for

gation

high-

crease

nals,

thms

the

, a

-

quently conflicts are detected earlier and alternatives are tried sooner.

Several high-level branch-and-bound combinational test generation methods for

faults have been introduced [31][91][103]. In these methods, the design description is

interconnection of high-level modules. Each module is represented by a data stru

using some form of a high-level representation, which may be expanded to the gate

once the SSL faults inside the module are targeted. To target high-level modules w

gate-level design is unknown and to minimize the need of dynamically expanding t

whose gate-level design is known, either faults inside the module are transferred

input(s)/output(s) or a complete test set for SSL faults is precomputed for the mo

Typical experimental results show that high-level test generation produce tests for

faults with less CPU time, less memory, and better coverage than gate-level test ge

tion.

The test generation algorithm of Sarfert et al. [103] is divided into two phases: a

dom phase and a deterministic phase. The random phase applies pseudo-random p

in parallel for all SSL faults. The deterministic phase targets the remaining SSL faults

ristically in the following order: faults at the primary inputs of the design, faults ins

modules by expanding one module at a time to gate level, faults in input(s) and outp

of modules. The test generation algorithm of Calhoun and Brglez [31], an extensio

PODEM that is called MODEM, is similar to that of Sarfert et al.

Narain et al. [91] use precomputed test sets for modules in the form of one tes

every SSL fault. The advantage is that the bad value is known, hence the error propa

is simpler. The disadvantages are: (1) precomputed tests may not be justifiable at the

level and hence the coverage may be decreased, (2) the test generation time may in

since we need to justify more precomputed tests, and (3) overspecification of sig

where no unknown bits are allowed, may result in a large number of backtracks.

The test generation algorithm of Narain et al. is an extension to gate-level algori

with a justification-first strategy, as in PODEM, or a propagation-first strategy, as in

D-Algorithm. To minimize the effect of backtracking on the test generation algorithm

method calleddependency-directed backtrackingis introduced. Unlike the usual chrono

16

h-and-

con-

opro-

er oper-

-set

oces-

-

are

pt the

wing

data

the

detect

ults.

ors,

nable

ierar-

ystem

path

hat all

terac-

tor for

two

igh-

ack-

bound

od-
logical backtracking method, dependency-directed backtracking causes the branc

bound algorithm to jump immediately to the decision nodes that are responsible for a

flict.

Thatte and Abraham [108] propose a high-level test generation scheme for micr

cessors based on a system graph model. It uses knowledge about the register-transf

ations that are normally present in the high-level description of the instruction

architecture. The system graph model has a vertex for every register in the micropr

sor. An edge is inserted between nodesA andB if an operation to transfer data from regis

ter A to registerB is possible. So, data transfer operations in the microprocessor

mapped to paths in the system graph. It is assumed that physical failures can corru

high-level operations of the microprocessor. Fault models are defined for the follo

functions: register decoding, instruction decoding and control, data storage, and

transfer. For example, a fault in register decoding leads to reading from or writing to

wrong register. The test generation algorithm produces sequences of instructions to

the above faults in the microprocessor with the hope of detecting the low-level SSL fa

The approach has the following limitations: (1) it is only applicable to microprocess

(2) it tends to generate large sequences of instructions for certain faults, and (3) it is u

to deal directly with datapath faults.

Lee and Patel [77] present an architecture-level test generator (ARTEST) for a h

chical design environment based on precomputed tests for high-level modules. The s

model used by ARTEST is composed of a gate-level control unit and a high-level data

unit. The faults considered are limited to the datapath only. Lee and Patel assume t

possible error signals associated with each module is unknown. Testing involves in

tion between a high-level test generator for the datapath and a gate-level test genera

control, with a complex interface algorithm that transfers objectives between these

test generators. ARTEST tries to minimize calls to the interfacing algorithm, hence h

level dependency-directed backtracking is used first until a maximum number of b

tracks is reached and then gate-level backtracking is used.

In a subsequent paper [76], Lee and Patel suggest that a high-level branch-and-

algorithm is likely to be inefficient in making high-level search decisions when the m

17

ntrol

pose

ation

ntrol

lved

ts for

al test

hi-

uc-

s

-

d

ut

i-

s.

te

t

con-

denti-

vector

ouped

ate the
ule diagram of the circuit under test is complex, in particular where the data and co

are highly intertwined. As an alternative to the branch-and-bound algorithm, they pro

a signal-driven discrete relaxation technique for the architecture-level test gener

problem. An underdetermined system of non-linear equations is derived for each co

unit instruction, using symbolic simulation. The resulting system of equations is so

iteratively using a Gauss-Seidel algorithm.

Lee and Patel [78] further present another high-level technique to generate tes

datapath faults in microprocessor-like circuits. This method separates the hierarchic

generation into two phases: (i) an instruction-sequence assembling algorithm at the arc

tecture level and (ii) a relaxation-based algorithm that produces a fully-specified instr

tion sequence. The technique may be summarized as follows:

1. Perform symbolic simulation for each instruction to derive a system of equation

that represent the instruction behavior in the datapath.

2. Derive a structural data flow graph (DFG) for each instruction. The inputs (out

puts) of DFG include the primary inputs (outputs) of the microprocessor an

present- and next-state lines. The DFG is used only for path selection witho

explicitly examining the detailed functionality of the DFG nodes.

3. Calculate the justification and propagation cost for state lines.

4. Inject a test vector at the input of module under test.

5. Assemble an instruction sequence for both fault propagation and signal justif

cation. The sequence is heuristically assembled based on testability measure

6. Derive a complete system of equations for the instruction sequence. Use discre

relaxation algorithm to solve it.

Murray and Hayes [87] present a test generation algorithmPathPlanthat processes tes

data, including precomputed test stimulus and response values, as indivisible units

tained in structures called test packages. High-level module inputs and outputs are i

fied as control or data. The signal values carried by buses are considered to be

sequences. The test, propagation, and control information for a module are often gr

together into a test package.PathPlanuses test packages for faults of a moduleM to acti-

vate errors and other test packages, called propagation test packages, to propag

18

test

.

either

More-

e and

nt—

put of

n be

also

ans-

gen-

et of

ced”

t of

S-85

effort

over-

e

for

e

onse

lt dic-

educ-
responses ofM to primary outputs. Justification is treated the same as propagation—

packages are used to determine the inputs of modules once their outputs are knownPath-

Plan requires that all modules have transparent paths where fault responses are

unchanged or inverted when passing through modules en route to primary outputs.

over, it can only handle combinational circuits with regular fanout.

In [88], Murray and Hayes present an improved test generation algorithmPathPlan2to

handle the problems of error propagation through modules with no transparent mod

those with irregular fanout. It is noted that modules are normally partially transpare

some input combinations at the input of a module cannot be distinguished at the out

the module. A propagation theory is developed to determine if error propagation ca

achieved by a path through partially transparent modules to primary outputs. This

leads to a method for complete propagation of error information over multiple non-tr

parent paths.

Hansen and Hayes [52][53] present a high-level functional fault modeling and test

eration method that ensures full detection of low-level SSL faults. In this method, a s

independent functional faults, called SSL-induced faults (SIFs), are derived or “indu

from the gate-level SSL faults. The method is illustrated by manually deriving a se

complete functional circuit models and tests for representative 74X-series and ISCA

benchmark circuits. The results demonstrate that functional testing can, with less

than conventional methods, produce near-minimal test sets that provide complete c

age of SSL faults in practical circuits. A fault generatorSIFgenwas developed to generat

SIFs automatically from circuit description and a test generation algorithm SWIFT

SIFs was proposed, however, it was not completely implemented.

Fault Simulation. Fault simulation [4] consists of modeling a circuit’s behavior in th

presence of faults. By comparing the faulty response of the circuit to its fault-free resp

using the same test setT, we can determine the faults detected byT. Fault simulation has

many applications such as test set evaluation, fault-oriented test generation, and fau

tionary construction.

There are several general methods for fault simulation such as serial, parallel, d

19

the

ence

e cir-

ence,

fault

g sig-

host

plex

in the

s are

sign

pter

errors

im-

ary

]

sible
tive, and concurrent [4]. Serial fault simulation is the slowest method of all, but uses

least memory. It is based on simulating the fault-free circuit and the circuit in the pres

of one fault at a time, and then comparing the responses of the faulty and the fault-fre

cuits; if they differ, the fault is detected. The process is repeated for all faults in sequ

hence the execution time is proportional to the number of faults in the circuit. Parallel

simulation simulates the good circuit and a fixed number, sayW, of faulty circuits simulta-

neously. The values of a signal in the good circuit and the values of the correspondin

nals in theW faulty circuits are packed together in the same memory location of the

computer. It is faster than serial simulation but it needs more memory and more com

code. The deductive and concurrent fault simulation techniques determines all faults

circuit detected by a given test in one forward pass through the circuit. These method

fast, but have unpredictable memory requirements.

An important and relatively new use of simulation is in test generation for both de

errors and physical faults (Figure 1.7). We develop an error/fault simulator ESIM (Cha

2 and Appendix A) and use it to evaluate the coverage of modeled gate-level design

by specific test sets. The underlying algorithm of ESIM is critical path tracing, a fault s

ulation method that simulates the fault-free circuit under a test setT and uses the com-

puted signal values for tracing sensitized paths from primary outputs towards prim

inputs to determine detected faults byT. The method has received attention [5][74][81

because it directly identifies the faults detected by a test without simulating all pos

faults, and thus is faster than serial fault simulation.

Select target fault

Generate test for target

Discard detected faults

No more

Done

Fault simulate

faults

Figure 1.7 Use of fault simulation in test generation.

20

to

. For

er an

echa-

ion in

sing

his is

sting

s

s

of 1

rede-

on-
1.4 On-Line Testing

On-line testing addresses the detection ofoperationalfaults, and is found in computers

that support critical or high-availability applications. The goal of on-line testing is

detect fault effects, that is, errors, quickly and take appropriate corrective action

example, in some safety-critical applications, the computer system is shut down aft

error is detected. In other applications, error detection triggers a reconfiguration m

nism that allows the system to continue its operation, perhaps with some degradat

performance. On-line testing can be performed by external or internal monitoring u

either hardware or software; internal monitoring is referred to asself-testing. Monitoring

is internal if it takes place on the same substrate as the circuit under test (CUT). T

usually considered to be inside an IC.

There are four primary parameters to consider in the design of an on-line te

scheme:

• Error coverage (EC): This is defined as the fraction of all modeled errors that are

detected, usually expressed in percent. Critical and highly available system

require very good error detection orerror coverageto minimize the impact of

errors that lead to system failure.

• Error latency (EL): This is the difference between the first time the error is

activated and the first time it is detected.EL is affected by the time taken to

perform a test and by how often tests are executed. A related parameter isfault

latency (FL), defined as the difference between the onset of the fault and it

detection. Clearly,FL ≥ EL, so whenEL is difficult to determine,FL is often used

instead.

• Hardware redundancy (HR): This is the extra hardware (IC chip area) needed to

perform on-line testing.

• Time redundancy (TR): This is the extra time needed to perform on-line testing.

An ideal on-line testing scheme would have 100% error coverage, error latency

clock cycle, no hardware redundancy, and no time redundancy. It would require no

sign of the CUT, and impose no functional or structural restrictions on the CUT. Most

21

eration

create

the

ware

f on-

o-

on-line

low

state

ct per-

lts as

can be

hard-

that

trol-

d for

stem

same

ach is

at can

uch

rep-

test-

right
line test methods meet some of these constraints without addressing others. Consid

of all the parameters discussed above in the design of an on-line testing scheme can

conflicting goals. High coverage can require highEL, HR andTR. Schemes with immedi-

ate detection minimize time redundancy, but require more hardware. On

other hand, schemes with delayed detection reduce the time and hard

redundancy on the expense of increased error latency.

To cover all classes of operational faults described earlier, two different modes o

line testing are employed:concurrent testingwhich takes place during normal system

operation, andnon-concurrent testingwhich takes place while normal operation is temp

rarily suspended. These modes can often be combined to provide a comprehensive

testing strategy at acceptable cost.

Non-concurrent testing is either event- or time-triggered, and is characterized by

hardware and time redundancy. Event-triggered testing is initiated by key events or

changes in the life of a system, such as start-up or shutdown, and its goal is to dete

manent operational faults. It is usually advisable to detect and repair permanent fau

soon as possible. Event-triggered tests resemble manufacturing tests. Any such test

applied on-line, as long as the required testing resources are available. Typically the

ware is partitioned into components, each of which is exercised by tests specific to

component. Figure 1.8 depicts a taxonomy of on-line testing techniques for microcon

lers. RAMs, for instance, are tested by manufacturing tests specifically designe

RAMs, such as March tests [93].

Time-triggered or periodic testing is activated at predetermined times during sy

operation. It is done periodically to detect permanent operational faults using the

types of tests applied by event-triggered testing (see Figure 1.8). This testing appro

useful in systems that run for extended periods, where no significant events occur th

trigger testing. Periodic testing is also essential for detecting intermittent faults. S

faults typically behave as permanent faults for short time intervals. Since they usually

resent conditions that must be corrected, diagnostic resolution is important. Periodic

ing can identify latent design or manufacturing flaws that only appear under the

EL 1=()

EL 1>()

22

hose

ks for

l for

may

of all

y for

timer

sys-

that

of

itored

oft-

t these
environmental conditions.

Non-concurrent testing cannot detect transient or intermittent operational faults w

effects disappear quickly. Concurrent testing, on the other hand, continuously chec

errors due to such faults. However, concurrent testing is not by itself particularly usefu

diagnosing the source of errors, so it is often combined with diagnostic software. It

also be combined with non-concurrent testing to detect or diagnose complex faults

types.

A common method of providing hardware support for concurrent testing, especiall

detecting software control errors and hardware residual design errors, is a watchdog

[80]. This is a counter that must be reset by the system periodically to indicate that the

tem in question is functioning properly. A watchdog timer is based on the assumption

the system is fault-free—or at least alive—if it is able to perform the simple function

resetting the timer at appropriate intervals. Proper system sequencing can be mon

with very high precision by combining watchdog timer reset operations with various s

ware checks. More complex hardware watchdogs can be constructed that implemen

software checks in hardware [82].

On-line testing

Non-concurrent Concurrent

CPU Analog Memory I/O Other logic

RAM ROMRegisters
Data transfer
ALU
Instruction sequences

BIST IDDQ

DataControl

Hardware
redundancy

Time
redundancy

Information
redundancy

Watchdogs

Figure 1.8 Taxonomy of on-line testing methods for microcontrollers.

23

0%

ad is

, it is

at-

ple,

ge

ch-

erative

logic

used

arity

for

uscep-

com-

om-

ittent,

r test-

IST

ding

On-line

esign

ing is

to be

cover-

en the
A key element of concurrent testing for data errors is redundancy. For example,dupli-

cation with comparison(DWC) [64] can detect any single error at the expense of 10

hardware redundancy. In many applications, this high degree of hardware overhe

unacceptable due to its impact on weight, cost, and power consumption. Moreover

difficult to prevent minor variations in timing between duplicated modules from invalid

ing comparisons. A possible lower-cost alternative is time redundancy. For exam

recomputing with shifted operands(RESO) [97] achieves almost the same error covera

of DWC with 100% time redundancy but very little hardware redundancy. Testing te

niques based on time redundancy have been proposed for regular circuits such as it

logic arrays and trees [64]. However, their usefulness in on-line testing for general

circuits has not been demonstrated. A third form of redundancy which is very widely

is information redundancy, that is, the addition of redundant information such as a p

check bit to form error detecting codes [64]. Such codes are particularly effective

detecting memory and data transmission errors, since memories and networks are s

tible to transient errors. Coding methods are also widely used to detect errors in data

puted during critical operations.

As noted above, for critical or highly available systems, it is desirable to have a c

prehensive approach to on-line testing that covers all expected permanent, interm

and transient faults. In recent years, BIST [4] has emerged as an important method fo

ing manufacturing faults, and it is increasingly promoted for on-line testing as well. B

is a design-for-testability technique that places the testing functions in the CUT, inclu

test pattern generation, response compaction, response analysis, and test control.

BIST targets residual design errors/faults, i.e. errors that escape detection in the d

phase, and physical faults arising during the normal operation of the system. Test

thus performed concurrently to detect faults as soon as they occur. For on-line BIST

feasible, we usually want to design hardware test generators that provide complete

age of the modeled faults, low hardware overhead, and short elapsed time betwe

occurrence of a fault and its detection.

24

Fab-

t pat-

or the

lting

ctured

on-

faults

sign

lop a

ation

ti-

ed in

avoid

ence,
1.5 Lifetime Validation

The methodology of manufacture testing is fairly well developed and understood.

rication faults are first represented by well-defined fault models. Then automatic tes

tern generation (ATPG) and simulation techniques are used to generate tests f

modeled faults. Finally, the tests are applied to the circuit under test and the resu

responses are compared with those of the specification to determine if the manufa

chip is fault-free. The similarity between design verification, manufacture testing, and

line testing, as illustrated in Figure 1.9, suggests that design errors and operational

can be modeled in a similar way to fabrication faults. Hence, if we combine the de

development, manufacturing, and field operation phases of system lifetime and deve

common approach to testing and verification, we achieve a comprehensive verific

approach that we call “lifetime validation”. This approach will, in principle, systema

cally detect all types of faults that arise during the lifetime of a system, as suggest

Figure 1.9.

Safety-critical systems, such as some automotive controllers, attempt either to

failures completely or else to detect them fast enough to prevent system crashes. H

Prototype
system

Fabricated
system

Design

Verification
tests

Fabrication
fault tests

Design errors Fabrication faults

Design development Manufacturing

Figure 1.9 Relation between design verification, manufacture testing, and on-line
testing.

(residual)

Operational
system

Operational
fault tests

Operational faults

Field deployment

Wearout

(residual)

Design
error model

Fabrication
fault model

Operational
fault model

25

d in

nd the

ase to

is to

roach

hases.

tests

velop

: (1)

lica-

for

tion

guide

h

he

odels

ation)

t vec-
freedom from design errors is a primary goal where high-quality verification is require

the design development phase. However, with the current shorter design cycles a

increased complexity of digital systems, leakage of design errors from the design ph

the operational system is anticipated. Hence, a second goal in safety-critical design

detect operational faults and respond to them. The combined verification/testing app

that we are proposing can deal with errors in both the development and operational p

To detect and respond to faults and errors, we may need to carry out the combined

on-line or concurrently. Hence, we also need to investigate on-line testing and de

built-in hardware test generators.

Our lifetime validation approach is thus based on the following sequence of steps

explicit error and fault modeling, (2) model-directed test generation, and (3) test app

tion. For the case of design verification, we employ software (simulatable) models

both the implementation and specification. A block diagram of the design verifica

methodology is shown in Figure 1.10. Error models are developed and then used to

test generation. The resulting test sequenceS is applied to the simulatable models of bot

the implementation and the specification to produce the outcomesRs andRi, respectively.

A discrepancy betweenRs andRi indicates an error, either in the implementation or in t

specification. We generate design verification tests targeting a set of design error m

using conventional automatic test pattern generation techniques for physical (fabric

faults. An important advantage of this approach is that it produces a small set of tes

tors that can reveal possible design errors.

Specification
description

Test
generator

Implementation
simulator

Specification
simulator

Error model

Test
cases Equal?

Implementation
description

Figure 1.10 Block diagram of the proposed design verification method.

Rs

Ri

S

26

e test

by

take

ever,

iodic

ic in

ems

g and

of a

ign,

these

ussed

dol-

esent

iques

dy of

s. We

esent

e and

l vali-

d and

. We
For the case of manufacture testing, the implementation is a single-chip SOC. Th

sequenceS and the responseRs are either supplied by an external tester or generated

hardware within the chip; the latter case corresponds to BIST. The sequenceSis applied to

the inputs of the CUT and the corresponding responseRi is compared againstRs to detect

physical faults. On-line testing for residual design errors and physical faults can

advantage of the BIST hardware used for manufacture testing. On-line BIST, how

requires additional control hardware so that the actual testing is performed in a per

fashion to detect transient and intermittent operational faults. We investigate this top

Chapter 4.

1.6 Thesis Outline

This thesis develops a systematic approach to lifetime verification of digital syst

with stringent safety and availability requirements. The approach aims to use testin

simulation techniques to improve the quality of error detection throughout the lifetime

digital system.

In this chapter, we divided the lifetime of a digital system into three phases: des

manufacturing, and operation. We also identified the types of faults that arise during

phases and discussed the abstraction of fault effects into fault models. We also disc

the methods for detecting all types of faults, and proposed a lifetime validation metho

ogy that targets the faults using manufacture testing and simulation methods.

Chapter 2 discusses our results on design verification for gate-level circuits. We pr

a simulation-based design verification method that uses conventional ATPG techn

for fabrication faults to generate the verification tests. We present an extensive stu

the design error models at the gate level and analyze their detection requirement

show how to systematically map the modeled design errors into SSL faults, and pr

experimental data showing that the verification test sets generated are small in siz

have high coverage of the modeled errors.

Chapter 3 presents a design verification methodology that extends our gate-leve

dation method to high-level designs. We show how actual error data can be gathere

how design error models suitable for design verification testing can be derived

27

ieved

also

it.

tion

nera-

cir-

our

etic-

future
present experiments that indicate that high coverage of actual design errors is ach

with test sets that are complete for a small number of synthetic error models. We

present a new error model for microprocessors and a validation approach that uses

In Chapter 4, we examine built-in validation where test generation and applica

occurs within the CUT. We explore the design of efficient test sets and test-pattern ge

tors for BIST with the target applications being high-performance, scalable datapath

cuits for which fast and complete fault coverage is required. We show how to apply

technique to various datapath circuits including a carry-lookahead adder, an arithm

logic unit, and a multiplier-adder.

Chapter 5 summarizes the research contributions of this thesis and discusses

research directions.

els,

cellent

ed in

ts that

or this

evelop

based

ula-

od-

esign

duce

ypes.

ocess

r SSL

bina-

tribu-

era-

eved
CHAPTER 2
GATE-LEVEL DESIGN VALIDATION

Manufacture testing for fabrication faults is well understood. Fabrication fault mod

such as the SSL model, have been extensively studied and validated. Moreover, ex

automatic test pattern generation (ATPG) tools have been developed. As discuss

Chapter 1, the similarity between manufacture testing and design verification sugges

manufacture-testing techniques can be adapted to model-based design validation. F

purpose, we need to evaluate and improve the existing design error models and d

ATPG methods to detect them. This chapter investigates an automated model-

design verification scheme for gate-level logic circuits that borrows methods from sim

tion and test generation for fabrication faults, and verifies a circuit with respect to a m

eled set of design errors. The next chapter extends this approach to high-level d

validation.

In Section 2.1, we examine the previously proposed design error models, and re

them to five types. Then we study in detail the detection requirements of these error t

Section 2.2 describes the mapping of design errors into SSL faults, as well as the pr

of generating tests for them using standard test generation and simulation tools fo

faults. Section 2.3 presents the results of applying our method to representative com

tional and sequential benchmark circuits. Finally, Section 2.4 summarizes the con

tions of this chapter.

2.1 Tests for Design Errors

Many types of design errors affecting logic circuits are identified in the research lit

ture [1][2][36][65]. These error types are not necessarily complete, but they are beli
28

29

errors

e-

rs

-

e

l

)

em are

ed:

-

to be common in both manual and automated logic synthesis. We condense the

identified by Abadir et al. [2] into four categories. (A similar classification is given ind

pendently in [36]). We also add a fifth category for sequential circuits.

• Gate substitution error (GSE):This refers to mistakenly replacing a gate by

another gate with the same number of inputs. The extra and missing inverter erro

of [1][2][36][65] are considered as substitution of an inverter for a buffer, and a

buffer for an inverter, respectively.

• Gate count error (GCE):This corresponds to incorrectly adding or removing a

gate, and includes the extra and missing gate errors of [2]. This category is com

bined with gate substitution in [36], where, unlike here, XOR and XNOR gates ar

not considered. A class of “local” errors is defined in [65] which includes only

some of the errors in this category.

• Input count error (ICE):This corresponds to using a gate with more or fewer

inputs than required.

• Wrong input error (WIE):This error corresponds to connecting a gate input to a

wrong signal. The “signal-like-source” error [65], is a special case of WIE.

Although a WIE may be viewed as a multiple ICE, a multiple ICE cannot mode

a WIE in an inverter.

We further identify the following error model for sequential circuits:

• Latch count error(LCE): This error occurs when a latch is incorrectly added or

omitted, due to human error or using imperfect CAD tools for synthesis or (re

timing analysis.

The errors in each category are studied next, and the tests needed to detect th

determined. The following assumptions are made concerning the design to be verifi

• A gate-level implementation is available that is either combinational or synchro

nous sequential.

• The gate types used are AND, OR, XOR, NAND, NOR, XNOR, BUF (buffer) and

NOT.

• As in [2][36][65], a functional specification of the design is available which is

30

nd

SL

e sets

tes,

ample,
completely simulatable, that is, any input pattern (sequence) can be applied a

produces a completely specified output pattern (sequence).

• At most one design error is present. This assumption is made in the standard S

model and, indeed, in most other models used in testing for fabrication faults.

Notation. Let E be the set of all 2
n

input vectors of ann-input gateG. We divideE into the

disjoint subsetsV0, V1,...,Vn, whereVk contains all input vectors with exactlyk 1s in their

binary representation, . Particularly useful are the disjoint setsVnull, Vall, Vodd, and

Veven defined as follows:

For example, in the case of 3-input NAND gate,Vnull = {000}, Vall = {111}, Vodd =

{001,010,100}, andVeven= {011, 101, 110}. We callVnull, Vall, Vodd, andVeventhecharac-

terizing sets or C-sets of G.

Table 2.1 shows the output responses of each gate type to its various C-sets. Th

Vnull andVall are nonempty and always have cardinality one. For the single-input ga

VevenandVodd are empty. For multiple-input gates, the setVodd contains at least two ele-

ments, while the setVeven is empty only when . The cardinality ofVeven (Vodd) is

() when n is odd, and () whenn is even. Finally,vk

denotes an arbitrary vector of the setVk.

The above notation enables us to express sets of vectors in a concise way. For ex

the complete test set for SSL faults in ann-input NAND gate is . When

0 k n≤ ≤

Vnull V0= Vall Vn=

Vodd Vi
i odd i∧ n≠=

∪= Veven Vi
i even i∧ 0≠ i∧ n≠=

∪=

Table 2.1 Responses of the various gate types to their C-sets.

C-set
n = 1 n even (n odd and)

NOT BUF AND NAND OR NOR XOR XNOR

Vnull 1 0 0 (0) 1 (1) 0 (0) 1 (1) 0 (0) 1 (1)

Veven n/a n/a 0 (0) 1 (1) 1 (1) 0 (0) 0 (0) 1 (1)

Vodd n/a n/a 0 (0) 1 (1) 1 (1) 0 (0) 1 (1) 0 (0)

Vall 0 1 1 (1) 0 (0) 1 (1) 0 (0) 0 (1) 1 (0)

n 3≥

n 2=

2
n 1–

1– 2
n 1–

1– 2
n 1–

2– 2
n 1–

Vn Vn 1–∪

31

ral,

n,

e-

of all

c dia-

/

am-

an

have

ed in

or SSL

% to

n of

is to

re

ple,

s

n

qual
, we can also write these tests as = {111, 011, 101, 110}. In gene

to verify the identity of a gateG, that is, to determine the tests required for its verificatio

we use the above notation in conjunction with Table 2.1.

Gate Substitution Errors (GSEs).According to experiments reported in [1], the most fr

quent error made by human designers is gate substitution, accounting for around 67%

errors. Gate substitution refers to mistakenly replacing a gate symbol (in a schemati

gram) or a gate operator (in an HDL description)G with another gateG’ that has the same

number of inputs. We represent this error by G/G’. For gates with multiple inputs, amulti-

ple-input GSE(MIGSE) can have one of six possible forms: G/AND, G/NAND, G/OR, G

NOR, G/XOR, and G/XNOR. Each multiple-input gate can have five MIGSEs. For ex

ple, all MIGSEs can occur on an AND gate except G/AND, which is not considered

error. For gates with a single input, i.e., buffers and inverters, asingle-input GSE(SIGSE)

can have one of two possible forms: G/NOT and G/BUF. Each single-input gate can

only one SIGSE. To cover extra or missing inverters in GSEs, a buffer can be insert

each of a gate’s fanout branches as well as in inputs that fan out.

It has been suggested that most GSEs can be detected by a complete test set f

faults [2]. Our simulation study (Section 2.3) shows that such a test set can cover 80

100% of MIGSEs and 100% of SIGSEs. The actual coverage of MIGSEs is a functio

the circuit structure, as well as the types of gates used in the circuit. Our goal here

achieve 100% coverage for GSEs.

A single-input gate can be identified by one test vector from eitherVnull or Vall. On the

other hand, a multiple-input gate can be identified by three test vectors: one fromVnull, one

from Vodd, and one fromVall (if n is even) orVeven(if n is odd). Hence, three test vectors a

sufficient to identify ann-input gate. Two test vectors suffice in some cases. For exam

an AND gate can be identified by applying one test vector fromVnull and one fromVodd.

The number of tests needed to test ann-input gate for SSL faults is for the gate

AND, NAND, OR, and NOR, while it is two or three for XOR and XNOR depending o

the parity ofn. So, the number of tests needed to test for SSL faults is greater than or e

to the number of tests needed to test for MIGSEs in most cases.

n 3= Vall Veven∪

n 1+

32

cir-

e

t-

e

ble

d

ther

ove

e of

of
We now introduce some notation to specify the effects of C-sets on a gate within a

cuit. If the inputs of gateG in circuit C can be forced to the patternv by assigning the pri-

mary inputs ofC, thenG is controllableby v; otherwise, it isuncontrollableby v. If the

output of G with respect to the patternv is sensitizable to a primary output then th

response ofv is said to beobservableat G; otherwise, it isunobservable. A gateG is V-

controllableif G is controllable by at least one vectorv in the input vector setV. If v is also

observable atG, thenG is excitableby V (V-excitable). A gateG is fully excitableif G is

excitable by every nonempty C-set ofG; otherwise, it ispartially excitable.

To illustrate these definitions, consider the circuit in Figure 2.1.G1 and G2 are both

controllable by the pattern 00, whileG3 is uncontrollable by 00. The response to the pa

tern 00 is observable atG2 but it is not observable atG1. The gateG3 is {00,11}-excitable

becauseG3 is controllable by 11, and the response of 11 is observable atG3. However,G3

is not {00}-excitable becauseG3 is uncontrollable by all the elements of the set {00}. Th

gatesG1, G2, andG3 are partially excitable.

The following theorem solves the verification problem for GSEs:

Theorem 2.1 A necessary and sufficient condition for a test set S to verify a fully excita

gate is that S produce the test vectors T1 shown in Table 2.2 at the inputs of the gate an

sensitize the gate output to a primary output.

Proof: We prove the case for an AND gate with an odd number of inputs only; the o

cases can be proved similarly. Sufficiency follows directly from Table 2.2. To pr

necessity, assume thatSverifies the AND gateG but does not produce either {vall, vodd} or

{ vnull, vodd} at G’s inputs. It is clear from Table 2.2 that there is no single vector capabl

verifying an AND gate. Hence, the setSproduces one of the following sets at the inputs

Figure 2.1 Circuit realizing the XOR function.

a

b
G1

G2

G3 z

33

are

si-

exam-

R

place-

ates

at the

t-

itable

e test
G: { vnull, vall}, { vnull, veven}, { veven, vall}, { vodd, veven}, or { vnull, veven, vall}. Table 2.1 shows

that none of these are capable of verifying the AND gate. HenceSmust produce {vall, vodd}

or {vnull, vodd} at G’s inputs. Note that the above analysis implies that two test vectors

sufficient to verify a fully excitable gate.

All gates in a fanout-free circuit are fully excitable. In a circuit with fanout, it is pos

ble that some input combinations cannot be forced at the inputs of some gates. For

ple, no element ofVnull can be forced at the inputs of the AND gateG3 in Figure 2.1. From

Table 2.1 we see thatVnull is necessary to distinguish a 2-input AND gate from an XNO

gate, so, the replacement of the AND by an XNOR gate cannot be detected. This re

ment does not change the function of the circuit, hence it is considered to be anundetect-

ableMIGSE. Likewise, some input combinations can be forced at the inputs of some g

but their responses cannot be observed. For example, the pattern 00 can be forced

inputs ofG1 in Figure 2.1, but the response ofG1 cannot be propagated to the primary ou

put. The above examples show that it is natural to have gates which are not fully exc

and therefore have undetectable design errors. It also suggests a modification of th

Table 2.2 The test vectors required to verify an n-input gate.

Gate Fanin n Test
set T1

Test
set T2

Test
 set T3

NOT
(BUF) n = 1 {vall} or {vnull} {vall,vnull} {vall,vnull}

AND
(NAND)

n = 2 {vnull, vodd} {vall, vodd, vnull} {vall, vnull, vodd}

n odd {vall, vodd} or
{vnull, vodd} {vall, vodd, vnull} {vnull, vodd, vall, veven}

n even & {vnull, vodd} or
{vall, veven} {vnull, vodd, vall, veven} {vnull, vodd, vall, veven}

OR
(NOR)

n = 2 {vall, vodd} {vall, vodd, vnull} {vall, vnull, vodd}

n odd {vnull, veven} or
{vall, veven} {vnull, veven, vall} {vnull, vodd, vall, veven}

n even & {vnull, veven} or
{vall, vodd} {vnull, veven, vall, vodd} {vnull, vodd, vall, veven}

XOR
(XNOR)

n = 2 {vnull, vall} {vall, vodd, vnull} {vall, vnull, vodd}

n odd {vodd, veven} {vodd, veven, vall} or
{vodd, veven, vnull}

{vnull, vodd, vall, veven}

n even & {vnull, vall} or
{veven, vodd} {vnull, vall, veven, vodd} {vnull, vodd, vall, veven}

n 2≠

n 2≠

n 2≠

34

espec-

uts

s,

, then

,

f

ble

to

s in

pply

at the

nd, a

rtially
vectorsT1 in Table 2.2 to verify a partially excitable gate.

If a partially excitable gateG is excitable by all but one of its nonempty C-sets, thenG

is calledstrong partially excitable, otherwise, it is calledweak partially excitable. To illus-

trate, consider again the circuit in Figure 2.1. The gatesG1, G2, andG3 are strong partially

excitable because they are excitable by two out of the three nonempty C-sets of the r

tive gates. An example of a weak partially excitable gate is a 3-input XOR with all inp

connected to a single source. In this case, the gate is excitable by only two (Vnull andVall)

of its four C-sets.

Since a strong partially excitable gateG is not excitable by one of the nonempty C-set

one of its MIGSEs is undetectable. The remaining four MIGSEs onG can be detected with

at least two vectors; Table 2.1 implies that an arbitrary vector detects only three ofG’s five

MIGSEs. Therefore, we have to apply at least three test vectors toG, so that ifG is not

controllable by one of the vectors or one of the vectors’ responses is not observable

the other two will detect the detectable MIGSEs. This leads to the following result.

Theorem 2.2 If all gates of a circuit are either fully excitable or strong partially excitable

then the test set T2 shown in Table 2.2 detects all detectable GSEs in the circuit.

Proof: If a gateG is fully excitable, thenG is controllable by the test vectors inT2 and their

responses are observable atG. Since each test set inT2 for a particular gate is a superset o

the test set inT1 for the same gate, all GSEs will be detected. If, on the other hand,G is

strong partially excitable, then it is not controllable by one of the test vectors inT2, or the

response of one of the vectors is not observable atG. It follows from Table 2.1 that if we

remove a test vector forG from T2, then the remaining vectors detect all the detecta

GSEs on that gate.

A further analysis ofT2 shows that to verify a weak partially excitable gate, we have

apply the patternsT3 shown in Table 2.2. Since we cannot always assert that the gate

the design under test are fully excitable or strong partially excitable, we may have to a

the patternsT3 to detect all GSEs. Note that a test set generated for GSEs assuming th

gates are weak partially excitable, will detect all GSEs in the circuit. On the other ha

test set generated for GSEs by assuming the gates are fully excitable or strong pa

35

ts for

SIG-

are

y test

nd

y

,

en-

lts. A

his

11.
excitable may not detect all GSEs.

A complete test set for SSL faults guarantees the detection of all SIGSEs [2]. Tes

MIGSEs also cover many SIGSEs. A complete test setT for MIGSEs in an SSL-irredun-

dant circuit, i.e. a one with no undetectable SSL faults, is also a complete test set for

SEs on all circuit lines except inputs with fanout, ifT producesvall at the input of every

AND and NAND gate,vnull at the input of every OR and NOR gate, and their responses

observable. From this result we conclude that detection of most SIGSEs is ensured b

setsT2 andT3, but not byT1. Our experiments show that the test setT3 detects all SIGSEs

in all SSL-irredundant benchmark circuits considered in Section 2.3.

Gate Count Errors (GCEs).We distinguish two types of gate count errors: extra-gate a

missing-gate errors. Anextra-gate design error(EGE) is defined as inserting a gateG’ that

has itsm inputs taken from then inputs of a gateG and feeding the output ofG’ to G. As a

consequence, the number of inputs of gateG becomes . We represent an EGE b

EG(G’,G). It is easily seen that EG(AND,AND), EG(AND,NAND), EG(OR,OR)

EG(OR,NOR), EG(XOR,XOR), and EG(XOR, XNOR) are undetectable. Explicit test g

eration for EGEs is not needed due to the following result.

Theorem 2.3 A complete test set for GSEs is also a complete test set for EGEs.

Proof: An EGE can be mapped easily into a GSE. EG(G’,G) is nothing but the GSEG” /

G’, whereG” is determined byG as follows: (1) ifG is an AND or NAND, thenG” is an

AND; (2) if G is an OR or NOR, thenG” is an OR; (3) ifG is an XOR or XNOR, thenG”

is an XOR. Hence, any test set that detect all GSEs will detect all EGEs.

Most, but not all, EGEs can also be detected by a complete test set for SSL fau

complete test set for SSL faults in the circuit of Figure 2.2 is {000, 100, 001, 010}. T

test set does not detect if the XOR gate is an extra gate. For that, we need the test 0

n m– 1+

Figure 2.2 Example showing an EGE that is not detected by a complete test set
for SSL faults.

eb

c

a

d
G1

G2

36

),

n

ect

ND

rove

2-
A missing-gate design error(MGE) is defined as removing a gateG’ that hasm inputs

and feeds ann-input gateG, and then changing the inputs ofG’ into inputs ofG; see Fig-

ure 2.3. As a consequence, the number of inputs ofG becomes . We repre-

sent the MGE by MG(G’,G). As in the extra-gate case, the errors MG(AND, AND

MG(AND, NAND), MG(OR, OR), MG(OR, NOR), MG(XOR, XOR), and MG(XOR,

XNOR) are undetectable.

Consider the problem of finding a minimal set of vectors that detect all MGEs in aN-

input gateG. For each MG(G’,G), we insert a gateG” as shown in Figure 2.4, whereG” is

chosen so that the function of the circuit is not changed. For example, ifG is an AND or

NAND, then G” is an AND gate. We have to detect the GSE G”/G’ in order to det

MG(G’,G).

Theorem 2.4 The test sets , , and are

each sufficient and near-minimal for detecting MGEs on an N-input fully excitable A

(or NAND), OR (or NOR), and XOR (or XNOR) respectively.

Proof: We prove the NAND case; the proofs for the other cases are similar. First, we p

that is a subset of every test set detecting all MGEs on anN-input NAND gate. Since

G is a NAND gate,G” of Figure 2.4 is an AND gate. To detect gate substitutions for the

input AND gateG” , we need to apply the vectorvnull at its inputs. SinceG” can have any

two inputs ofG, we have to apply 00 to any combination of two inputs ofG. Since the other

n 1–

Missing

Correct circuit Erroneous circuit

G’

G
G

m

Figure 2.3 The missing-gate design error (MGE).

gate N = n + m – 1

N n m 1–+=

G”

G
G

m

n 1–

Figure 2.4 Reducing the problem of detecting MGEs to detecting GSEs.

N = n + m – 1

VN VN 1– VN 2–∪ ∪ V0 V1 V2∪ ∪ V0 V2 VN∪ ∪

VN 2–

37

-

al

ove

the

s-

he

t

l sim-

on

y

ests.

. For

tests
inputs ofGmust be 1s to propagate the output signal ofG” to the output ofG, all the vectors

that contain two 0s must be applied. Hence, must be applied toG.

Second, we need to prove that at least of theN vectors of must belong to

every test set detecting all MGEs on anN-input NAND gate. To detect the GSEs of the 2

input AND gateG” , we need to apply the vectorvodd to it. So, we have to apply 01 or 10 to

any two inputs ofG. Since the other inputs ofG must be 1s to propagate the output sign

of G” to the output ofG, the vectors that have one 0 must be applied. It remains to pr

that we need at least vectors of . An arbitrary vector of will ensure

presence ofvodd in of the configurations. Another vector will ensure the pre

ence ofvodd in another configurations. Continuing with this way, we find that t

one before the last vector will ensurevodd in the last configuration. Since it is irrelevan

which vectors are used, and since a near-minimal test set is acceptable, we wil

ply employ all theN vectors of .We conclude that the test set

ensures the detection of all 2-input MGEs on anN-input NAND gate.

Third, we must prove that the tests ensure the existence ofvoddandveven

for anym-input gateG” according to Figure 2.4. Ifm is odd, then there arem vodd vectors

for G” in and vevenvectors forG” in . On the other hand, ifm is even,

then there arem voddvectors forG” in and veven vectors forG” in .

Finally, we need to prove that a minimal test set for allm-input MGEs (m > 2) in anN-

input NAND gate must includevall. Table 2.2 implies that to detect the gate substitution

G” , we need the set {vall, vodd} or { vnull, vodd} when m is odd, and the set {vnull, vodd} or

{ vall, veven} when m iseven and . Since {vodd, veven} is guaranteed, then we need onl

eithervall or vnull on G” . Forcingvall on G” requires just forcingvall on G. On the other

hand, forcingvnull on G” requires forcing vectors onG. Hence,vall must be

selected to minimize the test set size.

To keep the theorem simple, it is stated it in terms of a near-minimum number of t

In fact, each test set defined by this theorem has one test more than the minimum

example, the 11-member test set generated for MGEs in a 4-input NAND gateG is S =

{1111, 1110, 1101, 1011, 0111, 1100, 1010, 1001, 0110, 0101, 0011}. If one of the

VN 2–

N 1– VN 1–

N 1– VN 1– VN 1–

N 1– N
2 

 

N 2–

N 1–

VN 1– VN 1– VN 2–∪

VN 1– VN 2–∪

VN 2–
m
2 

  VN 1–

VN 1–
m
2 

  VN 2–

m 2≠

5 N
i 

 
i 3=

N 1–
∑×

38

-mini-

tect

e

to 0

l must

-at-1

t-0 at

c-

ly.

om-

nd

and

e is

nal
{1110, 1101, 1011, 0111} is dropped,Sstill detects all MGEs. However, all MGEs inG

cannot be detected with fewer than 10 vectors. In general, Theorem 2.4 gives near

mal test sets for anN-input fully excitable gate. It is easy to prove that these test sets de

all the MGEs of anN-input partially excitable gate with high probability.

Input Count Errors (ICEs) and Wrong Input Errors (WIEs). Input count errors (ICEs)

are classified into extra input and missing input errors. Anextra input design error(EIE)

is defined as the replacement of ann-input gate () by an ()-input gate with the

additional input connected to an arbitrary signal in the circuit. Amissing input design error

(MIE) is the replacement of a gate of () inputs by an ()-input gate whose

inputs are connected to an arbitrary subset of the originaln. We represent an EIE of a gat

Gby EI(e,G) wheree is the extra input. We represent an MIE of a gateGby MI(m,G) where

m is the source of the missing input.

To detect an EIE at a given input of an AND or NAND gate, that input must be set

to activate the error, the other inputs must be forced to 1, and the gate’s output signa

be propagated to a primary output. This is exactly the requirement of a test for a stuck

fault at the input of the gate in question. Similarly, testing for EIEs at inputx of an OR or

NOR gate is the same as testing forx stuck-at-0. To test for an MIE on an AND gateG, the

inputs ofG are set to 1, the signal considered to be missing is set to 0, andG’s output sig-

nal is propagated to a primary output. This is more restrictive than a test for stuck-a

the output ofG. Similarly, testing for an MIE on a NAND, OR, and NOR is more restri

tive than testing the gate output for stuck-at-1, stuck-at-1, and stuck-at-0, respective

The foregoing tests are complete for AND, NAND, OR, and NOR gates. Hence, a c

plete test set for ICEs in a given circuit detects all SSL faults at AND, NAND, OR, a

NOR gates. A complete test set for ICEs also detects some SSL faults affecting XOR

XNOR gates. For example, testing for EIEs at the input of an XOR or XNOR gat

equivalent to testing for stuck-at-0 fault at the same input.

A wrong input error (WIE) is defined as connecting a gate input to a wrong sig

source. We represent a WIE on a gateG by WI(u,w,G), whereu is the wrong input of the

gate andw is the correct input. If a test vectorv detects WI(u,w,G), then it must setu andw

n 2≥ n 1+

n 3≥ n 1– n 1–

39

e

rela-

s of

. To

t

OT,

.

re

t the

s are

sts for

WIEs

t. It

equen-

eliza-

llows.

st set

and

MIEs
to opposite values and propagate the signal atu to a primary output. WIE appears to be th

second most common design error—around 17% of the errors reported in [1]. The

tionship between MIEs and WIEs is as follows: A complete test set for MIEs on gate

type AND, NAND, OR, or NOR is a complete test set for WIEs on the same gates

prove this relationship, consider an AND gateG with inputsx1, x2,...,xn and outputy. Let z

be an arbitrary signal in the circuit. The complete test set for MIEs onG will detect

MI(z,G) and hence set the inputs of the gate to 1s, propagatey to a primary output, and se

z to 0 with at least one vectorv of the test set. Sincev setsxi andz to opposite values, and

propagatesxi to a primary output, WI(xi,z,G) is detected for everyi. A similar argument

holds for the other gate types.

In practice, it is hard to find a complete test set for MIEs. The fact that a given MI(x,G)

is undetectable does not imply that WI(u,x,G) is undetectable for everyu. Also, a com-

plete test set for MIEs does not guarantee the detection of WIEs in XOR, XNOR, N

and BUF gates. Hence, we cannot conclude that a test set for MIEs covers all WIEs

The numbers of ICEs and WIEs in a circuit are large—approximately , whek

is the number of distinct signals in the circuit. Hence, we use simulation to extrac

errors detected by the test set , whereSSSL, SGSE, andSMGE are

complete test sets for SSL faults, GSEs, and MGEs, respectively. In fact, all EIE

detected by the test set for SSL faults alone [2], hence, we only have to generate te

the undetected MIEs and WIEs. Our experimental results show that most MIEs and

are detected by the setST.

A basic question concerning MIEs (WIEs) is the source of the missing (wrong) inpu

must not depend on the erroneous gate’s output, otherwise, the circuit can become s

tial and asynchronous. Errors that make a circuit sequential can be detected by a lev

tion procedure [4].

The coverage relationships among the various design errors are summarized as fo

A complete test set for MIGSEs detects all EGEs. On the other hand, a complete te

for SSL faults detects all EIEs and SIGSEs. Complete test sets for MIEs, MGEs,

WIEs do not guarantee the detection of other error types. For example, a test for

O k
2()

ST SSSL SGSE SMGE∪ ∪=

40

ss-

by a

r all

plex-

Es, a

ELE, a

s

ition

uence

ble.

54].

L-

rce is

dun-

ut GI-

he

or.

de-

1)

other
detects many, but not necessarily all, SSL faults.

Latch Count Errors (LCEs). Latch count errors (LCEs) are classified into extra and mi

ing latch errors. We assume that all latches are of the clocked D type, synchronized

common clock signal. Anextra latch design error(ELE) is defined as the insertion of a

latch into any line in the circuit. Amissing latch design error(MLE) is the replacement of

a latch by a line linking its data input and output terminals. It is impractical to conside

possible MLEs due to their impact on the circuit’s state space and test generation com

ity. Hence, we only consider MLEs affecting the circuit’s primary inputs and outputs.

In contrast to the design errors studied in the previous subsections, to check for LC

test sequence rather than an unordered set of test patterns is needed. To test for an

transition sequence, either 0→ 1 or 1 → 0, is applied at the input of the latch and it

response is propagated to a primary output. Similarly, to test for an MLE, a trans

sequence is applied at the line where the latch may be missing and the transition seq

is propagated to a primary output.

Design Error Undetectability. We noted earlier that some design errors are undetecta

This leads to a type of redundancy that is quite different from that previously studied [

A gateG in a circuit C hasredundant inputsif the function implemented byC is not

changed when a proper subset of the inputs ofG are removed. A circuitC is calledGI-

irredundant if no gate inC has redundant inputs. GI-redundancy does not imply SS

redundancy. For example, a 5-input XOR with all inputs connected to the same sou

GI-redundant but SSL-irredundant. Similarly, SSL-redundancy does not imply GI-re

dancy. For example, a buffer whose input is connected to ground is SSL-redundant b

irredundant.

An undetectable design erroris one for which no test vector exists. For example, t

substitution of an XNOR gate forG3 in Figure 2.1 cannot be detected by any input vect

Hence, the MIGSE G3/XNOR is undetectable. The following theorem characterizes un

tectable GSEs:

Theorem 2.5 In a GI-irredundant and SSL-irredundant circuit C, the following holds: (

C has no undetectable SIGSEs; (2) If G/G’ is an undetectable MIGSE then every

41

Since

t the

E.

2.3.

de-

rcuit.

at

SSL-
MIGSE on G is detectable, and if then

 and vice versa.

Proof: If there is an undetectable SIGSE G/G’ inC, then the output ofG is not sensitizable

to a primary output. Hence, SSL faults cannot be detected at the output ofG, consequently

C is SSL-redundant. Therefore, ifC is SSL-irredundant, then it must be free from

undetectable SIGSEs. For the case of MIGSEs, let us consider a 2-input AND gate.

the circuit is SSL-irredundant, the AND gate is excitable by the C-setsVall andVodd. This

implies that the MIGSEs AND/NAND, AND/OR, AND/NOR, and AND/XOR are

detectable. The only possible undetectable MIGSE is AND/XNOR, which requires tha

AND gate not be excitable byVnull. Figure 2.1 shows an example of this redundant MIGS

A similar analysis leads to the other possible undetectable MIGSEs shown in Table

Although XOR and XNOR have two possible undetectable MIGSEs, only one un

tectable MIGSE can be found in a gate in an SSL-irredundant and GI-irredundant ci

Let us prove this for the case of an XOR gateG with odd number of inputs. Assume thatG

is in a circuitC in which both XOR/OR and XOR/AND are undetectable. This implies th

G is only excitable byVall andVnull. So, if two of the inputs toG are removed,G’s output is

not changed. HenceG has redundant inputs and the circuitC is not GI-irredundant. There-

fore, only one undetectable MIGSE can be found on a gate for a GI-irredundant and

irredundant circuit. The final part of Theorem 2.5 follows directly from Table 2.3.

G XOR XNOR,{ }∈ G' A{ ND NAND,,∈

OR NOR},

Table 2.3 Possible redundant MIGSEs on an n-input partially excitable gate.

 Gate type
n = 2 n even and n odd

Strong Weak Strong Weak Strong Weak

AND AND/XNOR Impossible Impossible AND/XNOR AND/XOR AND/XOR

NAND NAND/XOR Impossible Impossible NAND/XOR NAND/XNOR NAND/XNOR

OR OR/XOR Impossible Impossible OR/XOR OR/XOR OR/XOR

NOR NOR/XNOR Impossible Impossible NOR/XNOR NOR/XNOR NOR/XNOR

XOR
XOR/OR

or
 XOR/NAND

Impossible Impossible
XOR/OR

or
XOR/NAND

XOR/OR
or

XOR/AND

XOR/OR
or

XOR/AND

XNOR
XNOR/NOR

or
XNOR/AND

Impossible Impossible
XNOR/NOR

or
XNOR/AND

XNOR/NOR
or

XNOR/NAND

XNOR/NOR
or

XNOR/NAND

n 2≠

42

-irre-

o

ur 2-

laced

der to

. The

crip-

these

ced

fault

gate.

par-

2.5.

-

D

cted.
From the above theorem we can infer that if the gates in a GI-irredundant and SSL

dundant circuitC are restricted to AND, NAND, OR, NOR, NOT, and BUF, thenC con-

tains no undetectable GSEs.

The number of gates that can have undetectable MIGSEs in a circuitC varies with the

circuit structure and the types of gates inC. For example, fanout-free circuits have n

undetectable GSEs. On the other hand, a 2-input XOR circuit implemented using fo

input NAND gates has up to four undetectable MIGSEs: each NAND gate can be rep

with an XOR without affecting the overall XOR function.

2.2 Verification Test Generation

This section describes our method for modeling and detecting design errors. In or

use standard ATPG tools, we map the error types under consideration into SSL faults

mapping process consists of modifying the target circuit’s netlist (or equivalent des

tion) and injecting a predefined set of SSL faults. A test set is then generated for

faults in the modified netlist which detects all errors in the original design.

To map MIGSEs and MGEs into SSL faults, each gate in the original netlist is repla

by a functionally equivalent circuit called agate replacement module. A few selected SSL

faults are injected in the gate replacement module, so that the test for each injected

forces the input of the gate to be a vector from one of the sets required to verify the

To cover all possible MIGSEs in a circuit, we must assume that the gates are weak

tially excitable. Consider, for example, the AND replacement module shown in Figure

The faultsc stuck-at-0,d stuck-at-0, andestuck-at-0 force the inputs of the AND replace

ment module tovnull, vodd, andvall, respectively. These input patterns determine if the AN

gate in the circuit is correct or not, i.e., the presence of any MIGSE on the gate is dete

Figure 2.5 The replacement module for detecting GSEs in a 2-input AND gate.

a

b

G2

G1

G3

c

d

e stuck-at-0

43

n be

n

of

gate

ase of

se
The requirements to be met by a gate replacement moduleM(G) of a gateG are as fol-

lows:

• The function ofM(G) must be the same as that ofG.

• A test for an injected SSL fault inM(G) must force the input ofG to a certain vec-

tor that is needed to verifyG.

• The injected SSL faults must be sensitizable to the output ofM(G).

• If an injected SSL fault in M(G) is detected by a vector , then it must be

detected by any vector ofVi. This requirement simplifies the detection of the

injected SSL faults by the test generator, and leads to smaller test sets.

The gate replacement modules for MIGSEs and MGEs on all gate types ca

designed systematically using the “detection signals”Yall, Yodd, Yeven, and Ynull that are

shown in Figure 2.6. Adetection signal Yi is defined to be 1 if and only if the input patter

v belongs to the characterizing setVi. Since the characterizing sets are disjoint, only one

the detection signalsYall, Yodd, Yeven, andYnull can be 1 for a givenv. A test for a stuck-at-0

fault at one of the detection signals will force the input of the gate tov. The functions of

the gates in terms of the detection signals (Table 2.4) are used in designing the

replacement modules. The equations of Table 2.4 can be simplified for the special c

2-input gates whenYeven is always 0. For example, consider a 2-input AND gate who

gate replacement module is shown in Figure 2.5. From Table 2.4,Yall = YnullYoddYeven. Since

Yeven= 0, thenYall = YnullYodd. The signalsc andd in Figure 2.5 areYnull andYodd, respec-

tively, hence gateG3 implements the equationYall = YnullYodd.

Figure 2.7 shows the GSE replacement modules for a 2-input XOR and ann-input

v Vi∈

n

Yodd

Ynull

Yeven

Yall

n

Yodd

Ynull

Yeven

Yall

n odd n even

Figure 2.6 Generation of the detection signals for an n-input gate.

vv

44

simi-

signed

s are

-

a 3-

iven

etec-

cor-

ing of

put

tput
AND (n odd). GSE replacement modules for the other gates can be constructed in a

lar manner using Table 2.4. The gate replacement modules for MGEs can also be de

in a systematic way similar to that for GSEs. The gate replacement modules for MGE

more complex due to the requirement of generatingY2 andYN-2 signals that detect the pres

ence ofv2 andvN-2 at the inputs. Figure 2.8 shows the MGE replacement module for

input AND gate.

The mapping of MIGSEs and MGEs into SSL faults is many-to-one. Detecting a g

set of injected SSL faults detects a larger set of MIGSEs and MGEs. For example, d

tion of the three SSL faults in Figure 2.5 detects five MIGSEs. There is a one-to-one

respondence between net errors (EIEs, MIEs, and WIEs) and SSL faults. The mapp

an EIE into an SSL fault is very simple: to detect whether an AND or NAND gate’s in

x is extra, we need to setx to 0, set every other input to 1, and propagate the gate’s ou

Table 2.4 Equations for n-input gate replacement modules for GSEs.

Gate
Equation

Type Fanin n

AND -- Yall = YnullYoddYeven

NAND -- Yall = Ynull + Yodd + Yeven

OR -- Ynull = Yall + Yodd + Yeven

NOR -- Ynull = YallYoddYeven

XOR
even Yodd = YallYnullYeven

odd Yodd + Yall = YnullYeven

XNOR
even Yodd = Yall + Ynull + Yeven

odd Yodd Yall = Ynull + Yeven

a

b
z

Forcesvnull

Forcesvall

Forcesvodd
n

Forcesvall
Forcesvodd

Forcesveven

Forcesvnull

(a) (b)

Figure 2.7 Gate replacement module for detecting GSEs in (a) a 2-input XOR and
(b) an n-input AND (n odd).

stuck-at-1
stuck-at-0

45

is

d

E

signal to a primary output. This is the same as testing forx stuck-at-1. Also, to test for an

extra input in an OR, NOR, XOR, or XNOR gate, a test for the input stuck-at-1

required.

The detection of MIEs and WIEs is modeled by a mapping circuit called anet attach-

ment module, as shown in Figure 2.9. LetC andC’ be the circuits obtained before an

after adding the net attachment module. The following requirements must be met:

• The function of circuitC must be the same as that ofC’.

• A test for the injected SSL fault in the net attachment module must detect the MI

or WIE.

• The injected SSL fault must be sensitizable in the net attachment module.

A typical design of a net attachment module for MIEs appears in Figure 2.10a. IfG2 is

an AND or NAND, thenG1 must be an XNOR and the faultp stuck-at-1 is injected. On

the other hand, ifG2 is any of the gates {OR, NOR, XOR, XNOR}, thenG1 must be an

Figure 2.8 Gate replacement module for detecting MGEs in a 3-input AND gate.

G1
G12

G8

G9

G10

G11

G13

G2

G3

G4

G5

G6

G7

stuck-at-1
stuck-at-0

a

b

c

z

Equivalent circuit

Missing
input

Wrong
input Correct

input

a
b
c

d
e

a
b
c

d
e
f

m

z

Design error

MIE

Net
attachment

module

a
b
c

d
e

m m
Design error Equivalent circuit

WIE

a
b
c

d

e
f

m

z

Net
attachment

module

Figure 2.9 Mapping MIEs and WIEs into SSL faults.

46

able

out-

The

ult

s is

.

rates

it is

e error

ones;
XOR and the faultp stuck-at-0 is injected. In both cases, the output ofG2 is independent

of zand hence the function of the circuit is not changed. Also, the SSL fault is sensitiz

to the output of the net attachment module and the vector testing it detects MI(m,G2). A

typical design of the net attachment module for a WIE is shown in Figure 2.10b. The

put of the net attachment module is , hence the circuit function is preserved.

test forp stuck-at-0 forces opposing values onm andd, and hence the corresponding WIE

will be detected by the same test.

The detection of ELEs is performed by replacing the latch by thelatch replacement

moduleshown in Figure 2.11a, and then generating a test sequence for the SSL fap

stuck-at-0, which is also a test sequence for the ELE. Similarly, the detection of MLE

performed by replacing the line by theline replacement moduleas shown in Figure 2.11b.

The test sequence generated for the SSL faultp stuck-at-0 is also a test for the MLE

Hence, LCEs are easily mapped into SSL faults.

The overall verification process is divided into two phases. The first phase gene

tests for gate errors (MIGSEs and MGEs) and is shown in Figure 2.12. If the circu

sequential, additional tests for LCEs are generated. The second phase performs th

simulation for net errors (MIEs, WIEs) and then generates tests for the undetected

G1
G2

m
z

p
Net attachment module

w

p stuck-at-0
d

m
z

Net attachment module

(a) (b)

Figure 2.10 A net attachment module (a) for MIEs and (b) for WIEs.

z d=

p stuck-at-0

Q

D

p stuck-at-0

Q

D

(a) (b)

Figure 2.11 (a) Latch and (b) line replacement modules to detect ELEs and MLEs,
respectively.

LatchLatch

47

may

, the

high

naly-

the

tect

bina-

4]. It

cted

u-

and

arks

uen-
the flowchart of phase 2 is similar to that of phase 1. Complete coverage of net errors

require several iterations through phase 2. If after checking for all modeled errors

implementation is found to match the functional specifications, we can conclude with

confidence that the circuit is correct as designed.

2.3 Experimental Results

In this section we describe the experiments performed to support the preceding a

sis; these experiments used the combinational ATPG tool ATALANTA [75] and

sequential ATPG tool ATTEST [17]. To determine the ability of a given test set to de

design errors and SSL faults, we developed an error/fault simulator ESIM. For com

tional circuits, the simulator uses parallel-pattern evaluation and critical path tracing [

simulates the circuit with multiple vectors concurrently and determines the dete

errors/faults without explicit simulation of each error/fault. ESIM uses parallel fault sim

lation [4] for sequential circuits. Additional details of ESIM, as well as experiments

examples to demonstrate its capabilities, can be found in Appendix A.

The circuits used for the experiments are the ISCAS 85 combinational benchm

[25], some standard, combinational 74X-series circuits [107], and the ISCAS 89 seq

simulatorspecs
Functional

Netlist
NL1

SSSL

Functional
simulator

Logic

Error

SMGESGSE

Stop
No error

Phase 2

GSEs MGEs

SSL
Test generator

Netlist modifier

Netlist
NL3

Test generator

& SSL injector
Netlist modifier

Netlist
NL2

Test generator

& SSL injector

Test
vectorsST ST

Agree?Y N

Start

Figure 2.12 First phase of the design verification process.

Comparator

faults

48

rage

data

tion of

rror

xercise

SL-

2 and

for all

nerate

TA

ation to

GEs

ge of

ose

.

test set

lso

cted
tial benchmarks [26]. We conducted a preliminary experiment to determine the cove

of design errors using a complete test set for all detectable SSL faults. The resulting

given in Table 2.5 show that a complete test set for SSL faults guarantees the detec

all SIGSEs and EIEs, confirming results in [2]. The detection of the other design e

types is not guaranteed but they are likely to be detected because the test set does e

each net in the circuit. Note that all the circuits in Table 2.5 are relatively small and S

irredundant. The circuits c432nr and c499nr are the irredundant equivalents of c43

c499 respectively.

Our next experiments are concerned with generating nearly complete test sets

modeled design errors. They use the method described in the previous section to ge

test vectors targeting specific errors. The modified netlist is supplied to ATALAN

which generates a test set. The generated test sets are then evaluated using simul

find their coverage of GSEs, as shown in Table 2.6. Since tests for MIGSEs cover E

(Theorem 2.3), the results on detecting EGEs are shown in Table 2.6. The covera

MGEs is also shown in Table 2.6. Testing for MIEs, and WIEs is performed only for th

errors that are not detected by error simulation using the set

The coverage of EIEs is the same as that shown in Table 2.5 because a complete

for SSL faults detects all EIEs. The error simulation results for MIEs and WIEs a

appear in Table 2.6. Tests were generated using ATALANTA for the remaining undete

Table 2.5 Design error coverage in combinational benchmarks using complete
SSL test set generated by ATALANTA.

C
irc

ui
t Test

set
size

Detected
SSL

faults

Detected
GSEs

Detected
GCEs

Detected
ICEs Detected

WIEs
SIGSE MIGSE EGE MGE EIE MIE

c17 5 100.0 100.0 80.0 100.0 n/a 100.0 57.5 88.0

c432nr 44 100.0 100.0 89.1 100.0 95.5 100.0 73.1 96.9

c499nr 52 100.0 100.0 97.9 46.2 93.8 100.0 88.8 98.9

c880 47 100.0 100.0 90.3 100.0 94.6 100.0 84.9 98.6

7485 25 100.0 100.0 88.4 100.0 89.8 100.0 83.4 92.7

74181 18 100.0 100.0 96.2 88.9 90.6 100.0 81.8 94.0

74283 12 100.0 100.0 91.3 100.0 84.1 100.0 74.5 92.2

ST SSSL SGSE SMGE∪ ∪=

49

e of

0% in

es are

ircuits

ctable,
MIEs and WIEs after the error simulation. ATALANTA reported that a large percentag

those errors are undetectable. Adding the generated tests toST improves the coverage of

MIEs and WIEs, as shown in Table 2.7.

The coverage of design errors using the generated test sets is quite high, 80%–10

most cases. We are confident that most detectable design errors of the modeled typ

actually detected. To explore this further, we analyzed the 7485, 74181, and 74283 c

in depth. We found that MIGSEs and EGEs not detected by our test sets are undete

Table 2.6 Design error coverage in combinational benchmarks using verification
tests generated by ATALANTA.

C
irc

ui
t

Tests targeting GSEs Tests targeting
MGEs

Error simulation for MIEs
and WIEs using ST

Test
set
size

D
et

ec
te

d
 M

IG
S

E
s

D
et

ec
te

d
S

IG
S

E
s

D
et

ec
te

d
E

G
E

s Test
set
size

D
et

ec
te

d
M

G
E

s Test
set
size

D
et

ec
te

d
M

IE
s

D
et

ec
te

d
W

IE
s

c17 5 100.0 100.0 100.0 n/a n/a 10 82.5 95.7

c432nr 39 92.8 100.0 100.0 92 99.9 174 88.8 99.5

c499nr 39 99.8 100.0 46.2 43 98.4 133 93.2 99.7

c880 49 92.8 100.0 100.0 66 100.0 162 95.0 99.8

7485 14 88.4 100.0 100.0 47 94.4 85 89.3 96.4

74181 15 98.5 100.0 88.9 36 99.5 69 94.9 98.8

74283 10 94.7 100.0 100.0 31 100.0 51 88.7 95.2

Table 2.7 Improved coverage of MIEs and WIEs after the second
phase of test generation using ATALANTA.

C
irc

ui
t

Tests targeting MIEs not
detected by ST

Tests targeting WIEs not
detected by ST

Total test
set size Detected MIEs Total test

set size Detected WIEs

c17 13 95.0 12 100.0

c432nr 190 89.9 195 99.6

c499nr 220 95.8 147 99.8

c880 225 96.5 192 99.9

7485 91 91.2 92 96.4

74181 83 96.6 78 98.9

74283 58 90.0 56 96.4

50

rk in

es are

prior

d to

ine the

d the

]. The

d, the

f non-

n, we

ed the

nces

e

ener-

r s420
and hence, these test sets cover 100% of the detectable MIGSEs and EGEs.

It is difficult to compare the coverage results obtained in this section to related wo

the literature for several reasons: (1) different error models are used; (2) test set siz

missing from the results of [65]; and (3) standard benchmarks are not used in most

work. The test generation times for the circuits in Table 2.6 and Table 2.7 were foun

range from a few seconds to a few minutes on a HALstation 300.

To check that our method can use any standard SSL test generator and to determ

design error coverage for the large SSL-redundant ISCAS 85 circuits, we performe

test generation experiments using the advanced SSL test generator ATTEST [17

error simulation results of the generated test sets are shown in Table 2.8. As expecte

generated test sets are small and have high coverage of the modeled errors.

We further experimented with the proposed method using a representative set o

scan sequential benchmarks from the ISCAS 89 suite [26]. To simplify test generatio

attached a single clear (reset) input to all storage elements in each circuit. We also us

commercial ATTEST SSL test generator [17] to generate the verification test seque

. The simulation results (Table 2.9) wer

determined by the error simulator ESIM, and demonstrate the effectiveness of the g

ated test sequences. The coverage of design errors is high for all circuits, except fo

Table 2.8 Design error coverage in combinational benchmarks using verification
tests generated by ATTEST.

C
irc

ui
t Size

of
ST

Testing
time a

a. In minutes on a HALstation 300.

D
et

ec
te

d
 S

IG
S

E
s

D
et

ec
te

d
M

IG
S

E
s

D
et

ec
te

d
E

G
E

s

D
et

ec
te

d
M

G
E

s

D
et

ec
te

d
E

IE
s

D
et

ec
te

d
M

IE
s

D
et

ec
te

d
W

IE
s

c1355 265 3.2 100.0 82.3 100.0 97.1 99.2 83.5 99.3

c1908 465 3.7 100.0 84.8 97.6 90.3 99.2 90.8 97.3

c2670 797 7.9 99.7 87.5 87.6 91.6 93.2 90.4 98.7

c3540 650 11.2 99.3 89.7 90.6 81.6 94.2 88.4 98.6

c5315 1263 8.1 99.8 89.6 98.9 93.8 98.3 99.8 99.5

c6288 324 55.7 99.6 85.8 100.0 n/a 99.3 97.9 99.7

c7552 1364 23.5 100.0 86.6 97.4 91.2 96.4 99.4 98.7

ST SSSL SGSE SMGE SELE SMLE∪ ∪ ∪ ∪=

51

dard

can

this

detect

e—the

ctable,

that

hen

r cir-

aults

used

e of

ation

regis-
whose internal nets have low controllability and observability.

2.4 Discussion

We have presented an error-based method for verifying logic circuits using stan

simulation and ATPG tools. We showed that all common gate-level design errors

readily be mapped into SSL faults, and presented a systematic method to perform

mapping. Our experimental results show that complete test sets for the SSL faults

almost all detectable design errors. The test sets are small and provide high coverag

percentage of detected design errors from all modeled errors, detectable and undete

is greater than 90% for most of the benchmark circuits. The experiments also show

the fraction of undetectable design errors is significant in practical circuits, even w

they are SSL-irredundant. For example, 11.6% of the MIGSEs in the 7485 comparato

cuit are undetectable. We ensure full detectability of design errors by injecting SSL f

into a modified netlist and apply an ATPG program to it. Any such program can be

off the shelf, so future improvements in ATPG tools can be applied directly to this typ

design error detection. Furthermore, as we show in the next chapter, the verific

method considered here can be extended to higher levels of abstraction such as the

ter-transfer or behavioral level of design.

Table 2.9 Design error coverage in sequential benchmarks using verification test
sequences generated by ATTEST.

C
irc

ui
t Size

of
ST

Testing
 time a

a. In minutes on a HALstation 300.

D
et

ec
te

d
S

S
Ls

D
et

ec
te

d
 S

IG
S

E
s

D
et

ec
te

d
M

IG
S

E
s

D
et

ec
te

d
E

G
E

s

D
et

ec
te

d
M

G
E

s

D
et

ec
te

d
E

IE
s

D
et

ec
te

d
M

IE
s

D
et

ec
te

d
W

IE
s

D
et

ec
te

d
E

LE
s

D
et

ec
te

d
M

LE
s

s27 49 0 100.0 100.0 95.0 100.0 n/a 100.0 74.7 94.4 100.0 100.0

s208 448 8 95.6 91.3 87.9 87.8 83.8 91.6 72.4 93.0 87.5 81.8

s298 448 27 86.4 91.1 93.6 100.0 96.92 77.5 67.5 84.6 100.0 100.0

s344 264 180 93.9 97.3 90.7 100.0 85.0 91.9 76.9 94.2 100.0 95.0

s349 352 28 94.9 97.7 90.8 100.0 85.0 93.5 79.9 95.9 100.0 95.0

s386 500 132 85.1 97.1 92.7 78.4 98.2 69.6 67.1 87.6 100.0 92.9

s420 499 114 54.5 58.1 69.4 71.9 48.1 51.8 32.8 52.8 81.3 36.8

s641 360 14 87.6 93.5 94.8 73.5 90.6 81.7 65.2 90.4 78.9 89.8

ike

eling

fabri-

sting

some

deling

pro-

uces a

n 3.6

a cir-

) are

ire an

basic

in the

been

s can
CHAPTER 3
HIGH-LEVEL DESIGN VALIDATION

In this chapter, we extend the work in Chapter 2 to high-level design validation. L

the gate-level validation approach, our high-level methodology is based on mod

design errors and generating simulation vectors for them via testing techniques for

cation faults. Section 3.1 presents a review of high-level design verification and te

techniques. Section 3.2 describes a method for design error collection and presents

design error statistics that we have collected. Section 3.3 discusses design error mo

and illustrates test generation with these models. An experimental evaluation of the

posed methodology and error models is presented in Section 3.4. Section 3.5 introd

new error model for microprocessors and a validation approach that uses it. Sectio

discusses the experimental results and gives some concluding remarks.

3.1 Introduction

Simulation-based design verification tries to uncover design errors by detecting

cuit’s faulty behavior when deterministic or pseudo-random tests (simulation vectors

applied. Microprocessors are usually verified by simulation-based methods, but requ

extremely large number of simulation vectors whose coverage is often uncertain.

Hand-written test cases form the first line of defense against bugs, focusing on

functionality and important corner (exceptional) cases. These tests are very effective

beginning of the debug phase, but lose their usefulness later. Recently, tools have

developed to assist in the generation of focused tests [35][58]. Although these tool

significantly increase design productivity, they are far from being fully automated.
52

53

test

ula-

ons.

s, thus

tor

pplica-

com-

ot tar-

s of a

n pro-

d the

ion as

ftware

the

o sub-

one

ftware

[68].

esign

n for

rified

tion is

n of

ilog.

lied to

ancy

or in
The most widely used method to generate verification tests automatically is random

generation. It provides a cheap way to take advantage of the billion-cycles-a-day sim

tion capacity of networked workstations available in many big design organizati

Sophisticated systems have been developed that are biased towards corner case

improving the quality of the tests significantly [7]. Advances in simulator and emula

technology have enabled the use of very large sets as test stimuli such as existing a

tion and system software. Successfully booting the operating system has become a

mon quality requirement [49][70].

Common to all the test generation techniques mentioned above is that they are n

geted at specific design errors. This poses the problem of quantifying the effectivenes

test set, such as the number of errors covered. Various coverage metrics have bee

posed to address this problem. However, the relationship between the metrics an

classes of design errors they detect is not well understood.

A different approach is to use synthetic design error models to guide test generat

we have done in the previous chapter. Such a method is also found in the area of so

testing. Mutation testing [44] considers programs, termed mutants, that differ from

program under test by a single small error, such as changing the operator from add t

tract. Although considered too costly for wide-scale industrial use, mutation testing is

of the few approaches that has yielded an automatic test generation system for so

testing, as well as a quantitative measure of error coverage (mutation score)

Recently, Al Hayek and Robach [15] have adapted mutation testing to hardware d

verification in the case of small VHDL modules.

This chapter addresses design validation via error modeling and test generatio

complex high-level designs such as microprocessors. The implementation to be ve

and its specification are assumed to be given. For microprocessors, the specifica

typically the instruction set architecture (ISA), and the implementation is a descriptio

the new design in a hardware description language (HDL) such as VHDL or Ver

Synthetic error models are used to guide test generation, and the tests are app

simulated models of both the implementation and the specification. A discrep

between the two simulation outcomes indicates an error, either in the implementation

54

fabri-

about

few

exam-

ns:

r. The

detect

ults.

TPG

plex

.

ed on

osely

tion)

. The

ault

ee us

ely

ces

ploy

igned

odel

rrors
the specification.

As discussed in Chapter 1, several high-level manufacture testing techniques for

cation faults have been proposed. Most of these methods use high-level knowledge

the design in the test generation algorithm to detect gate-level fabrication faults. A

other methods introduce high-level fault models to speed up the test generation. For

ple, Thatte and Abraham [108] defined high-level fault models for the following functio

register decoding, instruction decoding and control, data storage, and data transfe

corresponding test generation algorithm produces sequences of instructions which

the above faults in the microprocessor with the hope of detecting the low-level SSL fa

A general problem of high-level manufacture testing is the absence of high-level A

techniques and supporting software tools.

From the above discussion, we can conclude that high-level validation is more com

than gate-level validation due to the following reasons: (i) the lack of high-level design

error data and good design error models, and (ii) the inadequacy of high-level ATPG tools

In the rest of this chapter, we develop a set of high-level design error models bas

actual error data and show how to generate tests for them.

3.2 Design Error Collection

As discussed earlier, hardware design verification and physical fault testing are cl

related conceptually. The basic task of physical fault testing (hardware design verifica

is to generate tests that distinguish the correct circuit from faulty (erroneous) ones

class of faulty circuits to be considered is defined by a logical fault model. Logical f

models represent the effect of physical faults on the behavior of the system, and fr

from having to deal with the plethora of physical fault types directly. The most wid

used logical fault model, the SSL model, combines simplicity with the fact that it for

each line in the circuit to be exercised. Typical hardware design methodologies em

hardware description languages as their input medium and use previously des

high-level modules. To capture the richness of this design environment, the SSL m

needs to be supplemented with additional error models.

The lack of published data on the nature, frequency, and severity of the design e

55

odels

inter-

r-ori-

arge

cting

ongo-

nce

VLSI

are

never

s. We

ner is

ather

hod

longs,

this

ques-

ult of

olve

ro-

A’s

en-

y low

sign

igure

cts.
occurring in large-scale projects is a serious obstacle to the development of error m

for hardware design verification. Although bug reports are collected and analyzed

nally in industrial design projects the results are rarely published. Examples of use

ented bug lists can be found in [60][84]. Some insight into what can go wrong in a l

processor design project is provided in [41].

The above considerations have led us to implement a systematic method for colle

design errors. Our method uses the CVS revision management tool [33] and targets

ing design projects at the University of Michigan, including the PUMA high-performa

microprocessor project [27] and various class projects in computer architecture and

design, all of which employ Verilog as the hardware description medium. Designers

asked to archive a new revision via CVS whenever a design error is corrected or whe

the design process is interrupted, making it possible to isolate single design error

have augmented CVS so that each time a design change is entered, the desig

prompted to fill out a standardized multiple-choice questionnaire, which attempts to g

four key pieces of information: (1) the motivation for revising the design; (2) the met

by which a bug was detected; (3) a generic design-error class to which the bug be

and (4) a short narrative description of the bug. A uniform reporting method such as

greatly simplifies the analysis of the errors. A sample error report using our standard

tionnaire is shown in Figure 3.1. The error classification shown in the report is the res

the analysis of error data from several earlier design projects.

Design error data has been collected from four VLSI design class projects that inv

implementing the DLX microprocessor [57], from the implementation of the LC-2 mic

processor [99] which is described later, and from preliminary designs of PUM

fixed-point and floating-point units [27]. The distributions found for the various repres

tative design errors are summarized in Table 3.1. Error types that occurred with ver

frequency were combined in the “others” category in the table. The number of de

errors recorded per day for the duration of one particular class project is shown in F

3.2 [113]. The graph reflects the somewhat sporadic nature of student design proje

56
Figure 3.1 Sample error report.

(replace the _ with X where appropriate)

MOTIVATION:

X bug correction
_ design modification
_ design continuation
_ performance optimization
_ synthesis simplification
_ documentation

BUG DETECTED BY:

_ inspection
_ compilation
X simulation
_ synthesis

BUG CLASSIFICATION:

Please try to identify the primary source
of the error. If in doubt, check all
categories that apply.

X combinational logic:

X wrong signal source
_ missing input(s)
_ unconnected (floating) input(s)
_ unconnected (floating) output(s)
_ conflicting outputs
_ wrong gate/module type
_ missing instance of gate/module

_ sequential logic:

_ extra latch/flipflop

_ missing latch/flipflop
_ extra state
_ missing state
_ wrong next state
_ other finite state machine error

_ statement:

_ if statement
_ case statement
_ always statement
_ declaration
_ port list of module declaration

_ expression (RHS of assignment):

_ missing term/factor
_ extra term/factor
_ missing inversion
_ extra inversion
_ wrong operator
_ wrong constant
_ completely wrong

_ buses:

_ wrong bus width
_ wrong bit order

_ verilog syntax error

_ conceptual error

_ new category (describe below)

BUG DESCRIPTION: Used wrong field from
instruction

Table 3.1 Actual error distributions from three groups of design projects.

Design error category
Relative frequency [%]

DLX PUMA LC-2
1. Wrong signal source 29.9 28.4 25.0
2. Conceptual error 39.0 19.1 0.0
3. Case statement 0.0 10.1 0.0
4. Gate or module input 11.2 9.8 0.0
5. Wrong gate/module type 12.1 0.0 5.0
6. Wrong constant 0.4 5.7 10.0
7. Logical expression wrong 0.0 5.5 10.0
8. Missing input(s) 0.0 5.2 0.0
9. Verilog syntax error 0.0 3.0 0.0

10. Bit width error 0.0 2.2 15.0
11. If statement 1.1 1.6 5.0
12. Declaration statement 0.0 1.6 0.0
13. Always statement 0.4 1.4 5.0
14. FSM error 3.1 0.3 0.0
15. Wrong operator 1.7 0.3 0.0
16. Others 1.1 5.8 25.0

57

some

els for

ilog

t port

, usu-

: (1)

hould

ld be

e rela-

tests

ge of

ted

odels

ell.

rror
3.3 Error Modeling

Standard simulation and logic synthesis tools have the side effect of detecting

design error categories of Table 3.1, and hence there is no need to develop mod

those particular errors. For example a simulator such as Verilog-XL [30] flags all Ver

syntax errors (category 9), declaration statement errors (category 12), and incorrec

list of modules (category 16). Also, logic synthesis tools, such as those of Synopsis

ally flag all wrong bus width errors (category 10) and sensitivity-list errors in thealways

statement (category 13).

To be useful for design verification, error models should satisfy three requirements

tests (simulation vectors) that provide complete coverage of the modeled errors s

also provide very high coverage of actual design errors; (2) the modeled errors shou

amenable to automated test generation; (3) the number of modeled errors should b

tively small. The error models need not mimic actual design bugs precisely, but the

derived from complete coverage of modeled errors should provide very good covera

actual design bugs.

Basic error models.A set of error models that satisfy the requirements for the restric

case of gate-level logic circuits was introduced in Chapter 2. Several of these m

appear useful for the higher-level (RTL) designs found in Verilog descriptions as w

From the actual error data in Table 3.1, we derive the following set of five basic e

models:

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

E

rr
or

s
de

te
ct

ed

Time [days]

Figure 3.2 Number of errors detected per day for the duration of one class project.

58

-

.

te-

is

.

s

L

-

• Bus SSL error (SSL): A bus of one or more lines is (totally) stuck-at-0 or stuck-at-1

if all lines in the bus are stuck at logic level 0 or 1. This generalization of the stan

dard SSL model was introduced in [21] in the context of physical fault testing

Many of the design errors listed in Table 3.1 can be modeled as SSL errors (ca

gories 4 and 6).

• Module substitution error (MSE):This refers to mistakenly replacing a module by

another module with the same number of inputs and outputs (category 5). Th

class includes word gate substitution errors and extra/missing inversion errors

• Bus order error (BOE): This refers to incorrectly ordering the bits in a bus (cate-

gory 16). Bus flipping appears to be the most common form of BOE.

• Bus source error (BSE):This error corresponds to connecting a module input to a

wrong source (category 1).

• Bus driver error (BDE): This refers to mistakenly driving a bus from two sources

(category 16).

To detect a basic errore in a circuitC, we need to activatee, propagate the erroneou

values to an observable output inC, and justify the corresponding internal signals ofC.

We next study the activation conditions for the basic design error models.

• SSL: For anm-wide bus to be stuck-at 0, there are 2m – 1 tests that can activate the

error, namely, anym-bit vector that has at least one bit set to 1. Hence the bus SS

error can be easily activated.

• MSE: The number of tests needed to detect a substitution error of moduleM1 by

moduleM2 is one; any input vector that distinguishesM1 fromM2 suffices as a test.

Hence, ifM1 can be replaced by otherk modules, we need at mostk tests to detect

MSEs onM1. The number of possible tests that can detect the substitution ofM1

by M2 is equal to the number of minterms of the difference functionf, which is

defined as the logical OR of the Exclusive-OR of the corresponding outputs ofM1

andM2. For the special case of standard word gates, to verify ann-input m-wide

, word gateG using the results in Chapter 2, we need to apply each of the

four testsvnull, vall, vodd, andvevento an arbitrary gate ofG. This requirement can be

satisfied by a single test if and the output of the word gate can be propa

n m, 2≥

m 4≥

59

an

r

an

-

s.

is

n

es

-

m

ce

nal to

alues

o

l

gated through a transparent path to a primary output. In this case, a single test c

detect 5 MSEs on a word gate. Note that for the case of anm-wide inverter, any

test will activate the error.

• BOE: A single test is sufficient to activate a bus order error. However, the numbe

of possible tests is dependent on the number of possible ways a wrong order c

occur. For the case of incorrectly flipping the order of anm-wide (m even) bus,

any non-symmetrical vector is a test. (A vectorv is non-symmetrical if there exists

a bit i of v such that .) For example, the test vector 1000 detects incor

rectly flipping the order of a 4-bit bus. Since the number ofm-wide

non-symmetrical vectors is 2m – 2m/2, which amounts to 93.75% of the possible

vectors on an 8-bit bus, then BOEs are likely to be activated by random vector

• BSE: A single test that places different values on the wrong and correct buses

sufficient to activate this error. The number of possible tests for a BSE on a

m-wide bus is equal to the number of instances where the wrong and correct bus

have different values, i.e. . This number amounts to 99.60% of the pos

sible vectors on an 8-bit bus, hence BSEs are likely to be activated by rando

vectors.

• BDE: Any test that enables more than two bus drivers simultaneously and produ

conflicting bus signals is sufficient to activate this error.

After activating the basic error, we need to propagate the resulting erroneous sig

an observable output. We therefore need to define a criterion for propagating error v

(D or D) through modules. A simple criterion is to maximize the number ofD/D error sig-

nals propagated from the initial error site. To illustrate, consider a 2-inputm-wide AND

word gate with inputsA andB and outputZ. To propagate an error signal fromA to Z, the

input B is set such that a maximum number ofD/D is propagated toZ. For example, if

, then we set . In general, if or then

otherwise . To illustrate further, consider a multiplexer with outputZ,

selection busS, and data inputsA0, A1, A2, ... To propagate an error signal from data busAk

to Z, we need to set theSbus to the fixed valuek while setting all the other input buses t

X’s. On the other hand, to propagate an error from theSbus toZ, we need to set severa

vi vm i– 1–≠

2
2m

2
m

–

A 01XDD1= B XXX11X= Ai D= Ai D=

Bi 1= Bi X=

60

nals

uts

them

nt

d by

hown

ioral

trate

ls

size.

ts: a

t in a

ls are

][21];

ristate

der

word

d then
data buses to specific values. For example, if , then we setA2 to the complement

of A3. This propagates a maximum number ofD/D signals toZ, since every bit ofZ is

eitherD or D.

After propagating the error to an observable output, we must justify the internal sig

of the circuit to reach to a consistent solution. We define the criterion for justifying inp

of modules to obtain the desired outputs as maximizing the numberN of X’s appearing at

the inputs. The justification algorithm for a module enumerates all solutions, sorts

based on the values ofN, and returns the test with the largestN once it is executed for the

first time and the test with the largestN among the remaining tests in every conseque

execution. To illustrate, consider a standard 4-bit adder with a carry outc4 and input vector

a3b3a2b2a1b1a0b0c0. To justify c4 = 1, the first and best test is 11XXXXXXXXX which cor-

responds toN = 2, and the next test is 1011XXXXXXX which corresponds toN = 4.

Direct generation of tests for the basic error models is difficult, and is not supporte

currently available CAD tools. While the errors can be easily activated as we have s

above, propagation of their effects can be difficult, especially when modules or behav

constructs do not have transparent operating modes [88]. In the following, we illus

manual test generation for various basic error models.

Test generation examples.Because of their relative simplicity, the foregoing error mode

allow tests to be generated and error coverage evaluated for RTL circuits of moderate

We consider the test requirements of two representative combinational circui

carry-lookahead adder and an ALU. The test generation is done manually here, bu

systematic manner that can potentially be automated. Three basic error mode

considered: BOEs, MSEs, and BSEs. Test generation for SSL faults is discussed in [4

no tests are needed for BDEs, since the circuits under consideration do not have t

buses.

Our first example is the 74283 4-bit fast adder [107]. An RTL model [51] of the ad

appears in Figure 3.3. It consists of a carry-lookahead generator (CLG) and a few

gates. We show how to generate tests for some design error models in the adder an

discuss the overall coverage of the targeted error models.

S 01D=

61

e

n.

nt
• BOE on busA: A possible non-symmetrical vector that activates this error isAg

= 0XX1, whereX denotes an unknown value. The erroneous value ofA is thenAf

= 1XX0. Hence, we can represent the error byA = , whereD is 1 (0)

in the good circuit and 0 (1) in the erroneous circuit. One way to propagate th

error signal through the AND gateG1 is to setB = 1XX1. Hence, we getG2 =

1XX1, G5 = , andG3 = . Now for the module CLG we haveP =

1XX1, G = , andC0 = X. The resulting outputs areC = XXXXandC4 = X.

This implies thatS= XXXXand hence the error signal is not detected at the pri-

mary outputs. We need to assign more input values for error signal propagatio

If we setC0 = 0, we getC = , C4 = X, andS = . Hence, the error

signal is propagated toS and the complete test vector isA, B, C0 = 0XX11XX10.

• BSE on busP with correct source G3: To activate the error we need to apply

opposite values to at least one bit of theP andG3 buses. If we start withPf = XXX0

andG3 = Pg = XXX1, we reach to a conflict through implications. If we tryPf =

XXX1 andG3 = Pg = XXX0, we obtainP = , A = XXX1, andB = XXX1.

However, no error is propagated through the CLG module sinceG = XXX1. After

all the activation conditions are explored, we conclude that the error is redunda

(undetectable).

• MSE G3/XNOR: To distinguish the word AND gateG3 from an XNOR gate, we

need to apply the all-0 pattern to one of the gates formingG3. So, we start with the

valuesG5 = 0XXXandG2 = 0XXX. By making implications, we find that there is

a conflict when selecting the values ofA andB. We then change to another set of

activation conditionG5 = X0XXandG2 = X0XX. This also leads to a conflict. After

Figure 3.3 High-level model of the 74283 carry-lookahead adder.

A
B

P

G

C0
C0

S

CLG

C

4

4

4

4

4
4

1

4

C4
1

G1

G2

G3
G4G5

DXXD D()

DXXD DXXD

DXXD

XXD0 XXXD

XXXD

62

or

ll 33

ted all

MSE

ner-

Es is

in the

d on

six

cuit

gates.

MSEs
trying all possible combinations, we conclude that no test exists, hence the err

is redundant.

On generating tests for all BSEs in the adder we find that just 2 tests detect a

detectable BSEs, and a single BSE is redundant as shown above. We further targe

MSEs in the adder and found that 3 tests detect all 27 detectable MSEs; the

G3/XNOR is redundant. Finally, we found that all BOEs are detected by the tests ge

ated for BSEs and MSEs. Therefore, complete coverage of BOEs, BSEs, and MS

achieved with only 5 tests.

In our second example, we try to generate tests for some modeled design errors

c880 ALU, a member of the ISCAS 85 benchmark suite [25]. A high-level model base

a Verilog description of the ALU [67] is shown in Figure 3.4. The c880 is composed of

modules: an adder, two multiplexing units, a parity unit, and two control units. The cir

has 60 inputs and 26 outputs, and its standard gate-level implementation has 383

The design error models to be considered in the c880 are again BOEs, BSEs, and

(inversion errors on 1-bit signals). We next generate tests for these error models.

Figure 3.4 High-level model of the c880 ALU.

IN-MUX OUT-MUX

B

A

A8

D

G

Cin

H

C Cont

ParA

ParB

F

Par-Hi
Par-Al
Par-Bl

Pass-B

S
el

-A
U

se
l-D

U
se

l-A
8B

Ls
el

-D
Ls

el
-A

8B

Usel-G Cout

GEN

XORF

SUM

ADG

CNTRL1

ADDER

CNTRL2

PARITY

4

4

8

8

21

8 8

8

8

3

8

15

Pass-A
Pass-H
F-shift
F-add
F-and
F-xor

63

ed

ed

le

r-

ted

0

’s

ir

are

.

st

,

ls

is
• BOEs: In general, we attempt to determine a minimum set of assignments need

to detect each error. Some BOEs are redundant such as the BOE onB (PARITY),

but most BOEs are easily detectable. Consider, for example, the BOE onD. One

possible way to activate the error is to setD[3] = 1 andD[0] = 0. To propagate the

error to a primary output, the path across IN-MUX and then OUT-MUX is

selected. The signal values needed to activate this path are:

Sel-A= 0 Usel_D = 1 Usel_A8B = 0 Usel_G = 0

PassB = 0 PassA = 1 PassH = 0 F-shift = 0

F-add= 0 F-and= 0 F-xor = 0

Solving the gate-level logic equations forG andC we get:

G[1:2] = 01 C[3] = 1 C[5:7] = 011 C[14] = 0

All signals not mentioned in the above test have don’t care values. We generat

tests for all BOEs in the c880. We found that just 10 tests detect all 22 detectab

BOEs and serve to prove that another 2 BOEs are redundant.

• BSEs:The buses in the ALU were grouped according to their size since the co

rect source of a bus must have the same size as the incorrect one. We targe

BSEs with bus widths of 8 and 4 only. We found that by adding 3 tests to the 1

tests generated for BOEs, we are able to detect all 27 BSEs affecting the c880

multibit buses. Since the multiplexing units are not decoded, most BSEs on the

1-bit control signals are detected by the tests generated for BOEs. Further tests

needed to get complete coverage of BSEs on the other 1-bit signals.

• MSEs: Tests for BOEs detect most but not all inversion errors on multibit buses

In the process of test generation for the c880 ALU, we noticed a case where a te

for an inversion error on a busA can be found even though the BOE onA is redun-

dant. This is the case when ann-bit bus (n odd) is fed into a parity function.

Testing for inversion errors on 1-bit signals needs to be considered explicitly

since a BOE on a 1-bit bus is not possible. Most inversion errors on 1-bit signa

in the c880 ALU are detected by the tests generated for BOEs and BSEs. This

especially true for the control signals to the multiplexing units.

64

ror

that

These

ction

75%

age of

dels

rived

wing

he

s,

at can

ated

since

ber of

e the
Conditional error model. The preceding examples, as well as prior work on SSL er

detection [2][21], show that the basic error models can be used with RTL circuits, and

high, but not complete, error coverage can be achieved with very small test sets.

results are further reinforced by our experiments on microprocessor verification (Se

3.4) which indicate that a large fraction of actual design errors (67% in one case and

in the other) is detected by complete test sets for the basic errors. To increase cover

actual errors to the very high levels needed for design verification, additional error mo

are required to guide test generation. Many more complex error models can be de

directly from the actual data of Table 3.1 to supplement the basic error types, the follo

set being representative:

• Bus count error (BCE):This corresponds to defining a module with more or fewer

input buses than required (categories 4 and 8).

• Module count error (MCE):This corresponds to incorrectly adding or removing

a module (category 16), which includes the extra/missing word gate errors and t

extra/missing registers.

• Label count error (LCE): This error corresponds to incorrectly adding or remov-

ing the labels of a case statement (category 3).

• Expression structure error (ESE): This includes various deviations from the cor-

rect expression (categories 3, 6, 7, 11, 15), such as extra/missing term

extra/missing inversions, wrong operator, and wrong constant.

• State count error (SCE): This error corresponds to an incorrect finite state

machine with an extra or missing state (category 14).

• Next state error (NSE): This error corresponds to incorrect next state function in

an FSM (category 14).

Although this extended set of error models increases the number of actual errors th

be modeled directly, we have found them to be too complex for practical use in autom

test generation. For example, it is impractical to enumerate missing modules (MCEs)

the possible instances depend on many module parameters including type, num

inputs, sources of inputs, number of outputs, and destination of outputs.

The more difficult actual errors are often composed of multiple basic errors, wher

65

ust be

onent

um-

ors are

model

at the

al, the

mod-

uld be

nce.

ment-

s

ct

-

s, but

hough

be

rrors

sing
component basic errors interact in such a way that a test to detect the actual error m

much more specific (have fewer don’t cares) than a test to detect any of the comp

basic errors. Modeling these difficult composite errors directly is impractical as the n

ber of error instances to be considered is too large, and such composite modeled err

too complex for automated test generation. However, as noted earlier, a good error

does not necessarily need to mimic actual errors accurately. What is required is th

error model necessitates the generation of these more specific tests. To be practic

complexity of the new error models should be comparable to that of the basic error

els. Furthermore, the (unavoidable) increase in the number of error instances sho

controlled to allow trade-offs between test generation effort and verification confide

We found that these requirements can all be met in many practical situations by aug

ing the basic error models with a condition.

A conditional error(C,E) consists of a conditionC and a basic errorE; its interpreta-

tion is thatE is only active whenC is satisfied. In general,C is a predicate over the signal

in the circuit during some time period. To limit the number of error instances, we restriC

to a conjunction of terms of the form , whereyi is a signal in the circuit andwi is

a constant of the same bit-width asyi and whose value is either all-0s or all-1s. The num

ber of terms (condition variables) appearing inC is said to be theorder of (C,E). Specifi-

cally, we consider the following conditional error types:

• Conditional single-stuck line errors (CSSLn) of ordern;

• Conditional bus order errors (CBOEn) of ordern;

• Conditional bus source errors (CBSEn) of ordern.

When n = 0, a conditional error (C,E) reduces to the basic errorE from which it is

derived. Higher-order conditional errors enable the generation of more specific test

lead to a greater test generation cost due to the larger number of error instances. Alt

the total set of allN signals we consider for each term in the condition can possibly

reduced, CSSLn errors wheren > 2 are probably not practical.

For gate-level circuits (where all signals are 1-bit), it can be shown that CSSL1 e

cover the following basic error models: MSEs (excluding XOR and XNOR gates), mis

yi wi=()

66

river

y to

eval-

stu-

ow in

ess is

sys-

.

ch that

to

peri-

a

2-input gate errors, BSEs, single BCEs (excluding XOR and XNOR gates), bus d

errors. Higher-order CSSLn errors improve coverage even further.

3.4 Coverage Evaluation

The effectiveness of a verification methodology can be measured by its abilit

uncover actual design errors in an unverified design. An experiment was designed to

uate the effectiveness of our verification methodology when applied to two

dent-designed microprocessors. A block diagram of the experimental set-up is sh

Figure 3.5. As design error models are used to guide test generation, the effectiven

closely related to the synthetic error models used.

To evaluate our methodology, a circuit is chosen for which design errors are to be

tematically recorded during its design. LetD0 be the final, presumably correct design

From the CVS revision database, the actual errors are extracted and converted su

they can be injected in the final designD0. In the evaluation phase, the design is restored

an (artificial) erroneous state,D1, by injecting a single actual error into the final designD0.

This set-up approximates a realistic on-the-fly design verification scenario. The ex

ment answers the question whether givenD1, the proposed methodology would produce

test that determinesD1 to be erroneous. This is done by examining the actual error inD1,

Figure 3.5 Experimental set-up to evaluate the proposed design verification
methodology.

Simulate Simulate

…

Actual error
database

Debug by

Design error
collection

Test for
modeled

error

Evaluation of verification methodology

Expose
modeled error

Design and debugging process

Design

Inject single
actual error

Inject
modeled

error

Design error
model

designer

Actual error
Modeled error

revisions
D1

D0 D2

Expose
actual error

67

r. Let

ed on

ance

ng.

ting a

iven

ity

nd of

esign

nsider

s are

t rep-

resent

d

truc-

e as a

rilog

C-2

h unit

d as a

sists

, reg-

esis
and determining if a modeled design error exists that is dominated by the actual erro

D2 be the design constructed by injecting an error modelM into D1. If any test that detects

the modeled errorM in D2 also detects the actual error inD1, thenM is called adominated

error. Consequently, if we were to generate a complete test set for every error defin

D1 by M, D1would be found erroneous by that test set. Note that the concept of domin

in the context of design verification is slightly different than in physical fault testi

Unlike the testing problem, we cannot remove the actual design error fromD1 before

injecting the dominated modeled error. This distinction is important because genera

test for an error of omission, which is generally very hard, becomes relatively easy if g

D0 instead ofD1.

The erroneous designD1 considered in this experiment is somewhat artificial. In real

a design evolves over time as bugs are introduced and eliminated. Only at the very e

the design process, is the target circuit in a state where it differs from the final designD0 in

just a single design error. Prior to that time, the design may contain more than one d

error. To the extent that the design errors are independent, it does not matter if we co

a single or multiple design errors in each verification step. Furthermore, our result

independent of the order in which one applies the generated tests.

The preceding coverage-evaluation experiment was implemented for two small bu

resentative designs: a simple microprocessor and a pipelined microprocessor. We p

our results in the remainder of this section.

A simple microprocessor.The Little Computer 2 (LC-2) [99] is a simple computer use

for teaching purposes at the University of Michigan. It has a representative set of 16 ins

tions that are subset of the instruction sets of most current microprocessors. To serv

test case for design verification, we designed behavioral and RTL synthesizable Ve

descriptions for the LC-2 microprocessor (Appendix B). The behavioral model of the L

consists of 235 lines of behavioral Verilog code. The RTL design consists of a datapat

composed of library modules and a few custom modules, and a control unit describe

finite-state machine with five states and 27 output control signals. The RTL design con

of 921 lines of Verilog code, excluding the models for library modules such as adders

ister files, etc. A gate-level model of the LC-2 can thus be obtained using logic synth

68

rors

ction

tect it.

hed

nality

error

to do
tools. A simplified block diagram of the design is shown in Figure 3.6 The design er

made during the design of the LC-2 were systematically recorded using our error colle

system (Section 3.2).

For each actual design error recorded, we derived the necessary conditions to de

An error is detected by an instruction sequences if the external output signals of the

behavioral model (specification) and the RTL model (implementation) are distinguis

by s. We found that some errors are undetectable since they do not affect the functio

of the microprocessor. The detection conditions are used to determine if a modeled

that is dominated by the actual error can be found. An example where we were able

D
at

a
bu

s

Address bus

Register file

ALU

Merge

Mux

Flags

Mux

Mux

Mux

Mux

Detect

Extend

Increment

Figure 3.6 RTL block diagram of the LC-2 microprocessor.

REG1 REG2

0123

01 2
3

0 1

0 1

01 2

Latch

MAR

PC IR

C
on

tr
ol

Control
signals

Datapath

69

ux)

BSE

lways

ulti-

nd a

3.8a.

dition.

sig-

[8:6]

-

gure
that is shown in Figure 3.7. The error is a BSE on data input 1 of a multiplexer (m

attached to the program counter PC. Testing for input 1 stuck-at-1 will detect the

since the outputs of PC and the increment unit are always different, i.e., the error is a

activated, and testing for the SSL will propagate the signal on input number 1 of the m

plexer to a primary output of the microprocessor. A case where we were not able to fi

basic or conditional modeled error dominated by the actual error is shown in Figure

Here the error occurs when a signal is assigned a value independent of any con

However, the correct implementation requires an if-then-else construct to control the

nal assignment. To activate this error, we need to set ir_out[15:12] == 4’b1101, ir_out

≠ 3’b111, and RF[ir_out[8:6]]≠ RF[3’b111], where RF[i] refers to the contents of the reg

ister i in the register file. An instruction sequence that detects this error is shown in Fi

3.8b.

Figure 3.7 An example of an actual design error that is dominated by an SSL error.

Incorrect design Correct design

Mux Incrementer
0123

PC

Mux Incrementer
0123

PC

// Instruction decoding
// Decoding of register file
inputs
// 1- Decoding of R1

CORRECT CODE:

if (ir_out[15:12] == 4'b1101)
 R1_temp = 3'b111;
 else
 R1_temp = ir_out[8:6];

ERRONEOUS CODE:

 R1_temp = ir_out[8:6];

Figure 3.8 An example of (a) an actual design error for which no dominated mod-
eled error was found, and (b) an instruction sequence that detects the actual error.

// Instruction sequence

@3000
main:

JSR sub0
........
........

sub0:
Not R0, R7
RET //1101 0000 0000

0000
//
// After execution of instructions
// PC = 3001 in correct design
// PC = CFFE in incorrect design

Design error Test sequence

(a) (b)

70

f the

rrors

e Ver-

ctual

spond-

ated

aining

ror.

rs or

lation

L1 is

by

57]

icular

has a

Ver-

tc. A

itted
We analyzed the actual design errors in both the behavioral and RTL designs o

LC-2, and the results of the experiment are summarized in Table 3.2. A total of 20 e

were made during the design process, of which four errors are easily detected by th

ilog simulator and/or logic synthesis tools and two errors are undetectable. The a

design errors are grouped by category; the numbers in parentheses refer to the corre

ing category in Table 3.1. The columns in the table give the type of the simplest domin

modeled error corresponding to each actual error. For example, among the 4 rem

wrong-signal-source errors, two dominate an SSL error and two dominate a BSE er

We can infer from Table 3.2 that most errors are detected by tests for SSL erro

BSEs. About 75% of the actual errors in the LC-2 designs can be detected after simu

with tests for SSL errors and BSEs. The coverage increases to 90% if tests for CSS

also used.

A pipelined microprocessor.The second design case study was mainly carried out

David Van Campenhout [113]. It considers the well-known DLX microprocessor [

which has more of the features found in contemporary microprocessors. The part

DLX version considered is a student-written design that implements 44 instructions,

five-stage pipeline and branch prediction logic, and consists of 1552 lines of structural

ilog code, excluding the models for library modules such as adders, register-files, e

simplified block diagram of the design is shown in Figure 3.9. The design errors comm

Table 3.2 Actual design errors and the corresponding dominated modeled
errors for LC-2.

Actual design errors Corresponding dominated
modeled errors

Category Total Easily
detected

Unde-
tectable SSL BSE CSSL1 Un-

known
Wrong signal source(s) (1) 4 0 0 2 2 0 0

Expression error (7) 4 0 0 2 0 1 1
Bit width error (10) 3 3 0 0 0 0 0

Missing assignment(s) (16) 3 0 0 0 0 2 1
Wrong constant(s) (6) 2 0 0 2 0 0 0

Unused signal (16) 2 0 2 0 0 0 0
Wrong module (5) 1 0 0 1 0 0 0

Always statement (13) 1 1 0 0 0 0 0
Total 20 4 2 7 2 3 2

71

ction

ents

wher-

of 39

rs are
by the student during the design were systematically recorded using our error colle

system.

As in the previous experiment, Van Campenhout analyzed the detection requirem

of each actual error and constructed a modeled error dominated by the actual error,

ever possible. The results of this experiment are summarized in Table 3.3. A total

detectable design errors were recorded by the designer. The actual design erro

Figure 3.9 Block diagram of the DLX microprocessor.

INC

ADD

ALU

TO DATA
MEMORY

TO INSTR.
MEMORY

BRANCH
TARGET
BUFFER

REGISTER
FILE

PC0 PC1 OP1

PCN2PCN1

PC2 PC3

PCN3

IAR

OP2

DOUT2

ALU3 ALU4

MEM4DOUT3
IR

FORWARD

SELECT

INTERFACE INTERFACE

SELECT

Table 3.3 Actual design errors and the corresponding dominated modeled errors
for our DLX implementation.

Actual design errors Corresponding dominated modeled errors

Category Detectable INV SSL BSE CSSL1 CBOE CSSL2 Un-
known

Missing module(s) (2) 14 0 2 0 6 1 0 1
Wrong signal source(s) (1) 11 1 4 5 1 0 0 0

Complex (2) 3 0 3 0 0 0 0 0
Inversion (5) 3 3 0 0 0 0 0 0

Missing input(s) (4) 3 0 0 0 1 0 0 0
Unconnected input(s) (4) 3 3 0 0 0 0 0 0

Missing minterm (2) 1 0 0 0 0 0 1 0
Extra input(s) (2) 1 0 1 0 0 0 0 0

Total 39 7 10 5 8 1 1 1

72

espon-

which

are

with

t for

eled

le(s)’

tes a

h is

s. Any

f the

overs

SE,

this

r-like

l are

ing

muta-

C-2.

the

test-
grouped by category; the numbers in parentheses refer again to Table 3.1. The corr

dence between the categories is imprecise, because of inconsistencies in the way in

different student designers classified their errors. Also, some errors in Table 3.3

assigned to a more specific category than in Table 3.1, to highlight their correlation

the errors they dominate. ‘Missing module’ and ‘wrong signal source’ errors accoun

more than half of all errors. The columns give the type of the simplest dominated mod

error corresponding to each actual error. Among the 10 detectable ‘missing modu

errors, two dominate an SSL error, six dominate a CSSL1 error, and one domina

CBOE; for the remaining one, no dominated modeled error was found.

A conservative measure of the overall effectiveness of our verification approac

given by the coverage of actual design errors by complete test sets for modeled error

complete test set for the inverter insertion errors (INV) also detects at least 21% o

(detectable) actual design errors. Any complete test set for the INV and SSL errors c

at least 52% of the actual design errors. If a complete test set for all INV, SSL, B

CSSL1 and CBOE is used, at least 94% of the actual design errors will be detected.

3.5 Mutation Control Errors

The preceding error models can, in principle, be used with all types of designs. In

section, we describe a related error model intended specifically for microprocesso

circuits. This model targets control errors in designs where datapath and contro

clearly separated. It is similar to the conditional error model with the condition be

dependent on a single instruction and its cycles. We next define the model, present a

tion-based validation approach using it, and illustrate the validation approach on the L

Mutation control error model. A mutation control error (MCE)denoted (i,c,s,vc,ve) is a

change in the control signals in the cyclec of the instructioni of the microprocessor from

the correct valuevc to the erroneous valueve. For example, in an ADD instruction, the

MCE (ADD, execute, load_flags, 1’b1, 1’b0) corresponds to incorrectly maintaining

contents of the flags in the ADD’s execute cycle.

MCEs are classified by their detectability as redundant (undetectable), invalid, or

able. Of these, only testable MCEs are targeted for test generation. Aredundant MCEfor

73

t

ces-

all

ences

te tests

the

a time

r all

g the
instructioni does not change the functions performed byi. The following conditions typi-

cally lead to redundant MCEs:

• Unchanged visible state: MCEs which do not affect the processor or memory state

are redundant. These include: (i) reading a register or memory without storing a

new result, (ii) loading a register or memory multiple times without reading it until

some final value is loaded, and (iii) changing registers not visible to the instruction

set, which are not used across several instructions.

• Disabled signals: MCEs on disabled signals are redundant. For example, an MCE

that changes a select signal of a register file with a disabled read port will no

affect instruction behavior.

Invalid MCEsviolate usage constraints on modules, buses, or the overall micropro

sor, for example:

• Module input constraints: These prevent inconsistencies such as: (i) reading and

writing to memory in the same clock cycle, and (ii) setting the select bus of a

3-input multiplexer to 11.

• Bus constraints: These are bus usage rules such as: (i) a bus cannot have multiple

active drivers at the same time, and (ii) a bus cannot be read if it has no data

source, e.g., if it is in the high-impedance state.

• Microprocessor constraints: These are global operating constraints such as: (i) an

instruction must be fetched every instruction cycle, and (ii) one and only one of

the flags must be set.

Testable MCEschange a correct design to one with different functionality that meets

the specified design constraints. Detection of such MCEs requires instruction sequ

that distinguish the correct design from erroneous ones. These sequences constitu

for the modeled errors.

MCE evaluation. We evaluated the effectiveness of MCEs by an experiment similar to

one discussed in Section 3.4. The actual design errors are injected manually one at

in the final, presumed correct design of LC-2. We then determine whether testing fo

MCEs guarantees the detection of the injected design errors. This is done by derivin

74

s

r (Fig-

We

sults

l unit

erilog

hat all

ts for

to be

babil-
detection conditions for every actual errore and then determining if an MCE exists that i

dominated by e. We applied this process to the complex actual error described earlie

ure 3.8) and we were able to find a dominated MCE for it as shown in Figure 3.10.

analyzed manually all design errors in the test implementation of the LC-2 and the re

are summarized in Table 3.4. A total of 16 design errors were found, nine in the contro

and the rest is in the datapath unit. Four of these errors are easily detected by the V

simulator, two are redundant, and the rest are testable. We can infer from Table 3.4 t

testable design errors in the LC-2 control unit are detected after simulation with tes

eight MCEs, and only two testable errors in the datapath unit are not guaranteed

detected. However, by analyzing their detection requirements, we found that the pro

ity of these two errors being undetected or masked is extremely low.

// Instruction decoding (cycle 2)
// Decoding of register file inputs

CORRECT CODE:

if (ir_out[15:12] == 4'b1101) // RET
R1_temp = 3'b111;

else
R1_temp = ir_out[8:6];

ERRONEOUS CODE:

R1_temp = ir_out[8:6];

Figure 3.10 Example of an actual design error, its detection requirements, and
the corresponding dominated MCE.

ir_out[15:12] == 4'b1101;
ir_out[8:6] != 3’b111;
RF[7] != RF[ir_out[8:6]]
Propagate RF[R1_temp] to primary output

MCE(RET, Decode, R1_temp, 3’b111, ir_out[8:6])

Design error

Detection requirements

Dominated MCE

}
Table 3.4 Actual design errors and the number of corresponding dominated

MCEs for LC-2.
Actual design errors No. of

corresponding
dominated MCEsCategory Total Easily

detected
Unde-

tectable
Test-
able

Control
Unit

Expression error 2 0 0 2 2
Bit width error 1 1 0 0 0

Missing assignment(s) 3 0 0 3 3
Wrong constant(s) 1 0 0 1 1

Unused signal 1 0 1 0 0
Always statement 1 1 0 0 0

Datap-
ath
Unit

Wrong signal source(s) 3 0 0 3 1
Bit width error 2 2 0 0 0
Unused signal 1 0 1 0 0
Wrong module 1 0 0 1 1

Total 16 4 2 10 8

75

er-

ge

con-

fied

first

, the
Validation approach. We now outline a microprocessor validation algorithm that gen

ates test sequences for MCEs. As usual, the microprocessor’s instruction setIS is defined

by its ISA. The design constraintsCT are derived from the ISA and the bus/module usa

rules. We assume that a microprocessor implementation IM is given that consists of a

trol unit and a datapath unit; the problem is to verify IM. Both the ISA and IM are speci

by a simulatable hardware description language (Verilog in our case).

The proposed verification algorithm is described in Figure 3.11 in five phases. The

phase identifies all relevant control/data symbols in each instruction. For example

Figure 3.11 The microprocessor validation algorithm.

extractIS from ISA
preprocess every instruction inIS to identify its fields

1
2

for every instructioni in IS
begin

for every instruction cycle
begin

simulate control and datapath units
if any constraint fromCT is violatedthen

report {erroneousIM} and then stop
end
MSI := processor state inIM after simulating all cycles ofi
for every instruction cycle
begin

for every control signalc in IM
begin

ci := value ofc in IM
for every possible valuecm of c not equal to ci
begin

inject the MCE (i.e. setc := cm) to form a mutant
perform complete simulation of the mutant underi
MSM:= final processor state in mutant
if any constraint fromCT is violatedthen MCE is INVALID
else if (MSI == MSM) then MCE is REDUNDANT
else add the TESTABLE MCE to error list

end
end

end
end

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

collapse the MCE list via dominance relations29

set overall test sequenceS := φ
while there are more MCEs in the list
begin

select an MCEm
generate an instruction sequences to detectm
remove all MCEs that are detected bys
adds to S

end

30
31
32
33
34
35
36
37

applyS to IM andISA
if the responses are different then report {erroneousIM}
else report {correctIM}

38
39
40

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Procedure MV(instruction set architectureISA, constraintsCT, implementationIM)

76

loca-

0001

(N),

finally

ase

utant

unit.

f it is

te the

conse-

all

ere

simu-

nt,

table

er of

pur-
16-bit LC-2 instruction ADD DR, SR1, SR2 is represented by a sequence of (name,

tion, value) symbols as follows:

(opcode,[15:12],0001), (DR,[11:9],N), (SR1,[8:6],N), (SR2,[2:0],N), (M,[5],0)

This sequence indicates that bits 15:12 of the instruction specify the opcode which is

for ADD, bits 11:9 specify the destination register DR which is an unsigned integer

bits 8:6 and 2:0 specify the source registers (which are also unsigned integers), and

bit 5 is a mode bitM which is set to 0. (M distinguishes ADD DR, SR1, SR2 from the

instruction ADD DR, SR1, imm5, where imm5 is a signed 5-bit constant.) Note that ph

1 is based only on the microprocessor’s ISA.

The second phase performs symbolic simulation of IM and its mutants, where a m

is IM with a single injected MCE. For every instructioni, we first simulate the control unit

cycle by cycle, and evaluate the resulting control signals originating from the control

Each such signal has the value undefined, constant, or symbolic; it is undefined i

never assigned a value in the instruction cycle under consideration. We then simula

datapath unit to compute the processor state at the end of the instruction cycle, and

quently determine if IM violates any specified design constraint. After simulating

cycles ofi, we compute the final processor stateMSI. For example, after simulating the

ADD instruction described above, we end up with RF[DR] = RF[SR1] + RF[SR2], wh

RF denotes the register file.

Next the possible MCEs are injected one at a time and the resulting mutants are

lated for all cycles ofi to obtain the final processor stateMSM. By checking the constraints

and comparingMSI to MSM, we can determine whether the current MCE is redunda

invalid, or testable. Redundant and invalid MCEs are dropped at this stage, while tes

MCEs are inserted in the error list for later test generation.

The third phase in the verification algorithm is error collapsing to reduce the numb

MCEs. Dominance among MCEs in the same instruction can be established for this

pose. An errore1 is dominatedby an errore2 if any test fore1 is also a test fore2, in which

case,e2 can be dropped from the error list. Normally, some MCEs in cyclei of an instruc-

tion dominate others in cyclej, i ≤ j, of the same instruction.

77

y

e error

th

.

c-

tents

(IR),

rary

for

E

ter-

le.

r-
The fourth phase of the algorithm is test generation. Applying the instructioni is gener-

ally necessary to activate an MCE affectingi. We then may need instructions that justif

the processor state needed to activate the MCE, and other instructions to propagat

values to the primary outputs of the processor.

The final phase of the algorithm applies the generated instruction sequence to boIM

andISA. If a difference is detected in the responses, the implementation is erroneous

Example: To illustrate our validation methodology, we apply it here to the LC-2 instru

tion ADD DR, SR1, SR2. We define the state of the LC-2 microprocessor as the con

of all its storage elements, including the program counter (PC), instruction register

memory-address register (MAR), flags register (FLAGS), register file (RF), and tempo

registers (REG1 and REG2). The LC-2’s initial state is thus (PC0, IR0, MAR0, FLAGS0,

RF0, REG10, REG20). Table 3.5 shows the control signal values in the implementation

the ADD instruction and the corresponding datapath actions. For every possible MCm,

we injectm into the implementation to form a mutant that is manually simulated to de

mine the type ofm. The ADD instruction has a total of 58 MCEs of which 18 are testab

Examples of these MCEs include: (i) MCE32 (ADD, execute, load_pc_bar,0,1) which co

Table 3.5 Simulation of the instruction ADD DR, SR1, SR2: control signal values
and corresponding datapath actions.

Simulation
results

Instruction cycles
1: Fetch 2: Decode 3: Execute

Control
signal values

read_mem_bar := 1’b0
write_mem_bar := 1’b1
load_pc_bar := 1’b1
RE1 := 1’b0
RE2 := 1’b0
WE := 1’b0
load_ir_bar := 1’b0
load_flags_bar := 1’b1
load_reg1_bar := 1’b1
load_reg2_bar := 1’b1
reg2_to_bus_bar := 1’b1
sel_ab_mux := 2’b00
R1 := SR1
R2 := SR2
W := DR

read_mem_bar := 1’b1
write_mem_bar := 1’b1
load_pc_bar := 1’b1
RE1 := 1’b1
RE2 := 1’b1
WE := 1’b0
load_ir_bar := 1’b1
load_flags_bar := 1’b1
load_reg1_bar := 1’b0
load_reg2_bar := 1’b0
reg2_to_bus_bar := 1’b1
R1 := SR1
R2 := SR2
W := DR

read_mem_bar := 1’b1
write_mem_bar := 1’b1
load_pc_bar := 1’b0
RE1 := 1’b0
RE2 := 1’b0
WE := 1’b1
load_ir_bar := 1’b1
load_flags_bar := 1’b0
load_reg1_bar := 1’b1
load_reg2_bar := 1’b1
reg2_to_bus_bar := 1’b1
zero_or_sign := 1’b1
sel_alu_mux := 1’b0
sel_rf_mux := 2’b00
sel_pc_mux := 2’b00

S3 := 1’b1
S2 := 1’b0
S1 := 1’b0
S0 := 1’b1
M := 1’b1
R1 := SR1
R2 := SR2
W := DR

Corresponding
datapath
actions

MEM := MEM0
IR := MEM[PC0]
PC := PC0
FLAGS := FLAGS0
REG1 := REG10
REG2 := REG20
RF := RF0
MAR := MAR0

MEM := MEM0
PC := PC0
IR := IRP
FLAGS := FLAGS0
REG1 := RF[SR1]
REG2 := RF[SR2]
RF := RF0
MAR := MAR0

MEM := MEM0
PC := PC0 + 1
IR := IRP
FLAGS := Detect(REG1 + REG2)
REG1 := REG1P
REG2 := REG2P
RF[DR] := REG1 + REG2
MAR := MAR0

78

y and

, 0,

uce

8 test-

e that

0H. So,

ation

shown

DD

tion

, and

ors in
responds to the PC being stuck at the address of the ADD instruction in main memor

hence executing the ADD instruction indefinitely, and (ii) MCE48 (ADD, execute, S1

1) which corresponds to changing the ALU operation from plus to logical OR. To red

the number of testable MCEs, dominance relations among MCEs are used. Of the 1

able MCEs, only MCE32 can be removed by dominance— any instruction sequenc

detects MCE48 will also detect MCE32.

In generating a test sequence for the MCEs of an instructioni, we first target MCEs in

the last cycle ofi with the hope that other MCEs in earlier cycles ofi are detected by the

generated sequence. The specifications of LC-2 give the starting PC address as 300

we start our PC value with a number larger than 3000H to give some space for justific

of instructions, say 3080H. We generated manually the 10-instruction test sequence

in Figure 3.12 to detect all 15 MCEs on control signals having constant values in the A

instruction.

To get some idea of the total number of MCEs in the LC-2, we analyzed its instruc

set and found that 430 MCEs (18.9%) are testable, 763 MCEs (33.5%) are invalid

1085 MCEs (47.6%) are redundant.

3.6 Discussion

The preceding experiments indicate that very good coverage of actual design err

Figure 3.12 A test sequence for most MCEs in the ADD DR, SR1, SR2 instruction.

307A: 0010 000 100000000 LD R0, 105H
307B: 0010 001 100000001 LD R1, 106H
307C: 0101 001 001 0 00 000 AND R2, R1, R0
307D: 1010 010 100000011 LDI R2, 103H
307E: 0010 000 100000000 LD R0, 100H
307F: 0010 001 100000001 LD R1, 101H
3080: 0001 001 001 0 00 000 ADD R1, R1, R0
3081: 0011 001 100000010 ST R1, 102H
3082: 0001 011 010 0 00 010 ADD R3, R2, R2
3083: 1000 010 100000100 BRZ 104H

3100: 0000 0000 0000 0110 Data = 6
3101: 0000 0000 0000 0101 Data = 5
3102: xxxx xxxx xxxx xxxx Storage
3103: 0011 0001 0000 0100 Data = 3104H
3104: 0000 000000000000 NOP
3105: 0000 0000 0000 0001 Data = 1
3106: 0000 0000 0000 0010 Data = 2

79

deled

s our

ange of

n ver-

Then

condi-

als,

h test

esign

dratic

ration.

rrors

.3

ne of

rvation

ontrol

most

ble.

nera-

that

are

le to

ition

f

ly, so

indus-
high-level designs can be obtained by complete test sets for a limited number of mo

error types, such as those defined by our basic and conditional error models. Thu

methodology can be used to construct focused test sets aimed at detecting a broad r

actual design bugs. More importantly, perhaps, it also supports an incremental desig

ification that can be implemented as follows: First, generate tests for SSL errors.

generate tests for other basic error types such as BSEs. Finally, generate tests for

tional errors. As the number of SSL errors in a circuit is linear in the number of sign

complete test sets for SSL errors tend to be relatively small. In our experiments suc

sets already detect at least half of the actual errors. To improve coverage of actual d

errors and hence increase the confidence in the design, an error model with a qua

number of error instances, such as BSE and CSSL1, can be used to guide test gene

The conditional error models proved to be especially useful for detecting actual e

that involve missing logic. Most ‘missing module’ and ‘missing input’ errors in Table 3

cannot be covered when only the basic error types are targeted. However, all but o

them is covered when CSSL1 and CBOE errors are targeted as well. The same obse

applies to the ‘missing assignment(s)’ errors in Table 3.2.

Moreover, our experimental results suggest that high coverage of data as well as c

errors can be obtained by a test set for MCEs. An interesting observation is that

MCEs are either invalid or redundant—only 18.9% of the MCEs in the LC-2 are testa

This can significantly reduce the number of MCEs that need to be targeted by test ge

tion. Moreover, the MCE model proved to be especially useful for detecting errors

involve missing logic—all ‘missing assignments(s)’ errors in the LC-2 control unit

covered by tests for MCEs.

The MCE error model and validation approach are, at least in principle, expandab

microprocessors with instruction pipelines, multiple instruction issue, etc. The defin

of the MCE then needs to be generalized to (I,c,s,vc,ve), whereI represents a sequence o

one or more instructions. However, the complexity of the MCE model increases rapid

the applicability of this approach remains to be seen.

The designs used in the experiments are small, but appear representative of real

80

lyze

te the

s and

valida-

more

y of a

pro-

re test

n Fig-

design
trial designs. An important benefit of small-scale designs is that they allow us to ana

each actual design error in detail. The coverage results obtained strongly demonstra

effectiveness of our model-based verification methodology. Furthermore the analysi

conclusions are independent of the manner of test generation. Nevertheless, further

tion of the methodology using industrial-size designs is desirable, and will become

practical when CAD support for design error test generation becomes available.

Error models of the kind introduced here can provide metrics to assess the qualit

given verification test set. For example, full coverage of basic (unconditional) errors

vides one level of confidence in the design, coverage of conditional errors of order

provides another, higher confidence level. Such metrics can also be used to compa

sets and to spur further directed test generation.

We envision the proposed methodology eventually being deployed as suggested i

ure 3.13. Given an unverified design and its specification, tests targeted at modeled

Figure 3.13 Deployment of proposed design verification methodology.

Design error
models

Test
generator

Implementation
simulator

Specification
simulator

Equal?

Diagnose
& debug

Specification

.....… Assisted
verification

Assisted
verification

Unverified
design

Verified
design

CVS
revision
database

Unknown actual error

n 1≥

81

tation.

idance
errors are automatically generated and applied to the specification and the implemen

When a discrepancy is encountered, the designer is informed and perhaps given gu

on diagnosing and fixing the error.

etect-

rate a

erated

e are

caped

s that

rmal

re.

ilt-in

rators

nd test

everal

sed,

n-for-

test

-

d.

tive
CHAPTER 4
BUILT-IN VALIDATION

Chapters 2 and 3 present gate-level and high-level validation methods aimed at d

ing design errors by generating tests for them. These methods’ goals were to gene

small number of tests that have high coverage of design errors and to apply the gen

tests to software models of the specification and implementation. In this chapter, w

interested in detecting residual design errors and fabrication faults that may have es

the detection during the design and manufacturing phases, and operational fault

appear during normal operation. However, to apply the tests on-line, i.e during no

operation, we need to efficiently generate the tests using built-in hardware or softwa

Section 4.1 discusses the need for built-in validation and its achievement via bu

self-test (BIST). Section 4.2 reviews previous work on designing hardware test gene

for BIST and Section 4.3 describes a new approach to designing scalable test sets a

generators. In Section 4.4 we apply this approach to carry-lookahead adders and s

other examples.

4.1 Built-In Self-Test (BIST)

To reduce the cost of testing, design for testability (DFT) techniques are often u

where testability criteria are considered early in the design phase. BIST is a desig

testability technique that places the testing functions physically with the circuit under

(CUT). It has several advantages over the alternative, external testing: (i) the ability to test

in-system and at-speed, (ii) reduced test application time, (iii) less dependence on expen

sive test equipment, and (iv) the ability to automatically test devices on-line or in the fiel

On-line testing is especially important for high-integrity applications such as automo
82

83

Ts,

UT

as

st pat-

. This

spects

form

rated or

e this

test-

nc-

n an

hich

during

with

tech-

UT

ence

ed in
systems, in which we are interested.

When BIST is employed, a digital system is usually partitioned into a number of CU

each of which is logically configured as shown in Figure 4.1. In normal mode, a C

receives its inputsX from other modules and performs the function for which it w

designed. In test mode, a test pattern generator (TG) circuit applies a sequence of te

ternsS to the CUT, and the test responses are evaluated by a response monitor (RM)

chapter concentrates on the design of TG, although we also consider some relevant a

of RM. In the most common type of BIST, test responses are compacted in RM to

response signatures. The signatures are compared with reference signatures gene

stored on-chip, and the error signal indicates any discrepancies detected. We assum

type of response processing in the following discussion.

Although BIST is sometimes considered as a technique to facilitate manufacture

ing, it is also useful for on-line testing. In on-line BIST, testing occurs during normal fu

tional operating conditions. Non-concurrent BIST is carried out while the system is i

idle state. For example, the CUT can be configured for event-triggered testing, in w

case, the BIST control can be tied to the system reset signal, so that testing occurs

system start-up or shutdown. Alternatively, concurrent BIST is carried out in parallel

normal system operation. For example, BIST can be designed as a periodic testing

nique with low fault latency. This requires incorporating a testing process into the C

that guarantees the detection of all target faults within a fixed time. A full test sequ

need not be applied to the CUT all at once; instead, it can be partitioned and appli

Error

X Z

Figure 4.1 Generic BIST scheme.

Control

Test

Response
monitor

generator
TG

Mux

RM

S Circuit under test

CUT

84

y for

ussed

s

rect

sts

lt

y

n

n

d

pace

ll test

d data-

e

well-

y eas-

for
periodic bursts.

Four primary parameters should be considered in developing a BIST methodolog

digital systems; these correspond with the design parameters for on-line testing disc

earlier in Section 1.4.

• Fault coverage: This is the fraction of faults/errors of interest that can be exposed

by the test patterns produced by the TG and detected by the RM. Most RM

produce the same signature for some faulty response sequences as for the cor

response, a property called aliasing. This reduces fault coverage even if the te

produced by the TG provide full fault coverage. Safety-critical applications

require very high fault coverage, typically 100% of the modeled faults.

• Test set size: This is the number of test patterns produced by the TG. This

parameter is linked to fault coverage: generally, large test sets imply high fau

coverage. However, for on-line testing either at system start-up or periodicall

during normal operation, test set size must be kept small to minimize impact o

system resources and reduce fault latency.

• Hardware overhead: This is the extra hardware needed for BIST. In most

applications, low hardware overhead is desirable.

• Performance penalty: This is the impact on performance of the normal circuit

function, such as critical path delays, due to the inclusion of BIST hardware. I

on-line BIST, the performance penalty is directly related to the extra time neede

for testing, i.e. time redundancy.

We have been investigating the design of TGs in the four-dimensional design s

defined by the above parameters with the goals of 100% fault coverage, very sma

sets, and low hardware overhead. The specific CUTs we are targeting are high-spee

path circuits to which most existing BIST methods are not applicable. Our CUTs arN-

input, scalable, combinational circuits with large values ofN (64 or more). They also

employ carry lookahead, a common structure in high-performance datapaths. It is

known that such circuits have small deterministic test sets that can be computed fairl

ily. For example, it is shown in [51] that the standardn-bit carry-lookahead adder (CLA)

design, which hasN = 2n + 1 inputs, has easily-derived and provably minimal test sets

85

G

tterns

esses

ed on

near-

incor-

s [92]

e, our

rs the

types

The

ed

ese pat-

,

ndom

ellu-

signs

chieve
all stuck-line faults; these test sets containN + 1 test patterns. Some low-cost, scalable T

designs for datapath circuits based on C-testability (a constant number of test pa

independent ofN) are known [50] [114], but they do not apply when CLA is used.

In the rest of this chapter, we describe a novel TG design methodology that addr

all the above issues, and illustrate it with several examples. The TG’s structure is bas

a twisted ring counter, and is tailored to generate a regular, deterministic test set of

minimum size. Its hardware overhead is low enough to suggest that the TG can be

porated into a standard cell or core design, as has been done for RAMs [90], adder

and multipliers [50]. For a modest increase in hardware overhead and test set siz

method can also minimize the performance penalty. The proposed approach cove

major types of fast arithmetic circuits, and appears to be generalizable to other CUT

as well.

4.2 Test Generator Design

A generic TG structure applicable to most BIST styles is shown in Figure 4.2 [34].

sequence generator SG produces anm-bit-wide sequence of patterns that can be regard

as compressed or encoded test patterns, and the decoder DC expands or decodes th

terns intoN-bit-wide tests, whereN is the number of inputs to the CUT. Generally,

and the SG can be some type of counter that produces allm-bit patterns.

The most common TG design is a counter-like circuit that generates pseudora

sequences, typically a maximal-length linear feedback shift register (LFSR) [19], a c

lar automaton [23], or occasionally, a nonlinear feedback shift register [42]. These de

basically consist of a sequence generator only, and havem = N. The resulting TGs are

extremely compact, but they must often generate excessively long test sequence to a

Figure 4.2 Basic structure of a test generation circuit.

Sequence
generator

SG

Decoderm N
S

Compressed
test patterns

Test
patterns

DC

m N≤

2
m

86

ntain

-

the

or-

dvan-

to

resent

ted

dom

ed so

-

dified

roach

back

ans-

om,

nter.

tely,

-

e

ounter
acceptable fault coverage. Some CUTs, including the datapath circuits of interest, co

hard-to-detect faults that are detected by only a few test patternsThard. An N-bit LSFR can

generate a sequenceS that eventually includes 2N – 1 patterns (essentially all possibili

ties), however the probability that the tests inThardwill appear early inS is low. Two gen-

eral approaches are known to makeS reasonably short. Test points can be inserted in

CUT to improve controllability and observability; this, however, can result in a perf

mance loss. Alternatively, some determinism can be introduced intoS, for example, by

inserting “seed” tests for the hard faults. Such methods aim to preserve the cost a

tages of LFSRs while makingS much shorter. However, these objectives are difficult

satisfy simultaneously. It can also be argued that pseudorandom approaches rep

“overkill” for datapath CUTs, which, like RAMs [90], seem much better suited to direc

deterministic approaches.

Weighted random testing adds logic to a basic LFSR to bias the pseudoran

sequence it generates so that patterns from the desired test setT appear near the start ofS

[19]. In a related method proposed by Dufaza and Cambon [47], an LFSR is design

that T appears as a square block at the beginning ofS. A test set must usually be parti

tioned into many square blocks, and the feedback function of the LFSR must be mo

after the generation of each block, making this method complex and costly. The app

of Hellebrand et al. [55] [56] modifies the seeds used by the LFSR, as well as its feed

function. In other work, Touba and McCluskey [110] describe mapping circuits that tr

form pseudorandom patterns to make them cover hard faults.

Another large group of TG design methods, loosely called deterministic or nonrand

attempt to embed a complete testT of sizeP in a generated sequenceS. A straightforward

way to do this is to storeT in a ROM and address each stored test pattern using a cou

SG is then a -bit address counter and the ROM serves as DC. Unfortuna

ROMs tend to be too expensive for storing entire test sequences. Alternatively, a

state finite state machine (FSM) that directly generatesT can be synthesized. However, th

relatively large values ofP andN, and the irregular structure ofT, are usually more than

current FSM synthesis programs can handle.

Several methods have been proposed that, like a ROM-based TG, use a simple c

Plog

Plog

87

tput

-

et al.

ng

ion of

s the

heir

ides a

of

f the

ability

ders

eter-

pro-

s

.

this

cir-

h

for SG and design a low-cost combinational circuit for DC to convert the counter’s ou

patterns into the members ofT [9] [43]. Chen and Gupta [37] describe a test-width com

pression technique that leads to a DC that is primarily a wiring network. Chakrabarty

[34] explore the limits of test-pattern encoding, and develop a method for embeddiT

into test sequences of reasonable length.

Some TG design methods strive for balance between the straightforward generat

T using a ROM or FSM, and the hardware efficiency of an LFSR or counter. Perhap

most straightforward way to do this was suggested by Agarwal and Cerny [6]. T

scheme directly combines the ROM and the pseudorandom methods. The ROM prov

small number of test patterns for hard-to-detect faults and the LFSR provides the restT.

None of the BIST methods discussed above explicitly addresses the scalability o

TG as the CUT is scaled to larger data word sizes. Scalable TGs based on C-test

have been described for iterative (bit-sliced) array circuits, such as ripple-carry ad

[92] and array multipliers [50]. However, no technique has been proposed to design d

ministic TGs that can be systematically rescaled as the size of a non-bit-sliced circuit, such

as a CLA, is changed.

This next section introduces a class of TGs where SG is a compact (n + 1)-bit twisted

ring counter and DC is CUT-specific. The output of SG can be efficiently decoded to

duce a carefully crafted test sequenceS that contains a complete test set for the CUT. A

we will see, both SG and DC have a simple, scalable structure of the bit-sliced typeS is

constructed heuristically to match a DC design of the desired type, so we can view

process as a kind of “co-design” of tests and their test generation hardware.

4.3 Scalable Test Generators

We first examine the scalability of the target datapath circuits and their test sets. A

cuit or moduleM(n) with the structure shown in Figure 4.3 is loosely defined asscalableif

its output function Z(n) is independent of the numbern of its input data buses. Each suc

bus isw bits wide; there may also be av-bit control bus, wherew andv are constants inde-

pendent ofn. Bit-sliced arrays are special cases of scalable circuits in which eachw-bit

88

nction

.

r

enter

d

input data bus corresponds to a slice or stage. Most datapath circuits compute a fu

Z(A(n), B(n)), whereA(n) = An–1…A1A0 andB(n) = Bn–1…B1B0, and are scalable in the

preceding sense. They can be expressed in a recursive form such as

Z(A(n+1), B(n+1)) =z[Z(A(n), B(n)), An, Bn]

For example, ifZ is addition, we can write

Zadd(A(n+1), B(n+1)) =Zadd(A(n), B(n)) + 2n × An + 2n × Bn

where the 2n factor accounts for the shifted position of the new operandDn = (An,Bn). Sim-

ilarly, a test sequenceS(n) for a scalable circuitM(n) can be represented in recursive form

S(n) is considered to be scalable if

S(A(n+1), B(n+1)) =s[S(A(n), B(n)), An, Bn]

As we will see, the test scaling functionssandScan take a few regular, shift-like forms fo

the CUTs of interest.

To introduce our method, we use the very simple example of a ripple-carry increm

shown in Figure 4.4. Here the carry-in lineC0 is set to 1 in normal operation, but is treate

as a variable during testing. The increment functionZinc can be expressed as

Zinc(A(n+1)) =Zinc(A(n)) + 2n × An + C0 (4.1)

D0

D1

D2

Dn–1

w

w

w

w

K

n-bit

Figure 4.3 General scalable circuit.

scalableData

v

inputs

Control

…

circuit M
Z

u

inputs

89

st all

er

rn

ot-

half-

bot-

n-

lf-

-

ore-

e a

re-

e a

e

er-

of the

nter
Whenn = 1, Equation (4.1) reduces to the half-adder equation

Zinc(A(1)) = A0 + C0 (4.2)

and (4.2) is realized by a single half-adder. An (n + 1)-bit incrementerMinc(n) is obtained

by appending a half-adder stage toMinc(n –1). Figure 4.4 shows howMinc(3) is scaled up

to implementMinc(4).

A corresponding scaling of a test sequenceSinc(n) for n = 3 to 4 is also shown in the

figure. Sinc(n) consists of 2n + 2 test patterns of the formAn–1An–2…A0C0, each corre-

sponding to a row in the binary matrices of Figure 4.4. These tests exhaustively te

half-adder slices ofMinc(n) by applying the four patterns {00,01,10,11} to each half-add

and propagating any errors to theZ outputs. For example, the first test patte

A3A2A1A0C0 = 00001 inSinc(4) applies 00 to the top three half-adders, and 01 to the b

tom one. The next test 00011 applies 00 to the top two half-adders, 01 to the third

adder from top, and 11 to the bottom one, and so on. If a fault is detected in, say, the

tom half-adder HA0 by some pattern, an error bit appears either onZ0 or on HA0’s carry-

out line; in the latter case, the error will propagate to outputZ1, provided the fault is con-

fined to HA0. ThusSinc(n) detects 100% of all cell faults in the incrementer and, by exte

sion, all SSL faults inMinc(n), independent of the internal implementation of the ha

adder stages. The members ofSinc(n) can easily be shown to constitute a minimal com

plete test with respect to cell faults, SSL faults, IP faults, GSEs, EGEs, and EIEs. M

over, they also provide high coverage of MGEs, MIEs, and WIEs. Note that, unlik

ripple-carry adder, a ripple-carry incrementer such asMinc(n) is notC-testable, and can be

shown to require at least 2n + 2 tests for 100% fault coverage. This linear testing requi

ment is unusual in bit-sliced circuits, but is typical of CLA designs.

Each test in the sequencesSinc(n) shown in Figure 4.4 has been carefully chosen to b

shifted version of the test above it. Moreover, the firstn + 1 tests have been chosen to b

bitwise complements of the secondn + 1 tests. (We will see later that these special prop

ties ofS(n) can be satisfied in other, more general datapath circuits.) The sequence

2(n + 1) test patterns ofS is exactly the state sequence of an (n + 1)-bit twisted ring (TR)

counter—this well-known circuit is also called a switch-tail, Johnson or Moebius cou

90
A0

A1

A2

Z0

Z1

Z2

C0

Z3

Half
adder

Half
adder

Half
adder

Minc(3)

Figure 4.4 Scalable incrementer and the corresponding test sequence and
test generator (twisted ring counter) for (a) n = 3 and (b) n = 4.

A0

A1

A2

C0

FF

FF

FF

FF

TGinc(3)

A0

A1

A2

C0

FF

FF

FF

FF

TGinc(3)

A3

FF

TGinc(4)

A0

A1

A2

A3

Z0

Z1

Z2

Z3

Z4

Half
adder

Half
adder

Half
adder

Half
adder

Minc(4)C0

(a)

(b)

Sinc 4()

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

=

Sinc 3()

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

0 0 0 0

=

Sinc 3()

Minc(3)

91

G is

T

tyle

de-

n

se is

st, a

s

we

es of

our

atap-

, but

t that

-

y

[83]. This immediately suggests that a suitable test generator TGinc(n) for Minc(n) is an (n

+ 1)-bit TR counter, as shown in Figure 4.4. Clearly TGinc(n) is also a scalable circuit.

Thus we have a TG design conforming to the general model of Figure 4.2, in which S

a TR counter and DC is vacuous.

Although at first glance, a TG like TGinc(4) seems to embody a large amount of BIS

overhead given the small size ofMinc(4), we can argue that, in fact, TGinc(4) is of near-

minimal (if not minimal) cost. Assuming 10 test patterns are required, any TG in the s

of Figure 4.2 requires an SG of 10 states, implying = 4 flip-flops, plus an in

terminate amount of logic to implement DC. Our design uses 5 flip-flops—one more tha

the minimum—plus a single inverter. The fact that DC is vacuous in this particular ca

consistent with a basic property of the TR counter: it is almost fully decoded. In contra

comparable (2n + 2)-state ring counter has 2n + 2 flip-flops and is fully decoded, wherea

an ordinary (binary) counter has flip-flops but is fully encoded. Thus

can hope to use TR counters in TGs that require little decoding logic.

As discussed in Chapters 1-3, tests for SSL faults detect several important typ

design errors and physical faults. Hence, detecting all SSL faults is a primary goal in

general approach to designing TGs. We can now outline this approach for scalable d

ath circuits. It uses high-level information about the CUT to explore in a systematic

still heuristic, fashion a large number of its possible complete test sets to find a test se

has a regular,shift-complement(SC)structure resembling that illustrated bySinc(n) in Fig-

ure 4.4. The main steps involved are as follows:

1. Obtain a high-level, scalable model of the CUTM(n).

2. Analyze this model using high-level functional analysis to derive a complete SSL

fault test setT(n) for M(n) for some small value ofn. Use don’t cares in the test

patterns wherever feasible.

3. ConvertT(n) to an SC-style test sequenceS(n) as far as possible.

4. Synthesize a test generatorTG(n) for S(n) in the style of Figure 4.5.

The test generatorTG(n) adds to the TR counter of Figure 4.4 a decoding arrayDC of iden-

tical combinational cellsDC0,DC1,…,DCn–1 that modify the counter’s output as needed b

102log

2n 2+()2log

92

a

n

e state

have

in

ove)

tapath
a particular CUT. The array structure ofDC ensures the scalability of TG. There is also

small mode-control FSM to allowDC to be modified for complex cases like multifunctio

circuits. The only inputs to the mode-control FSM are the signalsH andL, which are active

in the second half of the states of the TR counter and the last state, respectively. Th

behavior of the TR counter and the mode-control FSM are shown in Figure 4.5; they

andk states, respectively, wherek is a fixed number independent ofn. The total

number of states for TG(n) is thus , which approximates the number of tests

the test setT(n).

Our use of functional, high-level circuit models to derive test sets (Step 1 and 2 ab

is based on the work of Hansen and Hayes [52], who show that test generation for da

...

...

S0 S1 Sn

Sn+1S2nS2n + 1

H = 0
L = 0

H = 0
L = 0

H = 0
L = 0

H = 1
L = 0

H = 1
L = 0

H = 1
L = 1

Main (twisted ring counter) FSM

L

R0

R1

Rk–2

Rk–1

L

L

L

L

L

LL

L

Mode-control FSM

Figure 4.5 General structure of TG(n) and its state behavior.

CUT

D0

D1

Dn-2

Dn-1

K

FF0

DC0

Mode-control FSM

....

w

w

w

w

v

H

L

FF1

FF2

FFn–1

DC1

DCn–2

DCn–1FFn

M(n)

2n 2+

k 2n 2+()

93

ing

ired

re is

the-

t diffi-

in a

in the

d test

ir-

nd

)

s

nd

fied by

he

or

he
circuits can be done efficiently at the functional level while, at the same time, provid

100% coverage of low-level SSL faults for typical implementations. The model requ

for Step 1 is usually available for these types of circuits, since their scalable natu

exploited in their specification and carries through to high-level modeling during syn

sis as illustrated by our incrementer example (Figure 4.4). Step 3 is perhaps the mos

cult to formalize. It requires modifying and ordering the tests from Step 2 to obta

sequence of shifted test patterns that resemble the output of the TR counter, but reta

full fault coverage of the original tests.

4.4 Design Examples

In this section, we apply the preceding approach to derive scalable test sets an

generators for CLAs and some other common datapath circuits.

Carry-Lookahead Adder. A CLA is a key component of many high-speed datapath c

cuits, including arithmetic-logic units and multipliers. A high-level model of a genericn-

bit CLA MCLA(n), with the 4-bit 74283 [107] serving as a model, was derived in [51] a

is shown in Figure 4.6. It is composed of (i) a moduleMPGX(n) that realizes the functions

, , and , (ii) a carry-lookahead generator (CLG

moduleMCLG(n) that computes all carry signals, and (iii) an XOR word gate that compute

the sum outputs. The CLG moduleMCLG(n) contains the adder’s hard-to-detect faults, a

so is the focus of the test-generation process. Its testing requirements can be satis

generating tests for the SSL faults on the input lines ofMCLG(n) that propagate the fault

effects along the path toCn, which is the longest and “hardest” fault-detection path. T

resulting test setTCLG(n) contains tests and detects all faults in the CLG logic. F

example, whenn = 2, TCLG(2) = {10101, 10110, 11000, 10100, 10001, 00111}, where t

Figure 4.6 High-level model of the n-bit CLA.

AA

BB

P
G

P
G

C0

C0

SumZ

CarryCn

MPGX(n)

C

n

n

n n

n

n

n+1

1

1

n

MCLG(n)

X

Pi Ai Bi+= Gi AiBi= Xi Ai Bi⊕=

2n 2+

94

h a

lows

any

the

that

sts

The

.

ment
test patterns are in the formP1G1P0G0C0. Hansen and Hayes [52] have proven that suc

test set detects all SSL faults in typical implementations ofMCLG(n). Their method induces

high-level functional faults from the SSL faults, and generatesTCLG(n) for a small set of

functional faults that cover all SSL faults. Because the carry functions are unate, it fol

thatTCLG(n) is a “universal” test set in the sense of [8], hence it covers all SSL faults in

inverter-free AND/OR implementation ofMCLG(n).

Once the tests forMCLG(n) are known, they are traced back to the primary inputs of

MCLA(n) through the moduleMPGX(n); the resulting test sets forn = 2, are shown in Table

4.1a. The table gives a condensed representation ofMCLG(2)’s test requirements within

MCLA(2), and specifies implicitly all possible sets of 6 tests (the minimum number)

cover all SSL faults inMCLG(2). For example, the first row in Table 4.1a defines the te

for the fault “C0 fails to propagate 0 toC2”, which requiresC0 = 1 andAiBi = 10 or 01 fori

= 0 and 1. Hence the potential tests for this fault are {10101, 10011, 01101, 01011}.

second row specifies the test for the faults “A0 or B0 fails to propagate 1 toC2”, which

requiresA0B0 = 00, butAiBi = 10 or 01 as before to ensure error propagation toC2. To test

for all SSL faults in moduleMPGX(n), each pair of bitsAiBi must be exhaustively tested

The tests forMCLG(n) guarantee the application of 00 and 11 on eachAiBi of MPGX(n), as

we can see from Table 4.1a for the case of . Therefore, the remaining require

for testingMPGX(n) is to apply 01 and 10 to eachAiBi, as shown in Table 4.1b. Then XOR

gates that feed the sum outputZ are automatically covered by the tests forMCLG(n) and

MPGX(n), and also provide non-blocking error propagation paths for these modules.

Once we know the possible test sets forMCLA(n), our next goal is to obtain a specific

Table 4.1 Condensed representation of complete test sets in (a) MCLG(2) and (b)
MPGX(2). (c) Specific test sequence for the CLA that follow the SC style.

A1 B1 A0 B0 C0 A1 B1 A0 B0 C0 Test # A1 B1 A0 B0 C0
{10,01} {10,01} 1 01 xx x 1 10 10 1
{10,01} 00 1 10 xx x 2 10 00 1

00 11 1 xx 01 x 3 00 11 1
{10,01} {10,01} 0 xx 10 x 4 01 01 0
{10,01} 11 0 5 01 11 0

11 00 0 6 11 00 0

(a) (b) (c)

n 2=

95

Table

n be

o

to be

11 on

t

ge

erator

ou-

test

truth

na-
test sequence that follows the SC style. Such a test sequence of size 6 is extracted in

4.1c. This sequence is minimal and complete for SSL faults in the CLA [51], as ca

verified by simulation. Tests 1, 2, and 3 are selected to make the 00 pattern applied tAiBi

shift from right to left, as the shading in the table shows. Tests 4, 5, and 6 are selected

the complements of tests 1, 2, and 3 respectively. Hence these tests shift the pattern

AiBi from right to left. The specific test sequenceSCLA(2) in Table 4.1c can be easily

extended to a complete test sequenceSCLA(n) of size for any . For example,

Table 4.2 shows howSCLA(2) is scaled up toSCLA(4) to obtain a complete SC-style tes

sequence for the 74283 CLA.

The functional tests inSCLA(4) give complete coverage of SSL faults and high covera

of several design errors. Error simulation via ESIM shows thatSCLA(4) detects more than

90% of the detectable gate-level design errors in the 74283 CLA.

A test generatorTGCLA(n) for MCLA(n) can now be synthesized fromSCLA(n) following

the general structure in Figure 4.5. As in the incrementer example, the sequence gen

is an (n + 1)-bit TR counter. Note, however, that the number of input lines has almost d

bled fromN = n + 1 toN = 2n + 1. The size ofSCLA(n) is , which is the number of

states of the TR counter, so no mode-control FSM is needed. Table 4.3 lists the CLA

sequence side by side with the TR counter’s output sequence for the 4-bit case; the

table of a decoder cellDCi can be extracted directly, as shown in Figure 4.7. The combi

2n 2+ n 2>

Table 4.2 Complete and minimal SC-style test sequence for the 74283 4-bit
CLA and the corresponding responses.

Test #
Input pattern Response

A3 B3 A2 B2 A1 B1 A0 B0 C0 C4 Z3 Z2 Z1 Z0
1 1 0 1 0 1 0 1 0 1 1 0 0 0 0
2 1 0 1 0 1 0 0 0 1 0 1 1 1 1
3 1 0 1 0 0 0 1 1 1 0 1 1 1 1
4 1 0 0 0 1 1 1 1 1 0 1 1 1 1
5 0 0 1 1 1 1 1 1 1 0 1 1 1 1
6 0 1 0 1 0 1 0 1 0 0 1 1 1 1
7 0 1 0 1 0 1 1 1 0 1 0 0 0 0
8 0 1 0 1 1 1 0 0 0 1 0 0 0 0
9 0 1 1 1 0 0 0 0 0 1 0 0 0 0

10 1 1 0 0 0 0 0 0 0 1 0 0 0 0

2n 2+

96

out-

terns

coder

e

tran-

LA.

r TGs.

t pat-

inputs

-

com-

to all

and

mple
tions (HQi+1Qi) = {010, 101} never appear at the inputs of the decoder cells, hence the

puts ofDCi are considered don’t care for these combinations. Furthermore, the pat

(HQi+1Qi) = {011, 100} never appear at the inputs of the high-order decoder cellDCn–1,

however, we choose not to take advantage of this, since our goal is to keep the de

logic DC simple and regular. The carry-in signalC0 can be seen from Table 4.3 to b

. The resulting design for TGCLA(n) shown in Figure 4.7 requires flip-flops

andn small logic cells that form DC. The hardware overhead of TG, as measured by

sistor count in a standard CMOS implementation, amounts to 35.8% for a 32-bit C

This overhead decreases as the size of the CLA increases, a characteristic of all ou

Our TGs, like the underlying TR counters, produce two sets of complementary tes

terns. Such tests naturally tend to detect many faults because they toggle all primary

and outputs, as well as many internal signals. Ann-bit adder also has the interesting prop

erty thatA plus B plus Cin = CoutS impliesA plus B plus Cin = CoutS,whereplus denotes

addition modulo 2n. Hence the adder’s outputs are complemented whenever a test is

plemented, implying that there are only two distinct responses, 100...0 and 011...1,

the tests in TGCLA(n), as can be seen from Table 4.2. Consequently, a simple, low-cost

scalable RM can be designed for the CLA adder as depicted in Figure 4.7. This exa

shows that some of the benefits of scalable, regular tests carry over to RM design.

Table 4.3 Mapping of the CLA test sequence to the TR counter’s output
sequence.

Test #
TR counter outputs TG outputs (CLA test sequence)

H Q4Q3 Q3Q2 Q2Q1 Q1Q0 A3 B3 A2 B2 A1 B1 A0 B0 C0
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1
2 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1
3 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1
4 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
5 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0
7 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0
8 1 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0
9 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0
10 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

C0 H= n 1+

97

nal

ous
Arithmetic Logic Unit. We first consider ann-bit ALU MALU(n) that employs the standard

design represented by the 4-bit 74181 [107]. This ALU is basically a CLA with additio

circuits that implement all 16 possible logic functions of the formf(A,B). A high-level

model for the 74181 is shown in Figure 4.8 [51], and consists of a CLG moduleM2, a func-

tion select moduleM1, and several word gates. Following the approach of the previ

section, the tests needed for the CLG moduleM2 are traced back to the ALU’s primary

H Qi+1Qi A i B i
0 0 0 1 0
0 0 1 0 0
0 1 1 1 1
1 1 1 0 1
1 1 0 1 1
1 0 0 0 0

TGCLA(n)

Figure 4.7 Scalable test generator and response monitor for an n-bit CLA.

DC0

Qi Bi

Ai

H

Q0

Q1

Q2

Qn–1

Qn

Qi+1

H
......

DC1

DCn–1

FF0

FF1

FF2

FFn

carry-lookahead

An–1
Bn–1

A0
B0

A1
B1

C0

n-bit

adder

MCLA(n)

.....

Cn

FF
Error

Zn–1

Z0

Z1

RMCLA(n)

H

Truth table of DCi DCi circuit

98

n

ALU

y

e

sts

ts in

ula-

ign

e

nd the

ell are

a

inputs. During this process, the signal values applied to the function-select control busSare

chosen to satisfy the testing needs forM1 as well. An obvious choice is to makeSselect the

add (S3S2S1S0 = 1001) and subtract (S3S2S1S0 = 0110) modes of the ALU. However, we

found by trial and error that the assignmentsS3S2S1S0 = 1010 and 0101 lead to a TG desig

with less overhead. The testing needs of the word gates in the high-level model of the

must be also considered. The final test sequenceSALU(n) has an SC structure that closel

resembles that of the CLA. Table 4.4 showsSALU(4); note how the tests exhibit the sam

shifting property as before for the patterns and . Moreover, te

1:20 are the complements of tests 21:40. The test sequenceSALU(4) is not minimal, how-

ever, since 12 tests are sufficient to detect all SSL faults in the 74181 [51]. The tes

SALU(4) are functional, so they have high coverage of several design errors. Error sim

tion via ESIM shows thatSALU(4) detects more than 95% of the detectable gate-level des

errors in the 74181 ALU.SALU(4) can be easily extended toSALU(n) with a near-minimal

size of .

A test generator TGALU(n) for MALU(n) is shown in Figure 4.9, which again follows th

general test generator model of Figure 4.5. Since the test sequence size is a

general test generator has states, the mode-select FSM of TGALU(n) has

states. The state table of the mode-select FSM and the truth table of the decoder c

shown in Figure 4.9. The decoder cellDCi turns to be extremely simple in this case—

single inverter. The overall test generator TGALU(n) requires flip-flops,n inverters,

and a small amount of combinational logic whose size is independent ofn. The hardware

A

B
P
G

C0

C0

F

X

M2 C 4
4

4
4

4

4

4

1

1

4

Figure 4.8 High-level model for the 74181 4-bit ALU.

S 4

4

M

Y

C4

1

1

4

1

CLG

4 1 A=B

A
B

D
E

M1

S

AiBi 11= AiBi 00=

8n 8+

8n 8+

k 2n 2+() k 4=

n 3+

99

o
overhead decreases as the number of inputsn of the ALU increases, and it amounts t

11.4% for a 32-bit ALU.

Table 4.4 Complete and near-minimal SC-style test
sequence for the 74181 ALU.

Test # A3 B3 A2 B2 A1 B1 A0 B0 C0 M S3 S2 S1 S0
1 0 1 0 1 0 1 0 1 1 0 1 0 1 0
2 0 1 0 1 0 1 0 0 1 0 1 0 1 0
3 0 1 0 1 0 0 1 0 1 0 1 0 1 0
4 0 1 0 0 1 0 1 0 1 0 1 0 1 0
5 0 0 1 0 1 0 1 0 1 0 1 0 1 0
6 1 0 1 0 1 0 1 0 0 0 1 0 1 0
7 1 0 1 0 1 0 1 1 0 0 1 0 1 0
8 1 0 1 0 1 1 0 1 0 0 1 0 1 0
9 1 0 1 1 0 1 0 1 0 0 1 0 1 0

10 1 1 0 1 0 1 0 1 0 0 1 0 1 0
11 0 1 0 1 0 1 0 1 1 1 1 0 1 0
12 0 1 0 1 0 1 0 0 1 1 1 0 1 0
13 0 1 0 1 0 0 1 0 1 1 1 0 1 0
14 0 1 0 0 1 0 1 0 1 1 1 0 1 0
15 0 0 1 0 1 0 1 0 1 1 1 0 1 0
16 1 0 1 0 1 0 1 0 0 1 1 0 1 0
17 1 0 1 0 1 0 1 1 0 1 1 0 1 0
18 1 0 1 0 1 1 0 1 0 1 1 0 1 0
19 1 0 1 1 0 1 0 1 0 1 1 0 1 0
20 1 1 0 1 0 1 0 1 0 1 1 0 1 0
21 0 1 0 1 0 1 0 1 1 0 0 1 0 1
22 0 1 0 1 0 1 0 0 1 0 0 1 0 1
23 0 1 0 1 0 0 1 0 1 0 0 1 0 1
24 0 1 0 0 1 0 1 0 1 0 0 1 0 1
25 0 0 1 0 1 0 1 0 1 0 0 1 0 1
26 1 0 1 0 1 0 1 0 0 0 0 1 0 1
27 1 0 1 0 1 0 1 1 0 0 0 1 0 1
28 1 0 1 0 1 1 0 1 0 0 0 1 0 1
29 1 0 1 1 0 1 0 1 0 0 0 1 0 1
30 1 1 0 1 0 1 0 1 0 0 0 1 0 1
31 0 1 0 1 0 1 0 1 1 1 0 1 0 1
32 0 1 0 1 0 1 0 0 1 1 0 1 0 1
33 0 1 0 1 0 0 1 0 1 1 0 1 0 1
34 0 1 0 0 1 0 1 0 1 1 0 1 0 1
35 0 0 1 0 1 0 1 0 1 1 0 1 0 1
36 1 0 1 0 1 0 1 0 0 1 0 1 0 1
37 1 0 1 0 1 0 1 1 0 1 0 1 0 1
38 1 0 1 0 1 1 0 1 0 1 0 1 0 1
39 1 0 1 1 0 1 0 1 0 1 0 1 0 1
40 1 1 0 1 0 1 0 1 0 1 0 1 0 1

100

ion,

-

a

sign is

[69].

his

e pri-

e the

om-

e two

deter-

s a pos-
Multiply-Add Unit . Our next example introduces another important arithmetic operat

multiplication. The high-level model and some implementation details of the target

bit multiply-add unit (MAU)MMAU(n) are shown in Figure 4.10. The MAU composed of

cascaded sequence of carry-save adders followed by a CLA in the last stage. This de

faster than a normal multiply-add unit where the last stage is a ripple-carry adder [16]

Following our general methodology, we first analyze a small version of MAU, in t

instance, the 4-bit case. Again the tests for the CLA (Table 4.2) are traced back to th

mary inputs through the cell array. The primary input signals are selected to preserv

shifting structure of the CLA tests. The resulting MAU tests do not test the cell array c

pletely—two SSL faults per cell remain undetected. These undetected faults requir

extra tests, leading to a complete test set of size 12. Once the possible test sets are

mined, a sequence that has the desired SC structure is constructed. Table 4.5 show

CUT

n-bit

A0
B0

C0

Figure 4.9 Test generator for an n-bit 74181-style ALU.

M S0 S1S2 S3

A1
B1

An–1
Bn–1

74181-style

ALU

En

P0

2-bit binary
counter

P1

MALU(n)

TGALU(n)

Q0

Q1

Qn

...

FF0

FF1

FF2

FFn

H Qi+1Qi A i B i
0 0 0 0 1
0 0 1 0 0
0 1 1 1 0
1 1 1 1 0
1 1 0 1 1
1 0 0 0 1

Truth table of DCi

Present
state

Next
state

Present outputs
M S3 S2 S1 S0

R0 R1 0 1 0 1 0

R1 R2 1 1 0 1 0

R2 R3 0 0 1 0 1

R3 R0 1 0 1 0 1

State table of the mode-select FSM

n n×

101

ily

.

ode-

ad

to a

rs fol-

l

stud-
sible test sequenceSMAU(4) of size 20 forMMAU(4). This test sequence can be eas

extended toMMAU(n), resulting in a test of size .

A test generator TGMAU(n) for MMAU(n) in the target style is shown in Figure 4.11

Since the test sequence size is and the general test generator TG(n) has

states, the mode-select FSM has states (one flip-flop). The state table of the m

select FSM and the truth table forDCi are shown in Figure 4.11. The hardware overhe

of TGMAU(n) is estimated to be only 0.8% for a -bit multiply-add unit.

Booth multiplier . Our technique can also be applied with some minor modifications

fast Booth multiplier that is composed of a cascaded sequence of carry-save adde

lowed by a final stage consisting of a 2n-bit CLA [16]. This design is faster than the usua

Booth multiplier where the last stage is a ripple-carry adder; test generation has been

Figure 4.10 High-level model for the multiply-add unit.

Carry-lookahead adder

P0P1P2P3P4P5P6P7

S0S1S2S3

S4

S5

S6

S7

C0C1C2C3

A0A1A2A3

B0

B1

B2

B3

CinCout

Sin

Cin

Bin

Ain

Sout

Cout

S A B C

Cin
Cout

n

1

n n2n

1

Array cell

Overall function

A0A1A2A3

A0A1A2A3

A0A1A2A3

CoutP = S + A × B + C + Cin

P

2n

4n 4+

4n 4+ k 2n 2+()

k 2=

32 32×

102

ve a

The

-

5.3%

not

m-

e and

One

g and

d to

w best
ied before only for the slower, ripple-carry design [50]. We have been able to deri

complete scalable test sequence of size for the CLA-based Booth multiplier.

corresponding test generator TG(n) contains a TR counter with flip-flops and a 10

state mode-control FSM with 5 flip-flops. The hardware overhead is estimated to be

for a -bit multiplier.

4.5 Discussion

Built-in testing and validation are potentially important features of digital systems,

only for critical applications, but also to satisfy the high-availability requirements of co

mon consumer products as well. To achieve the twin goals of high fault/error coverag

low error latency, hardware features for testing and monitoring must be included.

such hardware feature is BIST, a technique occasionally used in manufacture testin

widely promoted for on-line testing. We have described how BIST can be employe

detect design errors and physical faults. Further research is needed to determine ho

Table 4.5 Complete and near-minimal SC-style test sequence for
the multiply-add unit.

Test # A3B3C3S7S3 A2B2C2S6S2 A1B1C1S5S1 A0B0C0S4S0 Cin
1 11100 11100 11100 11100 1
2 11100 11100 11100 11000 1
3 11100 11100 11000 11101 1
4 11100 11000 11101 11101 1
5 11000 11101 11101 11101 1
6 00011 00011 00011 00011 0
7 00011 00011 00011 00111 0
8 00011 00011 00111 00010 0
9 00011 00111 00010 00010 0

10 00111 00010 00010 00010 0
11 10100 10100 10100 10100 1
12 10100 10100 10100 10000 1
13 10100 10100 10000 10101 1
14 10100 10000 10101 10101 1
15 10000 10101 10101 10101 1
16 01011 01011 01011 01011 0
17 01011 01011 01011 01111 0
18 01011 01011 01111 01010 0
19 01011 01111 01010 01010 0
20 01111 01010 01010 01010 0

4n 14+

n 1+

32 32×

103

oft-

enera-

test

faults

am-

espe-

ich

o have
to systematically integrate hardware features for built-in testing and validation with s

ware to enhance safety and reliability in digital systems.

We have also presented a new approach to the design of scalable hardware test g

tors for BIST, and illustrated it for several practical datapath circuits. The resulting

generators produce extremely small test sets that have complete coverage of SSL

and high coverage of design errors; they are of minimal or near-minimal size for all ex

ples covered. Small test sets of this kind are essential for the on-line use of BIST,

cially in applications requiring fast arithmetic techniques like carry-lookahead, for wh

previously proposed BIST schemes are not well suited. The TGs proposed here als

Present
state

Next
state

Present
output E

R0 R1 0

R1 R0 1

FF0

DC0

....
H

FF1

FF2 DC1

DCn–1FFn

T

TGMAU(n)

E

CUT

n × n-bit

multiply-add unit

S2n–1
Sn–1

Cin

MMAU(n)

Cn–1
Bn–1
An–1

S1

Sn+1

C1
B1
A1

S0

Sn

C0
B0
A0

Q0

Q1

Qn

Q2

Figure 4.11 Test generator for an n × n-bit multiply-add unit.

Q

State table of the
mode-select FSM

Qi

Qi+ 1 Si

Sn+i

Ci

Bi

Ai

H E

H E

E H Qi+1Qi A iB iCiSn+iSi
0 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 1 0 1
0 1 1 1 0 0 0 1 1
0 1 1 0 0 0 1 1 1
0 1 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
1 0 0 1 1 0 0 0 0
1 0 1 1 1 0 1 0 1
1 1 1 1 0 1 0 1 1
1 1 1 0 0 1 1 1 1
1 1 0 0 0 1 0 1 0

Truth table of DCi

DCi circuit

104

same

so far.

. The

e cir-

sting

ay, a

a

unters

ilar

ay be

n be

dur-

lti-

ance

bility,
low hardware overhead, and are easily expandable to test much larger versions of the

target CUT.

Table 4.6 summarizes the results obtained for the scalable TGs we have designed

The first part of the table contains the results for the circuits discussed in Section 4.4

average hardware overhead for the ALU, MAU, and Booth multiplier withn = 32 is

around 6%. The table also indicates how the overhead decreases asn increases from 4 to

32. The overhead for the MAU shrinks by 90%, and the average decrease for all th

cuits is 61%.

When applying BIST in a system, designers usually try to take advantage of exi

flip-flops and logic already present in or around the CUT. For a typical datapath in, s

digital signal processing circuit, all the data inputs to ALUs or multipliers come from

small register file. These registers can be designed to be reconfigured into TR co

like that in Figure 4.5, thus eliminating the need for special flip-flops in SG. Sim

schemes have been proposed in prior techniques such as BILBO [19]. Moreover, it m

possible to share the resulting SGs among several CUTs. Multiplexing logic will the

needed to select the DCs for individual CUTs during test mode but circumvent them

ing normal operation. For a small additional increase in circuit complexity, time-mu

plexing can be used to select the DCs in test mode, while avoiding the perform

penalty associated with multiplexers.

In some cases, it may be feasible to share the entire TG. To illustrate this possi

Table 4.6 Summary of the scalable test generator examples.

Circuit(s)
SSL
fault

coverage

Regular
test set

size

Hardware overhead %

n = 4 n = 8 n = 16 n = 32

Carry-lookahead adder (CLA) 100% 45.5 40.1 36.9 35.8

Arithmetic-logic unit (ALU) 100% 23.2 16.1 12.9 11.4

Multiply-add unit (MAU) 100% 7.8 3.5 1.6 0.8

Booth multiplier 100% 32.9 18.0 9.9 5.3

A combination of ALU,
MAU, and registers

Separate TGs
100%

9.8 5.7 3.3 1.8

Combined TG 6.2 3.6 2.1 1.1

2n 2+

8n 8+

4n 4+

4n 14+

8n 8+

105

s.

sults

head

ion:

ncre-

d

plies to

in

t least

(

nder

impler

trated.
consider ann-bit ALU, an -bit MAU, and a register file connected to a common bu

A single, reconfigurable TG attached to the bus can test both arithmetic units. The re

of this approach are summarized in Table 4.6 for various values ofn, and suggest that

replacing separate TGs for the ALU and MAU by a single combined TG reduces over

by about a third.

Our TG designs shed some light on the following interesting, but difficult quest

How much overhead is necessary for built-in test generation? As we noted in the i

menter case, the size of the TGinc(4) must be close to minimal for any TG that is require

to produce a complete test sequence of near-minimal length. The same argument ap

TGCLA(4), since it has 5 flip-flops in SG and a small amount of combinational logic

DC; any test generator G(4) producing the same number of tests (12) must contain a

4 flip-flops in its SG. In general, the overhead of a TR-counter-based design TG(n) scales

up linearly and slowly withn. The number of flip-flops in some other test generator Gn)

may increase logarithmically withn, but the combinational part of G(n) is likely to scale

up at a faster rate than that of TG(n). This suggest that even if the overhead of TG(n) is

considered high, it may not be possible to do better using other BIST techniques u

similar overall assumptions. If the constraints on test sequence length are relaxed, s

TGs for datapath circuits may be possible, but such designs have yet to be demons

n n×

direc-

more

ional

spe-

ig-

ation

tional

are

al

od

r

g

i-

e

CHAPTER 5
CONCLUSIONS

This chapter reviews the major contributions of this thesis and discusses some

tions for further research.

5.1 Thesis Contributions

Due to increases in design complexity and shorter design cycles, design errors are

likely to escape detection and hence lead to high-cost field failure. Moreover, operat

faults, which occur during normal operation, can also lead to high-cost field failure e

cially in high-availability and safety-critical applications. To increase the reliability of d

ital systems and to reduce the cost of failure, we have developed a lifetime valid

methodology that targets the detection of design errors, fabrication faults, and opera

faults throughout the lifetime of a digital system. The major contributions of this thesis

summarized below.

• A simulation-based gate-level design validation method that uses convention

ATPG techniques for SSL faults to generate the verification tests.

• A rigorous analysis of the gate-level design error models and a systematic meth

to map them into SSL faults.

• A fault/error simulator ESIM that can handle several gate-level design erro

models and physical fault types.

• A design validation method for high-level designs that is based on modelin

design errors and generating simulation vectors for them. The basic and cond

tional design error models are derived from actual error data.

• The concept of mutation control errors and a validation algorithm based on th
106

107

fol-

erat-

circuit

tions.

ow to

gen-

y tests

also

erate

ctual

mod-

ntrol

-2.

sign

error

esign

ns are

he fol-

low

ted in

re
detection of these errors.

• A design method for built-in functional test generation aimed at high-perfor-

mance, scalable datapath circuits.

The proposed lifetime validation methodology for digital systems is based on the

lowing steps: (1) modeling the faults in the system at each stage in its lifetime, (2) gen

ing tests to detect the modeled faults, and (3) applying the generated tests to the

under test and monitoring the responses to detect any deviations from the specifica

This methodology has often been used in manufacture testing; this thesis shows h

apply it to both design verification and on-line testing.

For design verification, we have shown how to model gate-level design errors and

erate tests for them. Our results suggest that most gate-level errors are detected b

aimed at a small number of synthetic and relatively simple error models. We have

shown how to model some basic types of high-level design errors and how to gen

tests for them. Our experimental results also indicate that very high coverage of a

design errors can be obtained with test sets that are complete for a few types of error

els. We have also developed a systematic validation algorithm for the detection of co

errors in microprocessor-like circuits and applied it to a small microprocessor, the LC

We have shown that on-line BIST is an attractive option for detecting residual de

errors and physical faults. On-line BIST can achieve full error coverage, bounded

latency, low hardware and time redundancy. We have introduced a method for the d

of efficient test sets and test-pattern generators for BIST, where the target applicatio

high-performance, scalable datapath circuits. Our hardware test generators meet t

lowing desirable goals: scalability, small test set size, full fault coverage, and very

hardware overhead.

5.2 Future Research

In this final section, we discuss several possible extensions of the results presen

the thesis.

Design Error Diagnosis and Correction: In a typical design process, many iterations a

108

ses all

etec-

cation

y by

haves

ica-

IC

ld of

est-

non-

shes

no-

ing

-level

onally

re-

level

ch as

this

ch as

t it.

diag-

uits?

 type?

-

arks.
performed before the final design is manufactured on an IC. Since a design error cau

manufactured ICs to be faulty, design error diagnosis is more important than error d

tion. Each time a design error is detected, the design is inspected to determine the lo

of the error and correct it. Normally, the correction process is carried out manuall

human designers. Once the IC is manufactured, it is also tested to determine if it be

incorrectly due to fabrication faults. If the production yield is high then detecting fabr

tion faults is more important than fault diagnosis. However, if the yield is low, then the

is diagnosed to determine the source of the fault and consequently improve the yie

future manufacturing.

The problem of gate-level design error diagnosis is similar to SSL fault location. T

ing is the basic method used for fault diagnosis, where we need tests that distinguish

equivalent faults from one another [4]. A complete diagnosis test set distingui

between every pair of (distinguishable) faults in the circuit. The result of the fault diag

sis process is usually a fault dictionary that allow us to identify the fault from observ

the output of the faulty circuit in response to the complete diagnostic test set.

Several researchers have addressed the problem of automatic location of gate

design errors. However, the methods previously suggested are either computati

expensive [79] or do not guarantee finding the location of every error [48][109]. Mo

over, all of the proposed design error location methods are only suitable for gate-

combinational circuits.

Chapters 2 and 3 identify several classes of gate- and high-level design errors su

those shown in Table 3.1 and analyze their detection requirements. By combining

analysis with the identification of the sensitized paths in the circuit, using methods su

critical path tracing [5], it is possible to determine the location of the error and correc

Several questions need to be answered such as: How useful are verification tests in

nosis? How do we generate efficient diagnostic tests especially for sequential circ

What are necessary and sufficient conditions for a test set to locate errors of a given

Automated Test Generation for Design Error Models: In Chapter 3, we manually gen

erated tests for several basic error models in high-level combinational benchm

109

, to

rithm

mall

l. The

icro-

vali-

ther

n. In

ssor.

Such

basic

ener-

uits. It

rch is

ar cir-

y of

por-

for

has

rs as

via

riti-
Developing a high-level test generation algorithm, similar to D-Algorithm or PODEM

detect the basic and conditional error models is of great importance. Such an algo

allows us to automatically generate test sequences for high-level design errors.

We introduced the MCE model in Chapter 3 and validated it experimentally for a s

microprocessor; we also presented a general validation algorithm using this mode

MCE error model and validation approach are, at least in principle, expandable to m

processors with instruction pipelines, multiple instruction issue, etc. Automating our

dation algorithm and extending it to more complex microprocessor types is ano

interesting direction for future research.

High-level symbolic simulation is a basic part of test generation and test evaluatio

Chapter 3, we have manually simulated all the instruction set of the LC-2 microproce

Efficient tools to automate and speed up this fault simulation process are needed.

tools are useful in ISA-based simulation and test generation for MCEs, as well as the

and conditional error models.

Built-In Validation : Chapter 4 presents a method to design scalable hardware test g

ators for detecting residual design errors and physical faults in scalable datapath circ

also describes a scalable compactor circuit for the case of an adder. Additional resea

needed to develop an automated and complete scalable BIST methodology for regul

cuits, especially since it is difficult to simultaneously control the hardware complexit

TG and RM while satisfying the requirement of complete fault coverage. Another im

tant task for future research is to develop a complete built-in validation method

microprocessors, especially for those used in safety-critical embedded systems.

In summary, the lifetime validation approach we have developed in this thesis

proven to be very useful in detecting a wide range of physical faults and design erro

early as possible in the lifetime of a digital system. We believe that lifetime validation

testing and simulation will increase in importance in the future, especially for safety-c

cal applications.

APPENDICES
110

ed in

rrors.

pre-

dif-

ault

allel

of

var-

 tools:

. It

ts

te

d-

r

ro-

rors

IEs),

ilar
APPENDIX A
ERROR/FAULT SIMULATOR ESIM

This appendix describes the error/fault simulator ESIM that we developed and us

Chapters 2 and 4 to determine the ability of test sets to detect gate-level design e

Moreover, several experiments are described to illustrate ESIM’s capabilities. Unlike

vious simulation programs [65], ESIM is designed to efficiently fault simulate several

ferent types of error/fault models. ESIM is based on parallel-pattern single f

propagation with critical path tracing [5] for combinational circuits and standard par

fault simulation, with 32 faults at a time, for sequential circuits [4]. The main goal

ESIM is to evaluate the coverage of specified design errors and logical faults by using

ious test sets that are determined by the following automatic test pattern generation

• ATALANTA [75]: This is a combinational test pattern generator for SSL faults

that is characterized by short test generation time as well as small test set size

is based on the FAN algorithm for test generation.

• ATTEST [17]: This is a powerful sequential test sequence generator for SSL faul

that can be used for full-scan, partial-scan, or non-scan circuits. It can genera

vectors for synchronous and asynchronous circuits, and for circuits with embe

ded RAM, bidirectional ports, and complex bus structures. It can operate in eithe

of the classic PODEM or D-Algorithm modes.

• RTESTS and ETESTS: These test pattern generators were developed by us to p

duce random and exhaustive tests, respectively.

The following error and fault models are handled by ESIM: gate substitution er

(GSEs), gate count errors (GCEs), input count errors (ICEs), wrong input errors (W

SSL faults, and input pattern (IP) faults [22]. Since the sequential part of ESIM is sim
111

112

M in

for-

lts/

milar

trac-

ay

n fact,

tern

++

A.1.

2 are

s and

the
to any standard parallel fault simulator, we only discuss the combinational part of ESI

the rest of this appendix.

The detection of an error/fault in a target circuit is determined by ESIM using the in

mation about the criticality of the lines as well as the activation conditions for the fau

errors. Simulation of GROUP1 errors (GSEs, GCEs, and EIEs) is performed in a si

manner to SSL fault simulation by using parallel-pattern evaluation and critical path

ing. Error simulation for GROUP2 errors (MIEs and WIEs) cannot be done this w

because the large number of possible errors prevent the use of complete error lists. I

we performed error simulation for GROUP2 errors using a mixture of parallel-pat

evaluation, multiple error activation, and single fault propagation. ESIM is written in C

and its simulation algorithms for GROUP1 and GROUP2 errors are shown in Figure

The simulation algorithm for IP faults is similar to that of GROUP1.

The benchmark circuits used in the experiments of this appendix and Chapter

described at the end of the appendix. Table A.1 shows the number of design error

logical faults in these circuits. We now describe several experiments that illustrate

/* C is the circuit*/
/* T is the simulation test set */

procedure Group1-Simulation(C,T);
begin

Form the fault/error listL;
Form stem listS;
repeat

Select a packetP of 32 tests fromT;
T := T - P;
Set all signals inC as noncritical;
S := S - {stems with no faults in their fanout

free regions;}
Perform fault free simulation usingP;
Determine criticality of stems inS via simulation;
TraverseC backwards and determine criticality of

all signals;
Identify detected faults/errorsD;
L := L - D;

until T is empty orL is empty;
Print the results;

end;

Figure A.1 Error simulation algorithms for GROUP1 and GROUP2 errors.

procedure Group2-Simulation(C,T);
begin

Form gate listGL;
repeat

Select a gateG from GL;
GL := GL - {G};
CT := T;
repeat

Select a packetP of 32 tests fromCT;
CT := CT - P;
Perform fault free simulation usingP;
Determine criticality ofG’s output;
NC := {gates ofC not in the cone of influence ofG};
if (G’s output is critical)then
repeat

Select a gateG’ from NC;
NC := NC - {G’};
Mark all detected MIEs and WIEs that have the

output ofG’ as the wrong source;
until NC is empty;

until CT is empty;
Update the results;

until GL is empty;
Print the final results;

end;

113

his

lts

,

as

ent

is
capabilities of ESIM.

• Experiment 1 (Exhaustive simulation): The first experiment was conducted to

investigate exhaustive simulation. The tests are generated using ETESTS. T

experiment gives us the percentage of redundant design errors and logical fau

in the simulated circuits. The results of the experiment are shown in Table A.2

from which we see that the redundancy of some types of design errors can be

large as 11.61%, and that of IP faults can be as large as 33.47%. This experim

is performed only for those benchmarks where simulation with exhaustive tests

feasible—circuits with approximately 16 or fewer inputs.

Table A.1 Numbers of faults and design errors in the circuits used in the
experiments.

Circuit SSL
faults

IP
faults

GSEs GCEs ICEs
WIEs

SIGSEs MIGSEs EGEs MGEs EIEs MIEs

c17 22 24 11 30 2 0 12 40 92

c432 524 2508 312 600 67 9460 296 18482 52063

c499 758 1072 337 810 104 1500 368 31452 81576

c880 942 1614 586 1470 199 1040 640 120779 299868

c1355 1574 2384 881 2370 216 1500 992 208476 480408

c1908 1879 5374 1467 2205 252 12775 1059 358816 1217410

c2670 2747 4842 1994 3380 476 4485 1559 940307 2881417

c3540 3428 10258 2584 4780 634 23470 2226 1513437 4658069

c5315 5350 11728 3902 7065 986 18110 3492 3454806 10738696

c6288 7744 9600 3904 11920 944 0 4768 4999155 10055805

c7552 7550 14636 5450 10510 1408 14390 4734 7707830 22536439

7485 137 472 86 155 20 1565 97 974 3456

74181 237 454 146 265 36 855 143 3750 11621

74283 128 240 74 150 17 460 76 985 3285

Table A.2 The percentages of SSL faults and design errors detected using
exhaustive test sets.

Circuit
Test
set

 size

Detected
SSL

faults

Detected
IP faults

Detected GSEs Detected
GCEs Detected ICEs Detected

WIEs
SIGSEs MIGSEs EGEs MGEs EIEs MIEs

c17 32 100 100 100 100 100 N/A 100 95.00 100

7485 2048 100 66.53 100 88.39 100 94.38 100 91.17 97.45

74181 16384 100 96.48 100 98.49 88.89 99.53 100 96.61 99.07

74283 512 100 96.67 100 94.67 100 100 100 90.03 96.93

114

ted

of

and

all

n

-

L

y

,

ets

t

• Experiment 2 (Random simulation): The second experiment evaluates the ran-

dom simulation approach. Random test sets of sizes 1 through 20 were genera

by RTESTS for the c74283 carry-lookahead adder circuit and the coverage

design errors was determined using ESIM. The process was repeated 50 times

the average coverage obtained is shown in Table A.3. The table shows that a sm

number of vectors provide good (but not full) coverage of design errors. The mai

problem with random simulation of this type is that it cannot guarantee high cov

erage with a relatively small number of vectors.

• Experiment 3 (Simulation using SSL tests): A third experiment was conducted to

determine the coverage of design errors and logical faults using tests for SS

faults. The effectiveness of a complete test set for SSL faults (determined b

ATALANTA) in detecting design errors is shown in Tables A.4 and A.5. As dis-

cussed earlier, most of the simulation time is spent in the simulation of GROUP2

especially as the circuits become larger. The effectiveness of the complete test s

for SSL faults in detecting IP faults is shown in Table A.6. The results show tha

Table A.3 The percentages of SSL faults and design errors detected in the 4-bit
74283 adder circuit using random test sets.

Test
set size SSL SIGSE MIGSE EGE MGE EIE MIE WIE

1 28.52 47.68 48.08 60.94 23.14 17.26 17.66 23.04
2 44.88 61.14 65.17 76.71 35.58 30.21 29.54 37.95
3 54.12 68.32 72.45 86.35 45.72 39.26 36.33 47.18
4 63.77 75.62 80.56 93.41 54.13 48.47 45.28 57.07
5 67.69 78.11 81.87 92.71 56.16 53.11 49.42 60.49
6 72.13 81.03 86.51 96.71 61.34 57.74 54.47 65.65
7 73.62 81.78 87.52 96.47 62.52 59.89 57.09 67.86
8 78.12 86.86 89.25 99.06 70.23 66.89 60.18 72.75
9 76.94 84.54 88.91 97.88 69.66 66.63 60.23 72.18

10 80.87 87.57 90.72 99.76 72.14 70.37 65.82 75.79
11 81.10 87.41 91.39 99.76 73.99 73.21 65.47 76.48
12 83.19 89.62 91.33 99.76 76.03 74.89 68.17 78.56
13 84.04 90.65 92.53 100.00 78.68 75.16 70.35 79.53
14 82.63 90.16 92.13 100.00 79.78 76.58 68.43 78.88
15 85.08 92.00 92.48 100.00 80.70 78.05 71.31 80.99
16 85.54 92.38 93.01 100.00 82.18 78.05 71.78 81.52
17 85.21 91.62 92.67 100.00 80.88 79.26 71.71 81.27
18 87.88 94.38 93.20 100.00 84.68 81.16 74.78 83.89
19 87.35 93.14 93.01 100.00 83.90 81.74 74.81 83.30
20 87.85 93.35 93.28 100.00 84.62 82.16 74.79 83.89

115
complete test sets for SSL faults do a very poor job in detecting IP faults.

Table A.4 The percentages of SSL faults and design errors detected using
complete SSL tests generated by ATALANTA.

Circuit
Test
set
size

Detected
SSL faults

Detected GSEs Detected GCEs Detected ICEs Detected
WIEsSIGSEs MIGSEs EGEs MGEs EIEs MIEs

c17 5 100 100 80.0 100 N/A 100 57.5 88.04

c432 46 99.24 100 89.33 100 95.51 98.65 71.33 96.36

c499 52 98.94 100 97.78 46.15 89.60 97.83 88.77 98.55

c880 47 100 100 90.34 100 94.62 100 84.92 98.55

c1355 85 99.49 100 82.03 100 89.60 99.19 82.18 98.55

c1908 115 99.52 100 84.72 97.62 88.69 99.15 85.80 96.95

c2670 106 95.74 99.70 86.51 87.61 88.92 93.20 85.94 97.44

c3540 152 96.00 99.34 89.52 90.54 81.21 94.20 82.73 97.52

c5315 106 98.90 99.97 89.46 98.88 91.67 98.34 94.45 98.93

c6288 35 99.56 99.59 85.57 100 N/A 99.29 89.28 99.63

c7552 199 98.25 99.98 86.62 97.37 90.29 97.21 93.15 98.68

7485 25 100 100 88.39 100 89.78 100 83.37 92.68

74181 18 100 100 96.23 88.89 90.64 100 81.76 94.02

74283 12 100 100 91.33 100 84.13 100 74.54 92.21

Table A.5 The CPU times in seconds spent on a SUN SPARC 20 by
ESIM using complete SSL tests generated by ATALANTA.

Circuit
Initialization Simulation

 for GROUP1
Simulation

for GROUP2 Total
time

Time % Time % Time %

c17 0.04 50 0.02 25 0.02 25 0.08

c432 0.26 1.11 15.81 67.62 7.31 31.27 23.38

c499 0.34 2.28 3.70 24.92 10.81 72.80 14.85

c880 0.55 1.55 1.88 5.28 33.14 93.17 35.57

c1355 0.86 0.71 7.33 6.06 112.84 93.23 121.03

c1908 1.36 0.49 25.41 9.15 250.91 90.36 277.68

c2670 1.99 0.39 18.13 3.53 493.21 96.08 513.33

c3540 2.96 0.22 218.99 16.07 1140.77 83.71 1362.71

c5315 6.38 0.28 89.50 3.90 2199.19 95.82 2295.07

c6288 5.25 0.28 73.76 3.87 1824.62 95.85 1903.63

c7552 8.35 0.12 179.70 2.47 7079.72 97.41 7267.77

7485 0.08 3.56 1.85 82.22 0.32 14.22 2.25

74181 0.12 7.69 0.51 32.69 0.93 59.62 1.56

74283 0.07 11.67 0.29 48.33 0.24 40 0.60

116

ical

y

n-

ns

ir-

f

-

e

f

Although ESIM was designed to handle the simulation of design errors and log

faults, it has capabilities that can be used in other applications.

• Test grading: The error simulator can determine the number of faults detected b

a given test. This information is useful in applications such as hardware test ge

eration and test set compaction.

• Fault grading: This refers to classifying the faults as hard-to-detect (also called

random pattern resistant) or easy-to-detect. Fault grading has many applicatio

such as test generation and test point selection.

• Fault table generation: The simulator can generate a complete fault table for cir-

cuits with 16 or fewer inputs; for larger circuits, partial fault tables can also be

generated. This feature of the simulator is used to analyze the faults of a given c

cuit. Note that ESIM performs simple SSL fault collapsing to reduce the size o

the fault table.

• Test generation: The simulator also supports a fast, greedy test generation algo

rithm based on covering the fault table. Experimental results show that th

algorithm often produces near-minimal test sets in circuits with small number o

Table A.6 The percentage of IP faults detected using
complete SSL tests generated by ATALANTA.

Circuit Test
 set size

Detected
IP faults

Simulation time on a
SUN SPARC 20 (sec)

c17 5 75.00 0.01

c432 46 25.68 1.00

c499 52 80.78 1.12

c880 47 85.32 3.84

c1355 85 75.25 6.19

c1908 115 61.85 17.30

c2670 106 76.46 21.35

c3540 152 50.25 79.05

c5315 106 74.25 183.11

c6288 35 81.73 219.12

c7552 199 78.46 391.84

7485 25 40.68 0.09

74181 18 70.70 0.12

74283 12 56.67 0.04

117

-

s

ture

en by

haus-

uits

1355,

]. The
inputs.

• Dependency evaluation: This refers to the structural dependency between any two

circuit outputs. The idea is to determine the common lines in the cones of influ

ence of two outputs. This is useful in concurrent monitoring, where circuit output

are compacted to decrease the hardware overhead of the hardware test/signa

generator.

• Netlist translation: Most CAD tools accept various netlist formats, such as ISCAS

85 and BLIF. ESIM can translate any ISCAS 85 description to ISCAS 89, BLIF,

and Verilog. A major use of the translator is in the synthesis of logic circuits using

SIS [105], whose input format is BLIF.

ESIM also report some statistics about the circuit being simulated. This can be se

the sample run shown in Figure A.2, where ESIM determines the coverage of an ex

tive test set for the 74283, a 4-bit carry-lookahead adder circuit.

Circuit description : Table A.7 describes the input-output characteristics of the circ

used in the experiments discussed in this thesis. The circuits c17, c432, c499, c880, c

c1908, c2670, c3540, c5315, c6288, and c7552 form the ISCAS 85 benchmark set [25

esim c74283.isc c74283.xhv

ESIM Copyright 1995
Programmer: Hussain Al-Asaad

Gates = 104
=================================
 Gtype Ngates Mxfin Mxfout
=================================
 nand 4 2 7
 and 14 5 1
 nor 8 5 5
 or 0 0 0
 xor 4 2 0
 xnor 0 0 0
 inpt 9 0 2
 from 59 1 1
 not 6 1 5
 buff 0 0 0
=================================
Levels = 6
Inputs = 9
Outputs = 5

Stems = 22
Tests = 512

SSL 128 128 100.00 0.09
======= ======= ======= ======= ======
 SIGSE 74 74 100.00
 MIGSE 150 142 94.67
 EGE 17 17 100.00
 MGE 460 460 100.00
 EIE 76 76 100.00

TOTAL 777 769 98.97 0.22
======= ======= ======= ======= ======
 MIE 1143 1029 90.03
 WIE 3285 3184 96.93

TOTAL 4428 4213 95.14 2.86
======= ======= ======= ======= ======

IP 240 232 96.67 0.15
======= ======= ======= ======= ======

Initialization Time = 0.27
Simulation Time = 3.32
Total Time = 3.59

Figure A.2 Output generated by a sample run of ESIM.

118

arry-

gate
7485, 74181, and 74283 are a 4-bit comparator, an arithmetic-logic unit, and a c

lookahead adder respectively; all are in the 74X IC series [107]. Table A.8 shows the

type distribution of the circuits used.

Table A.7 Characteristics of the circuits used in the experiments.

Circuit No. of inputs No. of outputs No. of levels No. of stems a

a. Including the primary outputs.

c17 5 2 6 5

c432 36 7 29 96

c499 41 32 16 91

c880 60 26 34 151

c1355 41 32 39 291

c1908 33 25 60 410

c2670 233 140 52 594

c3540 50 22 70 601

c5315 178 123 67 929

c6288 32 32 217 1488

c7552 207 108 61 1408

7485 11 3 8 20

74181 14 8 11 39

74283 9 5 6 22

Table A.8 Gate type distribution in the selected circuits.

Circuit AND OR XOR NAND NOR XNOR NOT BUFF FROMa

a. Represents a fanout branch.

c17 0 0 0 6 0 0 0 0 6

c432 4 0 18 79 19 0 40 0 236

c499 56 2 104 0 0 0 40 0 256

c880 87 29 0 87 61 0 63 26 437

c1355 56 2 0 416 0 0 40 32 768

c1908 63 0 0 377 1 0 277 162 995

c2670 333 77 0 254 12 0 321 196 1244

c3540 498 92 0 298 68 0 490 223 1821

c5315 718 214 0 454 27 0 581 313 2830

c6288 256 0 0 0 2128 0 32 0 3840

c7552 776 244 0 1028 54 0 876 534 3833

7485 21 0 0 4 6 0 0 0 75

74181 29 1 8 3 12 0 7 5 115

74283 14 0 4 4 8 0 6 0 59

veral

enta-

ichi-

c and

e has

ns:

uc-

P,

ssing

rogram

mem-

struc-

s:

d is

t, and

nternal

diate
APPENDIX B
THE LC-2 MICROPROCESSOR

In this appendix, we describe the LC-2 microprocessor [99] which was used in se

experiments in Chapter 3. We also present our behavioral and RTL Verilog implem

tions of it.

B.1 Description of LC-2

The LC-2 microprocessor is used for educational purposes at the University of M

gan. It has 8 general purpose registers, each of which is 16 bits wide. The arithmeti

logic units operate on 16 bit words. Addresses are also 16 bits wide, so the machin

64K words, or 128 KB of memory. The instruction set contains 16 basic instructio

arithmetic and logic instructions (ADD, AND, NOT, and NOP), data movement instr

tions (LD, LDI, LDR, ST, STI, STR, LEA), flow control instructions (BR, JSR, JM

JSRR, JMPR, RET), and a system control instruction (TRAP). The simplest addre

scheme, direct addressing, forms addresses by concatenating the top 7 bits of the p

counter with 9 bits of page address specified in the instruction. This means that the

ory space is divided into 128 pages of 512 words each. Table B.1 summarizes the in

tion formats of the LC-2. Only the following instructions modify the condition code

ADD, AND, NOT, LD, LDI, LDR, LEA. The fields MBZ and MB1 of the instructions

must be set to all-0 and all-1 respectively.

Addressing modes: An addressing mode defines the way in which a data operan

accessed. The LC-2 has five addressing modes: register, immediate, direct, indirec

base+index. With register addressing, the operand to be accessed is located in an i

register of the LC-2. If a source operand is part of the instruction, it represents an imme
119

120

ing, the

d in the

s.

d by

mber

used

mem-
operand and is accessed using the immediate addressing mode. With direct address

operand is at a specified address on the current page. A direct address can be place

pgoffset9 field (bits 8 to 0 of the instruction, i.e. IR[8:0]) of the LD and ST instruction

The 9 bits directly identify the memory address on the current page which is specifie

PC[15:9]. A complete 16-bit absolute address is formed by concatenating the page nu

PC[15:9] and the pgoffset9, i.e. the final address is PC[15:9]@ IR[8:0]. This address is

as access 16-bit data element. The indirect addressing mode allows the contents of a

Table B.1 Summary of instruction formats and semantics of the LC-2.

Instruction fields

Mnemonic 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD DR, SR1, SR2
0001 DR SR1

0 MBZ SR2

ADD DR, SR1, imm5 1 imm5

AND DR, SR1, SR2
0101 DR SR1

0 MBZ SR2

AND DR, SR1, imm5 1 imm5

BR label

1000

N=0 Z=0 P=0

pgoffset9

BRN label N=1 Z=0 P=0

BRZ label N=0 Z=1 P=0

BRP label N=0 Z=0 P=1

BRNZ label N=1 Z=1 P=0

BRNP label N=1 Z=0 P=1

BRZP label N=0 Z=1 P=1

BRNZP N=1 Z=1 P=1

JMP label
0100

L=0
MBZ pgoffset9

JSR label L=1

JMPR BaseR, index6
1100

L=0
MBZ BaseR index6

JSRR BaseR, index6 L=1

LD DR, label 0010 DR pgoffset9

LDI DR, label 1010 DR pgoffset9

LDR DR, BaseR, index6 0110 DR BaseR index6

LEA DR, label 1110 DR pgoffset9

NOP 0000 MBZ

NOT DR, SR 1001 DR SR MB1

RET 1101 MBZ

ST SR, label 0011 SR pgoffset9

STI SR, label 1011 SR pgoffset9

STR SR, BaseR, index6 0111 SR BaseR index6

TRAP trapvec8 1111 MBZ trapvec8

121

I and

the

nt to be

mode

some

spec-

the

for the

ocess

ase reg-

each

.

uc-

irect

s the

ess is

9] @

page

g the

d

for a

t we

2 and
ory location to contain the address of the data element. It is implemented with the LD

STI instructions. Bits IR[8:0] and the page number PC[15:9] are concatenated to form

indirect address whose memory contents are the absolute address of the data eleme

fetched (in the case of LDI) or stored (in the case of STI). The base+index addressing

allows the programmer to specify the absolute address of an operand as an offset from

particular starting address, which is contained in a base register BaseR. The offset is

ified by the index IR[5:0] in the instruction. The absolute address is formed by adding

contents of the base register to the zero-extended offset. This address is then used

LDR or STR operation. It is convenient to use the base+index addressing mode to pr

sequential data structures such as strings, records, arrays, etc. Supposing that the b

ister points to the beginning of an array of items, it must be incremented by the size of

element to traverse through the array. The index can also specify a field in each item

Branching modes: A branching mode defines the way in which a branch or jump instr

tion is executed. The LC-2 has two basic branching modes, direct and indirect. D

branches are implemented by the BR and JSR instructions. IR[8:0] directly identifie

target address on the current page specified by PC[15:9]. An absolute 16-bit addr

formed by concatenating the page number PC[15:9] and the pgoffset9, i.e. PC[15:

IR[8:0]. This address is placed into the PC. Branches to locations not on the current

are implemented with the JSRR instruction. The new PC contents are formed by addin

contents of the BaseR to the 6-bit index IR[5:0]. TheL (link) field in the JSR instruction

distinguishes it from the BR instruction. IfL = 1, the current contents of the PC are copie

to R7 before the jump takes place. This action forms a link to the calling subroutine

later return. IfL = 0, the contents of PC are discarded.

B.2 Behavioral Verilog Description of LC-2

We give next a complete behavioral Verilog model of the LC-2 microprocessor tha

constructed. This model was used for the design error data collection in Section 3.

for the evaluation of the proposed design error models in Section 3.4.

module bcpu(clock,clear,dbus,abus,write_mem_bar,read_mem_bar);

input clock,clear;

122
inout [15:0] dbus;
output [15:0] abus;
output write_mem_bar,read_mem_bar;
reg [15:0] pc,ir, R[7:0], rt, tf;
reg P,N,Z;
reg read_mem_bar_temp,write_mem_bar_temp;
reg [15:0] abus_temp,dbus_temp;
reg [3:0] opcode;

`define cpu_delay 5

assign #`cpu_delay abus = abus_temp;
assign #`cpu_delay dbus = dbus_temp;
assign #`cpu_delay read_mem_bar = read_mem_bar_temp;
assign #`cpu_delay write_mem_bar = write_mem_bar_temp;

always
 begin
 if (clear == 1’b0)
 begin
 read_mem_bar_temp = 1’b1;
 write_mem_bar_temp = 1’b1;
 pc = 16’b0;
 N = 1’b0;
 P = 1’b0;
 Z = 1’b0;
 rt = 16’b0000;
 tf = 16’b0000;
 dbus_temp = 16’bzzzz;
 abus_temp = 16’bzzzz;
 @(posedge clear) #1;
 @(posedge clock) #1;
 end
 else
 begin

// Fetch instruction
abus_temp = pc;
read_mem_bar_temp = 1’b0;
@(posedge clock) #1;
ir = dbus;
read_mem_bar_temp = 1’b1;

// Decode
opcode = ir[15:12];

// Execute
case (opcode)
 4’b0000:; // NOP
 4’b0001: // ADD
 if (ir[5] == 1’b0)
 R[ir[11:9]] = R[ir[8:6]] + R[ir[2:0]];
 else
 begin

rt = {ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],
 ir[4],ir[4],ir[4],ir[4],ir[4:0]}; // Sign extend
R[ir[11:9]] = R[ir[8:6]] + rt;
tf = R[ir[11:9]];

 end

123
 4’b0010: // LD
 begin
 abus_temp = {pc[15:9],ir[8:0]};
 read_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 R[ir[11:9]] = dbus;
 tf = R[ir[11:9]];
 read_mem_bar_temp = 1’b1;
 end
 4’b0011: // ST
 begin
 abus_temp = {pc[15:9],ir[8:0]};
 dbus_temp = R[ir[11:9]];
 write_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 write_mem_bar_temp = 1’b1;
 dbus_temp = 16’bzzzz;
 end
 4’b0100: // JSR
 begin
 if (ir[11] == 1’b1)
 R[7] = pc + 1;
 pc = {pc[15:9],ir[8:0]};
 end
 4’b0101: // AND
 if (ir[5] == 1’b0)
 R[ir[11:9]] = R[ir[8:6]] & R[ir[2:0]];
 else
 begin
 rt = {ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],

 ir[4],ir[4],ir[4],ir[4],ir[4:0]}; // Sign extend
 R[ir[11:9]] = R[ir[8:6]] & rt;
 tf = R[ir[11:9]];
 end
 4’b0110: // LDR
 begin
 abus_temp = R[ir[8:6]] + ir[5:0];
 read_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 R[ir[11:9]] = dbus;
 tf = R[ir[11:9]];
 read_mem_bar_temp = 1’b1;
 end
 4’b0111: // STR
 begin
 abus_temp = R[ir[8:6]] + ir[5:0];
 dbus_temp = R[ir[11:9]];
 write_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 write_mem_bar_temp = 1’b1;
 dbus_temp = 16’bzzzz;
 end
 4’b1000: // BR
 if (((ir[11] == 1’b1) && (N == 1’b1)) ||
 ((ir[10] == 1’b1) && (Z == 1’b1)) ||
 ((ir[9] == 1’b1) && (P == 1’b1)))
 pc = {pc[15:9],ir[8:0]};
 else
 pc = pc + 1;

124
 4’b1001: // NOT
 begin
 R[ir[11:9]] = ~R[ir[8:6]];
 tf = R[ir[11:9]];
 end
 4’b1010: // LDI
 begin
 abus_temp = {pc[15:9],ir[8:0]};
 read_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 rt = dbus;
 abus_temp = rt;
 @(posedge clock) #1;
 R[ir[11:9]] = dbus;
 tf = R[ir[11:9]];
 read_mem_bar_temp = 1’b1;
 end
 4’b1011: // STI
 begin
 abus_temp = {pc[15:9],ir[8:0]};
 read_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 rt = dbus;
 read_mem_bar_temp = 1’b1;
 abus_temp = rt;
 dbus_temp = R[ir[11:9]];
 write_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 write_mem_bar_temp = 1’b1;
 dbus_temp = 16’bzzzz;
 end
 4’b1100: // JSRR
 begin
 if (ir[11] == 1’b1)
 R[7] = pc + 1;
 pc = R[ir[8:6]] + ir[5:0];
 end
 4’b1101: // RET
 pc = R[7];
 4’b1110: // LEA
 begin
 R[ir[11:9]] = {pc[15:9],ir[8:0]};
 tf = R[ir[11:9]];
 end
 4’b1111: // TRAP
 begin
 R[7] = pc + 1;
 abus_temp = {8’b00000000,ir[7:0]};
 read_mem_bar_temp = 1’b0;
 @(posedge clock) #1;
 pc = dbus;
 read_mem_bar_temp = 1’b0;
 end
endcase

case (opcode)
 4’b0001,4’b0010,4’b0101,4’b0110,4’b1001,
 4’b1010,4’b1110: // ADD, LD, AND, LDR, NOT, LDI, LEA
 begin

125

sor.

ents

odel

posed

for
 if (tf == 16’b0)
 begin
 P = 1’b0;
 Z = 1’b1;
 N = 1’b0;
 end
 else if (tf[15] == 1’b0)
 begin
 P = 1’b1;
 Z = 1’b0;
 N = 1’b0;
 end
 else
 begin
 P = 1’b0;
 Z = 1’b0;
 N = 1’b1;
 end
 end
endcase

case (opcode)
 4’b0000,4’b0001,4’b0010,4’b0011, 4’b0101,4’b0110,4’b0111,4’b1001,
 4’b1010,4’b1011,4’b1110:

// NOP, ADD, LD, ST, AND, LDR, STR, NOT, LDI, STI, lEA
pc = pc + 1; // Increment pc

endcase
end

 end

endmodule

B.3 Synthesizable Verilog Description of LC-2

We give next the complete synthesizable Verilog model of the LC-2 microproces

The datapath unit of the LC-2 is described as an interconnection of RTL compon

while the LC-2 control unit is described using a single finite-state machine. This m

was used for the design error data collection in Section 3.2, the evaluation of the pro

design error models in Section 3.4, and the illustration of our validation approach

microprocessors in Section 3.5.

module rtcpu(clock,clear,dbus,abus,write_mem_bar,read_mem_bar);

input clock,clear;
inout [15:0] dbus;
output [15:0] abus;
output write_mem_bar,read_mem_bar;
wire [15:0] ir_out;
wire [2:0] R1,R2,W,flags_out;
wire [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;

datapath DP(clock,clear,dbus,abus,ir_out,flags_out,R1,R2,W,RE1,RE2,WE,

126
 S3,S2,S1,S0,M, load_pc_bar, load_ir_bar, load_mar_bar,
 load_flags_bar, load_reg1_bar,load_reg2_bar,sel_rf_mux, sel_pc_mux,
 sel_mar_mux, sel_ab_mux,sel_alu_mux,reg2_to_dbus_bar,zero_or_sign,
 trapvec_bar);

control CO(clock,clear,write_mem_bar,read_mem_bar,R1,R2,W,RE1,RE2,WE,
S3,S2,S1,S0,M,load_pc_bar,load_ir_bar, load_mar_bar, load_flags_bar,
load_reg1_bar,load_reg2_bar, sel_rf_mux, sel_pc_mux,sel_mar_mux,
sel_ab_mux, sel_alu_mux,reg2_to_dbus_bar,zero_or_sign,trapvec_bar,

 ir_out,flags_out);

endmodule

module datapath(clock,clear,dbus,abus,ir_out,flags_out,R1,R2,W,RE1,RE2,WE,
S3,S2,S1,S0,M, load_pc_bar, load_ir_bar, load_mar_bar,
load_flags_bar,load_reg1_bar,load_reg2_bar,sel_rf_mux,
sel_pc_mux,sel_mar_mux, sel_ab_mux,sel_alu_mux,reg2_to_dbus_bar,
zero_or_sign,trapvec_bar);

input clock,clear;
inout [15:0] dbus;
output [15:0] abus;

// TO CONTROL
output [15:0] ir_out;
output [2:0] flags_out;

// REGFILE
input [2:0] R1, R2, W;
input RE1, RE2, WE;

// ALU
input S3, S2, S1, S0, M;

// REGISTERS
input load_pc_bar, load_ir_bar, load_mar_bar, load_flags_bar,load_reg1_bar,
 load_reg2_bar;

// MUXS
input [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;
input sel_alu_mux, sel_mar_mux;

// TRISTATE
input reg2_to_dbus_bar;

// SPECIAL
input zero_or_sign;
input trapvec_bar;

wire [2:0] flags_in;
wire [15:0] pc_in,ir_in,read_port1,read_port2,ALU_B_port,alu_out,write_port,

rf_port1,rf_port2,mar_in,pc_out,mar_out,merge_out,inc_out,extend_out,
 latch_in;
wire clock_bar;

stdinv STI(clock,clock_bar);
alu #(16) ALU0(read_port1,ALU_B_port,1’b0,M,S0,S1,S2,S3,Dummy_COUT,alu_out);
latch #(16) LA(latch_in,clock_bar,write_port);
regfile2r #(16,8,3) RF(write_port,R1,R2,RE1,RE2,W,WE,rf_port1,rf_port2);

127
dffh_c #(16) REG1 (clock,clear,rf_port1,load_reg1_bar,read_port1),
 REG2 (clock,clear,rf_port2,load_reg2_bar,read_port2);
dffh_c #(16) PC (clock,clear,pc_in,load_pc_bar,pc_out),
 IR (clock,clear,dbus,load_ir_bar,ir_out),
 MAR (clock,clear,mar_in,load_mar_bar,mar_out);
dffh_c #(3) FLAGS (clock,clear,flags_in,load_flags_bar,flags_out);
mux4 #(16) RFMUX(alu_out,inc_out,merge_out,dbus,sel_rf_mux[0],sel_rf_mux[1],

latch_in),
 PCMUX(inc_out,alu_out,merge_out,dbus,sel_pc_mux[0],sel_pc_mux[1],

pc_in);
mux3 #(16) ABMUX(pc_out,mar_out,merge_out,sel_ab_mux[0],sel_ab_mux[1],abus);
mux2 #(16) ALUMUX(read_port2,extend_out,sel_alu_mux,ALU_B_port),
 MARMUX(alu_out,dbus,sel_mar_mux,mar_in);
tribuf #(16) TRB(reg2_to_dbus_bar,read_port2,dbus);
extend EXT(ir_out,zero_or_sign,extend_out);
detect DTC(write_port,flags_in);
inc #(16) INC0(1’b1,pc_out,Dummy_TC,Dummy_TCBAR,inc_out);
merge MRG(pc_out,ir_out,trapvec_bar,merge_out);

endmodule

module extend(IN,zero_or_sign,OUT);

input [15:0] IN;
input zero_or_sign;
output [15:0] OUT;

assign OUT[0] = IN[0],
 OUT[1] = IN[1],
 OUT[2] = IN[2],
 OUT[3] = IN[3],
 OUT[4] = IN[4];
stdmux2 SM2(IN[5],IN[4],zero_or_sign,OUT[5]);
stdand2 SA2(IN[4],zero_or_sign,TMP);
assign OUT[6] = TMP,
 OUT[7] = TMP,
 OUT[8] = TMP,
 OUT[9] = TMP,
 OUT[10] = TMP,
 OUT[11] = TMP,
 OUT[12] = TMP,
 OUT[13] = TMP,
 OUT[14] = TMP,
 OUT[15] = TMP;

endmodule

module detect(IN,FLAGS);

input [15:0] IN;
output [2:0] FLAGS;

stdinv SI(IN[15],IN15bar);
zero #(16) ZR(IN,FLAGS[1]);
stdnor2 SN1(IN[15],FLAGS[1],FLAGS[0]);
stdnor2 SN2(IN15bar,FLAGS[1],FLAGS[2]);

endmodule

128
module merge(PC,IR,trapvec_bar,OUT);

input [15:0] PC,IR;
input trapvec_bar;
output [15:0] OUT;

assign OUT[0] = IR[0],
 OUT[1] = IR[1],
 OUT[2] = IR[2],
 OUT[3] = IR[3],
 OUT[4] = IR[4],
 OUT[5] = IR[5],
 OUT[6] = IR[6],
 OUT[7] = IR[7];
stdand2 SA8(IR[8],trapvec_bar,OUT[8]),
 SA9(PC[9],trapvec_bar,OUT[9]),
 SA10(PC[10],trapvec_bar,OUT[10]),
 SA11(PC[11],trapvec_bar,OUT[11]),
 SA12(PC[12],trapvec_bar,OUT[12]),
 SA13(PC[13],trapvec_bar,OUT[13]),
 SA14(PC[14],trapvec_bar,OUT[14]),
 SA15(PC[15],trapvec_bar,OUT[15]);

endmodule

module control(clock,clear,write_mem_bar, read_mem_bar,R1,R2,W,RE1,RE2,WE,
S3,S2,S1,S0,M,load_pc_bar, load_ir_bar, load_mar_bar, load_flags_bar,

 load_reg1_bar,load_reg2_bar,sel_rf_mux,sel_pc_mux,sel_mar_mux,
sel_ab_mux, sel_alu_mux,reg2_to_bus_bar,zero_or_sign,trapvec_bar,ir_out,
flags_out);

input clock,clear;

// TO MEMORY
output write_mem_bar, read_mem_bar;

// TO REGFILE
output [2:0] R1, R2, W;
output RE1, RE2, WE;

// TO ALU
output S3, S2, S1, S0, M;

// TO REGISTERS
output load_pc_bar, load_ir_bar, load_mar_bar, load_flags_bar,load_reg1_bar,
 load_reg2_bar;

// TO MUXS
output [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;
output sel_alu_mux, sel_mar_mux;

// TO TRISTATE
output reg2_to_bus_bar;

// TO SPECIAL
output zero_or_sign;
output trapvec_bar;

// FROM_temp DATAPATH

129
input [15:0] ir_out;
input [2:0] flags_out;

reg [2:0] machine_state;
reg [2:0] next_state;
reg write_mem_bar_temp, read_mem_bar_temp;
reg [2:0] R1_temp, R2_temp, W_temp;
reg RE1_temp, RE2_temp, WE_temp;
reg S3_temp, S2_temp, S1_temp, S0_temp, M_temp;
reg load_pc_bar_temp, load_ir_bar_temp, load_mar_bar_temp,
 load_flags_bar_temp, load_reg1_bar_temp, load_reg2_bar_temp;
reg [1:0] sel_rf_mux_temp, sel_pc_mux_temp, sel_ab_mux_temp;
reg sel_alu_mux_temp, sel_mar_mux_temp;
reg reg2_to_bus_bar_temp;
reg zero_or_sign_temp;
reg trapvec_bar_temp;

// Machine States

`define MRESET_STATE 3’b000
`define IFETCH_STATE 3’b001
`define DECODE_STATE 3’b010
`define EX_MEM_STATE 3’b011
`define MEMORY_STATE 3’b100

// INSTRUCTIONS

`define ADD 4’b0001
`define AND 4’b0101
`define BR 4’b1000
`define JSR 4’b0100
`define JSRR 4’b1100
`define LD 4’b0010
`define LDI 4’b1010
`define LDR 4’b0110
`define LEA 4’b1110
`define NOP 4’b0000
`define NOT 4’b1001
`define RET 4’b1101
`define ST 4’b0011
`define STI 4’b1011
`define STR 4’b0111
`define TRAP 4’b1111

// DELAY
`define FSM_DELAY 6

// STATE MACHINE
always @(posedge clock)
begin
 machine_state = next_state;
end

always @(ir_out[15:5] or ir_out[2:0] or clear or machine_state or flags_out)
begin
 // Generate addresses for register file
 if (ir_out[15:12] == 4’b1101)
 R1_temp = 3’b111;
 else

130
 R1_temp = ir_out[8:6];
 if (ir_out[13] == 1’b0)
 R2_temp = ir_out[2:0];
 else
 R2_temp = ir_out[11:9];
 if ((ir_out[14:12] == 3’b100) || (ir_out[15:12] == 4’b1111))
 W_temp = 3’b111;
 else
 W_temp = ir_out[11:9];

 // Compute next state
 if (clear == 1’b0)
 next_state = `MRESET_STATE;
 else
 begin

 case (machine_state)
 `MRESET_STATE:next_state = `IFETCH_STATE;
 `IFETCH_STATE: next_state = `DECODE_STATE;
 `DECODE_STATE:

 if (ir_out[15:12] == `NOP)
 next_state = `IFETCH_STATE;

 else
 next_state = `EX_MEM_STATE;

 `EX_MEM_STATE:
 begin

 case (ir_out[15:12])
 `AND,`ADD,`NOT,`LEA,`RET,`BR,`JSR,
 `JSRR, `LD,`ST,`TRAP: next_state = `IFETCH_STATE;
 `LDI,`STI,`LDR,`STR:next_state = `MEMORY_STATE;
 endcase

 end
 `MEMORY_STATE:next_state = `IFETCH_STATE;
 endcase

 end

 // Determine control signals for each state
 if (clear == 1’b0)
 begin
 read_mem_bar_temp = 1’b1;
 write_mem_bar_temp = 1’b1;
 load_pc_bar_temp = 1’b1;
 load_ir_bar_temp = 1’b1;
 load_mar_bar_temp = 1’b1;
 load_flags_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;
 end
 else
 begin

 case (machine_state)
 `MRESET_STATE:
 begin
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
 load_pc_bar_temp = 1’b1;
 load_ir_bar_temp = 1’b1;
 load_mar_bar_temp = 1’b1;
 load_flags_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;

 end

131
 `IFETCH_STATE:
 begin

 read_mem_bar_temp = 1’b0;
 write_mem_bar_temp = 1’b1;
 RE1_temp = 1’b0;
 RE2_temp = 1’b0;
 WE_temp = 1’b0;
 load_ir_bar_temp = 1’b0;
 load_pc_bar_temp = 1’b1;
 load_flags_bar_temp = 1’b1;
 load_reg1_bar_temp = 1’b1;
 load_reg2_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;
 sel_ab_mux_temp = 2’b00;

 end
 `DECODE_STATE:

 begin
 read_mem_bar_temp = 1’b1;
 write_mem_bar_temp = 1’b1;
 RE1_temp = 1’b1;
 RE2_temp = 1’b1;
 WE_temp = 1’b0;
 load_ir_bar_temp = 1’b1;
 load_flags_bar_temp = 1’b1;
 load_reg1_bar_temp = 1’b0;
 load_reg2_bar_temp = 1’b0;
 reg2_to_bus_bar_temp = 1’b1;
 if (ir_out[15:12] == `NOP)
 begin
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 end
 else
 begin
 load_pc_bar_temp = 1’b1;
 end

 end
 `EX_MEM_STATE:

 begin
 RE1_temp = 1’b0;
 RE2_temp = 1’b0;
 load_ir_bar_temp = 1’b1;
 load_reg1_bar_temp = 1’b1;
 load_reg2_bar_temp = 1’b1;
 case (ir_out[15:12])
 `AND:
 begin

 WE_temp = 1’b1;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 zero_or_sign_temp = 1’b1;
 if (ir_out[5] == 1’b0)
 sel_alu_mux_temp = 1’b0;
 else
 sel_alu_mux_temp = 1’b1;
 S3_temp = 1’b1;
 S2_temp = 1’b1;
 S1_temp = 1’b1;
 S0_temp = 1’b0;

132
 M_temp = 1’b0;
 sel_rf_mux_temp = 2’b00;
 load_flags_bar_temp = 1’b0;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
 end

 `ADD:
begin

 WE_temp = 1’b1;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 zero_or_sign_temp = 1’b1;
 if (ir_out[5] == 1’b0)
 sel_alu_mux_temp = 1’b0;
 else
 sel_alu_mux_temp = 1’b1;
 S3_temp = 1’b1;
 S2_temp = 1’b0;
 S1_temp = 1’b0;
 S0_temp = 1’b1;
 M_temp = 1’b1;
 sel_rf_mux_temp = 2’b00;
 load_flags_bar_temp = 1’b0;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
 end

 `NOT:
begin

 WE_temp = 1’b1;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 S3_temp = 1’b0;
 S2_temp = 1’b0;
 S1_temp = 1’b0;
 S0_temp = 1’b0;
 M_temp = 1’b0;
 sel_rf_mux_temp = 2’b00;
 load_flags_bar_temp = 1’b0;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
 end

 `LEA:
 begin

 WE_temp = 1’b1;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 sel_rf_mux_temp = 2’b10;
 load_flags_bar_temp = 1’b0;
 trapvec_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;

end
 `RET:

begin
 WE_temp = 1’b0;

133
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b01;
 S3_temp = 1’b1;
 S2_temp = 1’b1;
 S1_temp = 1’b1;
 S0_temp = 1’b1;
 M_temp = 1’b0;
 load_flags_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
end

 `BR:
begin

 WE_temp = 1’b0;
 load_pc_bar_temp = 1’b0;

 if ((flags_out[2] & ir_out[11]) |
 (flags_out[1] & ir_out[10]) |
 (flags_out[0] & ir_out[9]))

 sel_pc_mux_temp = 2’b10;
 else
 sel_pc_mux_temp = 2’b00;
 load_flags_bar_temp = 1’b1;
 trapvec_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
end

 `JSR:
begin

 if (ir_out[11] == 1’b1)
 begin

 sel_rf_mux_temp = 2’b01;
 WE_temp = 1’b1;

 end
 else
 WE_temp = 1’b0;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b10;
 load_flags_bar_temp = 1’b1;
 trapvec_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
end

 `JSRR:
begin

 if (ir_out[11] == 1’b1)
 begin

 sel_rf_mux_temp = 2’b01;
 WE_temp = 1’b1;

 end
 else
 WE_temp = 1’b0;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b01;
 sel_alu_mux_temp = 1’b1;
 zero_or_sign_temp = 1’b0;
 S3_temp = 1’b1;

134
 S2_temp = 1’b0;
 S1_temp = 1’b0;
 S0_temp = 1’b1;
 M_temp = 1’b1;
 load_flags_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
end

 `LD:
begin

 WE_temp = 1’b1;
 read_mem_bar_temp = 1’b0;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 sel_rf_mux_temp = 2’b11;
 sel_ab_mux_temp = 2’b10;
 load_flags_bar_temp = 1’b0;
 trapvec_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
end

 `ST:
begin

 WE_temp = 1’b0;
 write_mem_bar_temp = 1’b0;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 sel_ab_mux_temp = 2’b10;
 load_flags_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b0;

 read_mem_bar_temp = 1’b1;
 trapvec_bar_temp = 1’b1;

end
 `TRAP:

begin
 sel_rf_mux_temp = 2’b01;
 WE_temp = 1’b1;
 read_mem_bar_temp = 1’b0;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b11;
 sel_ab_mux_temp = 2’b10;
 load_flags_bar_temp = 1’b1;
 trapvec_bar_temp = 1’b0;
 reg2_to_bus_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
end

 `LDI,`STI:
begin

 WE_temp = 1’b0;
 read_mem_bar_temp = 1’b0;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 sel_ab_mux_temp = 2’b10;
 load_flags_bar_temp = 1’b1;
 load_mar_bar_temp = 1’b0;
 sel_mar_mux_temp = 1’b1;
 trapvec_bar_temp = 1’b1;

 reg2_to_bus_bar_temp = 1’b1;

135
 write_mem_bar_temp = 1’b1;
end

 `LDR,`STR:
begin

 WE_temp = 1’b0;
 load_pc_bar_temp = 1’b0;
 sel_pc_mux_temp = 2’b00;
 sel_alu_mux_temp = 1’b1;
 zero_or_sign_temp = 1’b0;
 S3_temp = 1’b1;
 S2_temp = 1’b0;
 S1_temp = 1’b0;
 S0_temp = 1’b1;
 M_temp = 1’b1;
 load_flags_bar_temp = 1’b1;
 load_mar_bar_temp = 1’b0;
 sel_mar_mux_temp = 1’b0;
 reg2_to_bus_bar_temp = 1’b1;
 read_mem_bar_temp = 1’b1;

 write_mem_bar_temp = 1’b1;
end

 endcase
 end

 `MEMORY_STATE:
 begin

 RE1_temp = 1’b0;
 RE2_temp = 1’b0;
 load_ir_bar_temp = 1’b1;
 load_reg1_bar_temp = 1’b1;
 load_reg2_bar_temp = 1’b1;
 sel_ab_mux_temp = 2’b01;
 load_pc_bar_temp = 1’b1;
 trapvec_bar_temp = 1’b1;
 sel_rf_mux_temp = 2’b11;
 case (ir_out[15:12])
 `LDI,`LDR:

begin
 WE_temp = 1’b1;
 read_mem_bar_temp = 1’b0;
 write_mem_bar_temp = 1’b1;
 load_flags_bar_temp = 1’b0;
 reg2_to_bus_bar_temp = 1’b1;

end
 `STI,`STR:

begin
 WE_temp = 1’b0;
 write_mem_bar_temp = 1’b0;
 read_mem_bar_temp = 1’b1;
 load_flags_bar_temp = 1’b1;
 reg2_to_bus_bar_temp = 1’b0;

end
 endcase

 end
 endcase

 end
end

// TO MEMORY
assign #`FSM_DELAY write_mem_bar = write_mem_bar_temp;

136
assign #`FSM_DELAY read_mem_bar = read_mem_bar_temp;

// TO REGFILE
assign #`FSM_DELAY R1 = R1_temp;
assign #`FSM_DELAY R2 = R2_temp;
assign #`FSM_DELAY W = W_temp;
assign #`FSM_DELAY RE1 = RE1_temp;
assign #`FSM_DELAY RE2 = RE2_temp;
assign #`FSM_DELAY WE = WE_temp;

// TO ALU
assign #`FSM_DELAY S3 = S3_temp;
assign #`FSM_DELAY S2 = S2_temp;
assign #`FSM_DELAY S1 = S1_temp;
assign #`FSM_DELAY S0 = S0_temp;
assign #`FSM_DELAY M = M_temp;

// TO REGISTERS
assign #`FSM_DELAY load_pc_bar = load_pc_bar_temp;
assign #`FSM_DELAY load_ir_bar = load_ir_bar_temp;
assign #`FSM_DELAY load_mar_bar = load_mar_bar_temp;
assign #`FSM_DELAY load_flags_bar = load_flags_bar_temp;
assign #`FSM_DELAY load_reg1_bar = load_reg1_bar_temp;
assign #`FSM_DELAY load_reg2_bar = load_reg2_bar_temp;

// TO MUXS
assign #`FSM_DELAY sel_rf_mux = sel_rf_mux_temp;
assign #`FSM_DELAY sel_pc_mux = sel_pc_mux_temp;
assign #`FSM_DELAY sel_mar_mux = sel_mar_mux_temp;
assign #`FSM_DELAY sel_ab_mux = sel_ab_mux_temp;
assign #`FSM_DELAY sel_alu_mux = sel_alu_mux_temp;

// TO TRISTATE
assign #`FSM_DELAY reg2_to_bus_bar = reg2_to_bus_bar_temp;

// TO SPECIAL
assign #`FSM_DELAY zero_or_sign = zero_or_sign_temp;
assign #`FSM_DELAY trapvec_bar = trapvec_bar_temp;

endmodule

BIBLIOGRAPHY
137

ign

st

om

e

ed

nt”,

test
n

peed

n,
BIBLIOGRAPHY

[1] E. J. Aas, T. Steen, and K. Klingsheim, “Quantifying design quality through des
experiments”, IEEE Design and Test, Vol. 11, pp. 27-37, Spring 1994.

[2] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic design verification via te
generation”,IEEE Transactions on Computer-Aided Design, Vol. 7, pp. 138-148,
January 1988.

[3] M. S. Abadir and H. K. Reghbati, “Functional testing of semiconductor rand
access memories”,Computing Surveys, Vol. 15, No. 3, September 1983.

[4] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems Testing and
Testable Design, Computer Science Press, New York, 1990.

[5] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing: An alternativ
to fault simulation”,IEEE Design and Test, Vol. 1, pp. 83-93, February 1984.

[6] V. D. Agarwal and E. Cerny, “Store and generate built-in testing approach”,Proc.
Fault-Tolerant Computing Symposium, 1981, pp. 35–40.

[7] A. Aharon et al., “Verification of the IBM RISC System/6000 by dynamic bias
pseudo-random test program generator”,IBM Systems Journal, Vol. 30, No. 4, pp.
527–538, 1991.

[8] S. B. Akers, “Universal test sets for logic networks”,IEEE Transactions on
Computers, Vol. C-22, pp. 835-839, September 1973.

[9] S. B. Akers and W. Jansz, “Test set embedding in a built-in self-test environme
Proc. International Test Conference, 1989, pp. 257-263.

[10] H. Al-Asaad and J. P. Hayes, “Design verification via simulation and automatic
pattern generation”,Proc. International Conference on Computer-Aided Desig,
1995, pp. 174-180.

[11] H. Al-Asaad, J. P. Hayes, and B. T. Murray, “Scalable test generators for high-s
datapath circuits”,Journal of Electronic Testing: Theory and Applications, Vol. 12,
Nos. 1/2, pp. 111-125, February/April 1998. Reprinted in M. Nicolaidis, Y. Zoria
and D. K. Pradhan (editors), On Line-Testing for VLSI, Kluwer, Boston, 1998.
138

139

test
g

s”,

gh-

: A

d on

sts”,
r

its
d

ial
[12] H. Al-Asaad, J. P. Hayes, and B. T. Murray, “Design of scalable hardware
generators for on-line BIST”,Digest of Papers: International On-Line Testin
Workshop, 1996, pp. 164-167.

[13] H. Al-Asaad, B. T. Murray, and J. P. Hayes, “On-line BIST for embedded system
IEEE Design and Test, 1998, to appear.

[14] H. Al-Asaad, D. Van Campenhout, J. P. Hayes, T. Mudge, and R. Brown, “Hi
level design verification of microprocessors via error modeling”,Digest of Papers:
International High-Level Design Validation and Test Workshop, 1997, pp. 194-201.

[15] G. Al Hayek and C. Robach, “From specification validation to hardware testing
unified method”,Proc. International Test Conference, 1996, pp. 885–893.

[16] M. Annaratone,Digital CMOS Circuit design, Kluwer, Boston, 1986.

[17] ATTEST Software,ATTEST Software Tools, Santa Clara, Calif., 1995.

[18] R. Bailey,Human Error in Computer Systems, Prentice-Hall, Englewood Cliffs, N.
J., 1981.

[19] P. H. Bardell, W. H. McAnney, and J. Savir,Built-In Self-Test for VLSI:
Pseudorandom Techniques, Wiley, New York, 1987.

[20] B. Beizer,Software Testing Techniques, Van Nostrand Reinhold, New York, 2nd
edition, 1990.

[21] D. Bhattacharya and J. P. Hayes, “High-level test generation using bus faults,”Proc.
Fault-Tolerant Computing Symposium, 1985, pp. 65–70.

[22] R. D. Blanton, Design and Testing of Regular Circuits, Ph.D. dissertation,
University of Michigan, 1995.

[23] S. Boubezari and B. Kaminska, “A deterministic built-in self-test generator base
cellular automata structures”,IEEE Transactions on Computers, Vol. 44, pp. 805-
816, June 1995.

[24] D. Brand, “Exhaustive simulation need not require an exponential number of te
IEEE Transactions on Computer-Aided Design, Vol. 12, pp. 1635-1641, Novembe
1993.

[25] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circu
and a target translator in fortran”,Proc. International Symposium on Circuits an
Systems, 1985, pp. 695-698.

[26] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequent
benchmark circuits”,Proc. International Symposium on Circuits and Systems, 1989,
pp. 1929-1934.

140

or”,

gie
om

est

on

for

”,

ets”,

ern

ign

the
[27] R. Brown et al., “Complementary GaAs technology for a GHz microprocess
Technical Digest of the GaAs IC Symposium, 1996, pp. 313-316.

[28] R. Bryant, “Graph-based algorithms for boolean function manipulation”,IEEE
Transactions on Computers, Vol C-35, pp. 677-691, August 1986.

[29] R. Bryant, “Division, Pentium style: An analysis of Intel's mistake(s)”, Carne
Mellon University, Computer Systems Seminar, February 1995. Available fr
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/verify/www/pentium-bug.html.

[30] Cadence Design Systems,Verilog-XL Reference Manual, Vol. 1, Version 1.6,
Lowell, Mass., 1991.

[31] J. D. Calhoun and F. Brglez, “A framework and method for hierarchical t
generation”,IEEE Transactions on Computer-Aided Design, Vol. 11, pp. 45-67,
January 1992.

[32] F. Casaubieilh et al., “Functional verification methodology of Chamele
processor”,Proc. Design Automation Conference, 1996, pp. 421–426.

[33] P. Cederqvist et al.,Version Management with CVS, Signum Support AB,
Linkoping, Sweden, 1992.

[34] K. Chakrabarty, B. T. Murray, J. Liu, and M. Zhu, “Test width compression
built-in self testing”,Proc. International Test Conference, 1997, pp. 328-337.

[35] A. K. Chandra et al., “AVPGEN - a test generator for architecture verification
IEEE Transactions on VLSI Systems, Vol. 3, pp. 188–200, June 1995.

[36] B. Chen, C. L. Lee, and J. E. Chen, “Design verification by using universal test s
Proc. Asian Test Symposium, 1994, pp. 261-266.

[37] C.-A. Chen and S. K. Gupta, “A methodology to design efficient BIST test patt
generators”,Proc. International Test Conference, 1995, pp. 814-823.

[38] T. C. K. Chou, “Beyond fault tolerance”,IEEE Computer, Vol. 30, pp. 47-49, April
1997.

[39] P. Chung and I. Hajj, “ACCORD: Automatic catching and correction of logic des
errors in combinational circuits”,Proc. International Test Conference, 1992, pp.
742-751.

[40] P. Chung, Y. Wang, and I. Hajj, “Logic design error diagnosis and correction”,IEEE
Transactions on VLSI Systems, Vol. 2, pp. 320-332, September 1994.

[41] R. P. Colwell and R. A. Lethin, “Latent design faults in the development of
Multiflow TRACE/200”, IEEE Transactions on Reliability, Vol. 43, No. 4, pp. 557–
565, December 1994.

141

ng”,

r for

elp

etric
d

test

tion

oth

vel

uced

olic

ugh
[42] W. Daehn and J. Mucha, “Hardware test pattern generation for built-in testi
IEEE Test Conference, 1981, pp. 110-113.

[43] R. Dandapani, J. H. Patel, and J. A. Abraham, “Design of test pattern generato
built-in self-test”,Proc. International Test Conference, 1984, pp. 315-319.

[44] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: H
for the practicing programmer”,IEEE Computer, pp. 34–41, April 1978.

[45] R. A. DeMillo et al.,Software Testing and Evaluation, Benjamin/Cummings, Menlo
Park, Calif., 1987.

[46] S. Devadas, A. Ghosh, and K. Keutzer, “Observability-based code coverage m
for functional simulation”,Proc. International Conference on Computer-Aide
Design, 1996, pp. 418–425.

[47] C. Dufaza and G. Cambon, “LFSR based deterministic and pseudo-random
pattern generator structures”,Proc. European Test Conference, 1991, pp. 27-34.

[48] M. Fujita, T. Kakuda, and Y. Matsunaga, “Redesign and automatic error correc
of combinational circuits”,Logic and Architecture Synthesis, Elsevier, New York,
pp. 253-262, 1991.

[49] G. Ganapathy et al., “Hardware emulation for functional verification of K5”,Proc.
Design Automation Conference, 1996, pp. 315–318.

[50] D. Gizopoulos, A. Paschalis, and Y. Zorian, “An effective BIST scheme for Bo
multipliers”, Proc. International Test Conference, 1995, pp. 824-833.

[51] M. C. Hansen,Symbolic Functional Test Generation with Guaranteed Low-Le
Fault Detection, Ph.D. dissertation, University of Michigan, 1996.

[52] M. C. Hansen and J. P. Hayes, “High-level test generation using physically-ind
faults”, Proc. VLSI Test Symosium, 1995, pp. 20-28.

[53] M. C. Hansen and J. P. Hayes, “High-level test generation using symb
scheduling”,Proc. International Test Conference, 1995 , pp. 586-595.

[54] J. P. Hayes, “On the properties of irredundant logic networks”,IEEE Transactions
on Computers, Vol. C-25, pp. 884-892, Sept. 1976.

[55] S. Hellebrand et al., “Pattern generation for deterministic BIST scheme”,Proc.
International Conference on Computer-Aided Design, 1995, pp. 88-94.

[56] S. Hellebrand, S. Tarnick, and J. Rajski, “Generation of vector patterns thro
reseeding of multiple-polynomial linear feedback shift registers”,Proc.
International Test Conference, 1992, pp. 120–128.

[57] J. Hennessy and D. Patterson,Computer Architecture: A Quantitative Approach,
Morgan Kaufman, San Francisco, 1990.

142

the

rror

tp://

r”,

tion

epts,

n
lpha

f

ed

que
”,
r

[58] A. Hosseini, D. Mavroidis, and P. Konas, “Code generation and analysis for
functional verification of microprocessors”,Proc. Design Automation Conference,
1996, pp. 305–310.

[59] S.-Y. Huang et al., “ErrorTracer: A fault simulation-based approach to design e
diagnosis”,Proc. International Test Conference, 1997, pp. 974-981.

[60] Intel Corp., “Pentium processor specification update,” 1998, available from ht
www.intel.com.

[61] Intel Corp., “Statistical analysis of floating point flaw in the Pentium processo
Technical report, November 1994.

[62] J. Jain et al., “Probabilistic design verification”,Proc. International Conference on
Computer-Aided Design, 1991, pp. 468-471.

[63] P. Jain and G. Gopalakrishnan, “Efficient symbolic simulation-based verifica
using the parametric form of boolean expressions”,IEEE Transactions on
Computer-Aided Design, Vol. 13, pp. 1005-1015, August 1994.

[64] B. W. Johnson,Design and Analysis of Fault Tolerant Digital Systems, Addison-
Wesley, Reading, Mass., 1989.

[65] S. Kang and S. A. Szygenda, “The simulation automation system (SAS); conc
implementation, and results”,IEEE Transactions on VLSI Systems, Vol. 2, pp. 89-
99, March 1994.

[66] M. Kantrowitz and L. M. Noack, “I’m done simulating; Now what? Verificatio
coverage analysis and correctness checking of the DECchip 21164 A
microprocessor”,Proc. Design Automation Conference, 1996, pp. 325–330.

[67] H. Kim, “C880 high-level Verilog description”, Internal report, University o
Michigan, 1996.

[68] K. N. King and A. J. Offutt, “A Fortran language system for mutation-bas
software testing”,Software: Practice and Experience, Vol. 21, pp. 685-718, July
1991.

[69] I. Koren,Computer Arithmetic Algorithms, Prentice-Hall, Englewood Cliffs, N. J.,
1993.

[70] J. Kumar, “Prototyping the M68060 for concurrent verification”,IEEE Design and
Test, Vol. 14, pp. 34–41, January 1997.

[71] W. Kunz and D. K. Pradhan, “Recursive learning: A precise implication techni
for efficient solutions to CAD problems — Test, verification, and optimization
IEEE Transactions on Computer-Aided Design, Vol. 13, pp. 1143-1157, Septembe
1994.

143

ic
d

are

on

nal

tural
n

sign

rs”,
r

”,

s

ns”,
.

dog

.0

of

ted
[72] W. Kunz, D. K. Pradhan, and S. M. Reddy, “A novel framework for log
verification in a synthesis environment”,IEEE Transactions on Computer-Aide
Design, Vol. 15, pp. 20-32, January 1996.

[73] S. Kuo, “Locating logic design errors via test generation and don't c
propagation”,Proc. European Design Automation Conference, 1992, pp. 466-471.

[74] H. K. Lee and D. S. Ha, “An efficient forward fault simulation algorithm based
the parallel pattern single fault propagation”,Proc. International Test Conference,
1991, pp. 946-955.

[75] H. K. Lee and D. S. Ha, “On the generation of test patterns for combinatio
circuits”, Dept. of Elec. Eng., Virginia Tech., Rep. 12-93, 1993.

[76] J. Lee and J. H. Patel, “A signal-driven discrete relaxation technique for architec
level test generation”,Proc. International Conference on Computer-Aided Desig,
1991, pp. 458-461.

[77] J. Lee and J. H. Patel, “An architectural level test generator for a hierarchical de
environment”,Proc. Fault-Tolerant Computing Symposium, 1991, pp. 44-51.

[78] J. Lee and J. H. Patel, “Architectural level test generation for microprocesso
IEEE Transactions on Computer-Aided Design, Vol. 13, pp. 1288-1300, Octobe
1994.

[79] H. Liaw, J. Tsaih, and C. Lin, “Efficient automatic diagnosis of digital circuits
Proc. European Design Automation Conference, 1990, pp. 464-467.

[80] A. P. Lowell, “The care and feeding of watchdogs”,Embedded System
Programming, pp. 38-52, April 1992.

[81] F. Maamari and J. Rajski, “A method of fault simulation based on stem regio
IEEE Transactions on Computer-Aided Design, Vol. 9, pp. 212-220, February 1990

[82] A. Mahmood and E. McCluskey, “Concurrent error detection using watch
processors—A survey”,IEEE Transactions on Computers, Vol. C-37, pp. 160-174,
February 1988.

[83] E. J. McCluskey,Logic Design Principles, Prentice-Hall, Englewood Cliffs, N. J.,
1986.

[84] MIPS Technologies,MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3,
May 1994.

[85] J. Miyake et al., “Automatic test generation for functional verification
microprocessors”,Proc. Asian Test Symposium, 1994, pp. 292-297.

[86] F. Muradali, V. K. Agarwal, and B. Nadeau-Dostie, “A new procedure for weigh
random built-in self-test”,Proc. International Test Conference, 1990, pp. 660–669.

144

tests

its”,

m”,

ed

gic

s”,

lysis

ing
[87] B. T. Murray and J. P. Hayes, “Hierarchical test generation using precomputed
for modules”,IEEE Transactions on Computer-Aided Design, Vol. 9, pp. 594-603,
1990.

[88] B. T. Murray and J. P. Hayes, “Test propagation through modules and circu
Proc. International Test Conference, 1991, pp. 748-757.

[89] B. T. Murray and J. P. Hayes, “Testing ICs: Getting to the core of the proble
IEEE Computer, Vol. 29, pp. 32-45, November 1996.

[90] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “Serial interfacing for embedd
memory testing”,IEEE Design and Test, Vol. 7, no. 2, pp. 52–63, April 1990.

[91] P. Narain et al., “A high-level approach to test generation”,IEEE Transactions on
Circuits and Systems. Part I, Fundamental Theory and Applications, Vol. 40, pp.
483-492, July 1993.

[92] M. Nicolaidis, “Test pattern generators for arithmetic units and arithmetic and lo
units”, Proc. European Test Conference, 1991, pp. 61-71.

[93] M. Nicolaidis, “Theory of transparent BIST for RAMs”,IEEE Transactions on
Computers, Vol. 45, pp. 1141-1156, October 1996.

[94] G. Odawara et al., “A logic verifier based on boolean comparison”,Proc. Design
Automation Conference, 1986, pp. 208-214.

[95] A. J. Offutt et al., “An experimental determination of sufficient mutant operator
ACM Transactions on Software Engineering & Methodology, Vol. 5, No. 2, pp. 99-
118, April 1996.

[96] S. Palnitkar, P. Saggurti, and S.-H. Kuang, “Finite state machine trace ana
program”,Proc. International Verilog HDL Conference, 1994, pp. 52–57.

[97] J. H. Patel and L. Y. Fung, “Concurrent error detection in ALU's by recomput
with shifted operands”,IEEE Transactions on Computers, Vol. C-31, pp. 417-422,
July 1982.

[98] I. Pomeranz and S. M. Reddy, “On error correction in macro-based circuits”,Proc.
International Conference on Computer Aided Design, 1994, pp. 568-675.

[99] M. Postiff, LC-2 Programmer’s Reference Manual, Revision 3.1, University of
Michigan, 1996.

[100] D. Pradhan (ed.),Fault-Tolerant Computing: Theory and Techniques, Vol. 2,
Prentice-Hall, Englewood Cliffs, N. J., 1986.

[101] J. Rajski and J. Tyszer, “Recursive pseudoexhaustive test pattern generation”,IEEE
Transactions on Computers, Vol. 42, pp. 1517-1521, December 1993.

145

ital

rn

. of
o.

n

ting

nt
and

igh-

m

[102] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent testing technique for dig
circuits”, IEEE Transactions on Computer-Aided Design, Vol. 7, pp. 1250-1259,
December 1988.

[103] T. M. Sarfert, R. G. Markgraf, and M. H. Schulz, “A hierarchical test patte
generation system based on high-level primitives”,IEEE Transactions on
Computer-Aided Design, Vol. 11, pp. 34-44, January 1992.

[104] N. R. Saxena and J. P. Robinson, “Accumulator compression testing”,IEEE
Transactions on Computers, Vol. C-35, pp. 317-321, April 1986.

[105] E. M. Sentovich et al., “SIS: A system for sequential circuit synthesis”, Dept
Elec. Eng. and Comp. Sci., University of California, Berkeley, Memorandum N
UCB/ERL M92/41, May 1992.

[106] D. Siewiorek and R. Swarz,Reliable Computer Systems: Design and Evaluatio,
Digital Press, Burlington, Mass., 1992.

[107] Texas Instruments,The TTL Logic Data Book, Dallas, 1988.

[108] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors”,IEEE
Transactions on Computers, Vol. C-29, pp. 429-441, June 1980.

[109] M. Tomita and H. Jiang, “An algorithm for locating logic design errors”,Proc.
International Conference on Computer-Aided Design, 1990, pp. 468-471.

[110] N. A. Touba and E. J. McCluskey, “Synthesis of mapped logic for genera
pseudorandom patterns for BIST”,Proc. International Test Conference, 1995, pp.
674-682.

[111] J. Turino, “Test economics in the 21st century”,IEEE Design and Test, Vol. 14, pp.
41-44, July 1997.

[112] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using muta
schemata”,Proc. International Symposium on Software Testing, Analysis,
Verification, 1993, pp. 139-148.

[113] D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. Brown, “H
level design verification of microprocessors via error modeling”,ACM Transactions
on Design Automation of Electronic Systems, 1998, to appear.

[114] B. Vasudevan et al., “LFSR-based deterministic hardware for at-speed BIST”,Proc.
VLSI Test Symposium, 1996, pp. 201-207.

[115] R. Wei and A. Sangiovanni-Vincentelli, “PROTEUS: A logic verification syste
for combinational circuits”,Proc. International Test Conference, 1986, pp. 350-359.

[116] M. R. Woodward, “Mutation testing – its origin and evolution”,Information &
Software Technology, Vol. 35, pp. 163–169, March 1993.

146
[117] M. Yoeli (ed.),Formal Verification of Hardware Design, IEEE Computer Society
Press, Los Alamitos, Calif., 1990.

	Lifetime Validation of Digital Systems via Fault Modeling And Test Generation
	Hussain Said Al-Asaad
	A dissertation submitted in partial fulfillment
	of the requirements for the degree of
	Doctor of Philosophy
	(Computer Science and Engineering)
	in The University of Michigan
	1998

	„ 1998
	For my family
	Acknowledgments

	Table of Contents
	Dedication ii
	Acknowledgments iii
	List of Figures vi
	List of Tables ix
	List of Appendices xi
	Chapter
	1 Introduction 1
	1.1 System Development 2
	1.2 Design Verification 8
	1.3 Manufacture Testing 11
	1.4 On-Line Testing 20
	1.5 Lifetime Validation 24
	1.6 Thesis Outline 26

	2 Gate-Level Design VALIDAtion 28
	2.1 Tests for Design Errors 28
	2.2 Verification Test Generation 42
	2.3 Experimental Results 47
	2.4 Discussion 51

	3 High-Level Design VALIDAtion 52
	3.1 Introduction 52
	3.2 Design Error Collection 54
	3.3 Error Modeling 57
	3.4 Coverage Evaluation 66
	3.5 Mutation Control Errors 72
	3.6 Discussion 78

	4 Built-IN Validation 82
	4.1 Built-In Self-Test (BIST) 82
	4.2 Test Generator Design 85
	4.3 Scalable Test Generators 87
	4.4 Design Examples 93
	4.5 Discussion 102

	5 Conclusions 106
	5.1 Thesis Contributions 106
	5.2 Future Research 107

	Appendices 110
	Bibliography 137

	List of Figures
	Figure 1.1 Lifetime of a typical system-on-a-chip (SOC). 2
	Figure 1.2 Microprocessor design at the (a) behavioral, (b) RTL,
	Figure 1.3 Examples of data preparation and transcription faults. 4
	Figure 1.4 A NOR gate and its transistor implementation. 5
	Figure 1.5 A 2-input multiplexer circuit. 12
	Figure 1.6 A high-level design example: (a) behavioral and (b) RTL. 14
	Figure 1.7 Use of fault simulation in test generation. 19
	Figure 1.8 Taxonomy of on-line testing methods for microcontrollers. 22
	Figure 1.9 Block diagram of the proposed design verification method. 25
	Figure 2.1 Circuit realizing the XOR function. 32
	Figure 2.2 Example showing an EGE that is not detected by a
	Figure 2.3 The missing-gate design error (MGE). 36
	Figure 2.4 Reducing the problem of detecting MGEs to detecting GSEs. 36
	Figure 2.5 The replacement module for detecting GSEs in a
	Figure 2.6 Generation of the detection signals for an n-input gate. 43
	Figure 2.7 Gate replacement module for detecting GSEs in (a) a 2-input
	Figure 2.8 Gate replacement module for detecting MGEs in a 3-input
	Figure 2.9 Mapping MIEs and WIEs into SSL faults. 45
	Figure 2.10 A net attachment module (a) for MIEs and (b) for WIEs. 46
	Figure 2.11 (a) Latch and (b) line replacement modules to detect ELEs
	Figure 2.12 First phase of the design verification process. 47
	Figure 3.1 Sample error report. 56
	Figure 3.2 Number of errors detected per day for the duration
	Figure 3.3 High-level model of the 74283 carry-lookahead adder. 61
	Figure 3.4 High-level model of the c880 ALU. 62
	Figure 3.5 Experimental set-up to evaluate the proposed design
	Figure 3.6 RTL block diagram of the LC-2 microprocessor. 68
	Figure 3.7 An example of an actual design error that is dominated
	Figure 3.8 An example of (a) an actual design error for which no
	Figure 3.9 Block diagram of the DLX microprocessor. 71
	Figure 3.10 Example of an actual design error, its detection requirements,
	Figure 3.11 The microprocessor validation algorithm. 75
	Figure 3.12 A test sequence for most MCEs in the
	Figure 3.13 Deployment of proposed design verification methodology. 80
	Figure 4.1 Generic BIST scheme. 83
	Figure 4.2 Basic structure of a test generation circuit. 85
	Figure 4.3 General scalable circuit. 88
	Figure 4.4 Scalable incrementer and the corresponding test sequence and
	Figure 4.5 General structure of TG(n) and its state behavior. 92
	Figure 4.6 High-level model of the n-bit CLA. 93
	Figure 4.7 Scalable test generator and response monitor for an n-bit CLA. 97
	Figure 4.8 High-level model for the 74181 4-bit ALU. 98
	Figure 4.9 Test generator for an n-bit 74181-style ALU. 100
	Figure 4.10 High-level model for the multiply-add unit. 101
	Figure 4.11 Test generator for an n ¥ n-bit multiply-add unit. 103
	Figure A.1 Error simulation algorithms for GROUP1 and GROUP2 errors. 112
	Figure A.2 Output generated by a sample run of ESIM. 117

	List of Tables
	Table 2.1 Responses of the various gate types to their C-sets. 30
	Table 2.2 The test vectors required to verify an n-input gate. 33
	Table 2.3 Possible redundant MIGSEs on an n-input partially excitable gate. 41
	Table 2.4 Equations for n-input gate replacement modules for GSEs. 44
	Table 2.5 Design error coverage in combinational benchmarks using
	Table 2.6 Design error coverage in combinational benchmarks using
	Table 2.7 Improved coverage of MIEs and WIEs after the second
	Table 2.8 Design error coverage in combinational benchmarks using
	Table 2.9 Design error coverage in sequential benchmarks using
	Table 3.1 Actual error distributions from three groups of design projects. 56
	Table 3.2 Actual design errors and the corresponding dominated
	Table 3.3 Actual design errors and the corresponding dominated
	Table 3.4 Actual design errors and the number of corresponding
	Table 3.5 Simulation of the instruction ADD DR, SR1, SR2: control
	Table 4.1 Condensed representation of complete test sets in (a) MCLG(2)
	Table 4.2 Complete and minimal SC-style test sequence for the 74283
	Table 4.3 Mapping of the CLA test sequence to the TR counter’s
	Table 4.4 Complete and near-minimal SC-style test sequence for the
	Table 4.5 Complete and near-minimal SC-style test sequence for the
	Table 4.6 Summary of the scalable test generator examples. 104
	Table A.1 Numbers of faults and design errors in the circuits used in
	Table A.2 The percentages of SSL faults and design errors detected
	Table A.3 The percentages of SSL faults and design errors detected
	Table A.4 The percentages of SSL faults and design errors detected
	Table A.5 The CPU times in seconds spent on a SUN SPARC 20 by
	Table A.6 The percentage of IP faults detected using complete SSL
	Table A.7 Characteristics of the circuits used in the experiments. 118
	Table A.8 Gate type distribution in the selected circuits. 118
	Table B.1 Summary of instruction formats and semantics of the LC-2. 120
	List of Appendices
	Appendix A Error/Fault Simulator ESIM 111
	Appendix B The LC-2 Microprocessor 119

	Abstract
	Lifetime Validation of Digital Systems via Fault Modeling And Test Generation
	by
	Hussain Said Al-Asaad

	Chapter 1
	Introduction
	1.1 System Development
	Figure 1.1 Lifetime of a typical system-on-a-chip (SOC).
	Figure 1.2 Microprocessor design at the (a) behavioral, (b) RTL, and (c) gate levels.
	Figure 1.3 Examples of data preparation and transcription faults.
	Figure 1.4 A NOR gate and its transistor implementation.

	1.2 Design Verification
	1.3 Manufacture Testing
	Figure 1.5 A 2-input multiplexer circuit.
	Figure 1.6 A high-level design example: (a) behavioral and (b) RTL.
	1. Perform symbolic simulation for each instruction to derive a system of equations that represen...
	2. Derive a structural data flow graph (DFG) for each instruction. The inputs (outputs) of DFG in...
	3. Calculate the justification and propagation cost for state lines.
	4. Inject a test vector at the input of module under test.
	5. Assemble an instruction sequence for both fault propagation and signal justification. The sequ...
	6. Derive a complete system of equations for the instruction sequence. Use discrete relaxation al...
	Figure 1.7 Use of fault simulation in test generation.

	1.4 On-Line Testing
	Figure 1.8 Taxonomy of on-line testing methods for microcontrollers.

	1.5 Lifetime Validation
	Figure 1.10 Block diagram of the proposed design verification method.

	1.6 Thesis Outline

	Chapter 2
	Gate-Level Design VALIDAtion
	2.1 Tests for Design Errors
	Table 2.1 Responses of the various gate types to their C-sets.
	Figure 2.1 Circuit realizing the XOR function.
	Theorem 2.1 A necessary and sufficient condition for a test set S to verify a fully excitable gat...
	Table 2.2 The test vectors required to verify an n-input gate.

	Theorem 2.2 If all gates of a circuit are either fully excitable or strong partially excitable, t...
	Theorem 2.3 A complete test set for GSEs is also a complete test set for EGEs.
	Figure 2.2 Example showing an EGE that is not detected by a complete test set for SSL faults.
	Figure 2.3 The missing-gate design error (MGE).
	Figure 2.4 Reducing the problem of detecting MGEs to detecting GSEs.

	Theorem 2.4 The test sets , , and are each sufficient and near-minimal for detecting MGEs on an N...
	Theorem 2.5 In a GI-irredundant and SSL-irredundant circuit C, the following holds: (1) C has no ...
	Table 2.3 Possible redundant MIGSEs on an n-input partially excitable gate.

	2.2 Verification Test Generation
	Figure 2.5 The replacement module for detecting GSEs in a 2-input AND gate.
	Figure 2.6 Generation of the detection signals for an n-input gate.
	Table 2.4 Equations for n-input gate replacement modules for GSEs.
	Figure 2.7 Gate replacement module for detecting GSEs in (a) a 2-input XOR and (b) an n-input AND...
	Figure 2.8 Gate replacement module for detecting MGEs in a 3-input AND gate.
	Figure 2.9 Mapping MIEs and WIEs into SSL faults.
	Figure 2.10 A net attachment module (a) for MIEs and (b) for WIEs.
	Figure 2.11 (a) Latch and (b) line replacement modules to detect ELEs and MLEs, respectively.
	Figure 2.12 First phase of the design verification process.

	2.3 Experimental Results
	Table 2.5 Design error coverage in combinational benchmarks using complete SSL test set generated...
	Table 2.6 Design error coverage in combinational benchmarks using verification tests generated by...
	Table 2.7 Improved coverage of MIEs and WIEs after the second phase of test generation using ATAL...
	Table 2.8 Design error coverage in combinational benchmarks using verification tests generated by...
	Table 2.9 Design error coverage in sequential benchmarks using verification test sequences genera...

	2.4 Discussion
	Chapter 3
	High-Level Design VALIDAtion
	3.1 Introduction
	3.2 Design Error Collection
	Figure 3.1 Sample error report.
	Table 3.1 Actual error distributions from three groups of design projects.
	Figure 3.2 Number of errors detected per day for the duration of one class project.

	3.3 Error Modeling
	Figure 3.3 High-level model of the 74283 carry-lookahead adder.
	Figure 3.4 High-level model of the c880 ALU.

	3.4 Coverage Evaluation
	Figure 3.5 Experimental set-up to evaluate the proposed design verification methodology.
	Figure 3.6 RTL block diagram of the LC-2 microprocessor.
	Figure 3.7 An example of an actual design error that is dominated by an SSL error.
	Figure 3.8 An example of (a) an actual design error for which no dominated modeled error was foun...
	Table 3.2 Actual design errors and the corresponding dominated modeled errors for LC-2.
	Figure 3.9 Block diagram of the DLX microprocessor.
	Table 3.3 Actual design errors and the corresponding dominated modeled errors for our DLX impleme...

	3.5 Mutation Control Errors
	Figure 3.10 Example of an actual design error, its detection requirements, and the corresponding ...
	Table 3.4 Actual design errors and the number of corresponding dominated MCEs for LC-2.
	Figure 3.11 The microprocessor validation algorithm.
	Table 3.5 Simulation of the instruction ADD DR, SR1, SR2: control signal values and corresponding...
	Figure 3.12 A test sequence for most MCEs in the ADD DR, SR1, SR2 instruction.

	3.6 Discussion
	Figure 3.13 Deployment of proposed design verification methodology.

	Chapter 4
	Built-IN Validation
	4.1 Built-In Self-Test (BIST)
	Figure 4.1 Generic BIST scheme.

	4.2 Test Generator Design
	Figure 4.2 Basic structure of a test generation circuit.

	4.3 Scalable Test Generators
	Figure 4.3 General scalable circuit.
	Figure 4.4 Scalable incrementer and the corresponding test sequence and test generator (twisted r...
	1.� Obtain a high-level, scalable model of the CUT M(n).
	2.� Analyze this model using high-level functional analysis to derive a complete SSL- fault test ...
	3.� Convert T(n) to an SC-style test sequence S(n) as far as possible.
	4.� Synthesize a test generator TG(n) for S(n) in the style of Figure 4.5.
	Figure 4.5 General structure of TG(n) and its state behavior.

	4.4 Design Examples
	Figure 4.6 High-level model of the n-bit CLA.
	Table 4.1 Condensed representation of complete test sets in (a) MCLG(2) and (b) MPGX(2). (c) Spec...
	Table 4.2 Complete and minimal SC-style test sequence for the 74283 4-bit CLA and the correspondi...
	Table 4.3 Mapping of the CLA test sequence to the TR counter’s output sequence.
	Figure 4.7 Scalable test generator and response monitor for an n-bit CLA.
	Figure 4.8 High-level model for the 74181 4-bit ALU.
	Table 4.4 Complete and near-minimal SC-style test sequence for the 74181 ALU.
	Figure 4.9 Test generator for an n-bit 74181-style ALU.
	Figure 4.10 High-level model for the multiply-add unit.
	Table 4.5 Complete and near-minimal SC-style test sequence for the multiply-add unit.
	Figure 4.11 Test generator for an n ¥ n-bit multiply-add unit.

	4.5 Discussion
	Table 4.6 Summary of the scalable test generator examples.

	Chapter 5
	Conclusions
	5.1 Thesis Contributions
	5.2 Future Research

	Appendices
	Appendix A
	Error/Fault Simulator ESIM
	Figure A.1 Error simulation algorithms for GROUP1 and GROUP2 errors.
	Table A.1 Numbers of faults and design errors in the circuits used in the experiments.
	Table A.2 The percentages of SSL faults and design errors detected using exhaustive test sets.
	Table A.3 The percentages of SSL faults and design errors detected in the 4-bit 74283 adder circu...
	Table A.4 The percentages of SSL faults and design errors detected using complete SSL tests gener...
	Table A.5 The CPU times in seconds spent on a SUN SPARC 20 by ESIM using complete SSL tests gener...
	Table A.6 The percentage of IP faults detected using complete SSL tests generated by ATALANTA.
	Figure A.2 Output generated by a sample run of ESIM.
	Table A.7 Characteristics of the circuits used in the experiments.
	Table A.8 Gate type distribution in the selected circuits.

	Appendix B
	The LC-2 Microprocessor
	B.1 Description of LC-2
	Table B.1 Summary of instruction formats and semantics of the LC-2.

	B.2 Behavioral Verilog Description of LC-2
	B.3 Synthesizable Verilog Description of LC-2

	Bibliography
	Bibliography
	[1] E. J. Aas, T. Steen, and K. Klingsheim, “Quantifying design quality through design experiment...
	[2] M. S. Abadir, J. Ferguson, and T. E. Kirkland, “Logic design verification via test generation...
	[3] M. S. Abadir and H. K. Reghbati, “Functional testing of semiconductor random access memories”...
	[4] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and Testable Design,...
	[5] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical path tracing: An alternative to fault...
	[6] V. D. Agarwal and E. Cerny, “Store and generate built-in testing approach”, Proc. Fault-Toler...
	[7] A. Aharon et al., “Verification of the IBM RISC System/6000 by dynamic biased pseudo-random t...
	[8] S. B. Akers, “Universal test sets for logic networks”, IEEE Transactions on Computers, Vol. C...
	[9] S. B. Akers and W. Jansz, “Test set embedding in a built-in self-test environment”, Proc. Int...
	[10] H. Al-Asaad and J. P. Hayes, “Design verification via simulation and automatic test pattern ...
	[11] H. Al-Asaad, J. P. Hayes, and B. T. Murray, “Scalable test generators for high-speed datapat...
	[12] H. Al-Asaad, J. P. Hayes, and B. T. Murray, “Design of scalable hardware test generators for...
	[13] H. Al-Asaad, B. T. Murray, and J. P. Hayes, “On-line BIST for embedded systems”, IEEE Design...
	[14] H. Al-Asaad, D. Van Campenhout, J. P. Hayes, T. Mudge, and R. Brown, “High- level design ver...
	[15] G. Al Hayek and C. Robach, “From specification validation to hardware testing: A unified met...
	[16] M. Annaratone, Digital CMOS Circuit design, Kluwer, Boston, 1986.
	[17] ATTEST Software, ATTEST Software Tools, Santa Clara, Calif., 1995.
	[18] R. Bailey, Human Error in Computer Systems, Prentice-Hall, Englewood Cliffs, N. J., 1981.
	[19] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Self-Test for VLSI: Pseudorandom Techni...
	[20] B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 2nd edition, 1990.
	[21] D. Bhattacharya and J. P. Hayes, “High-level test generation using bus faults,” Proc. Fault-...
	[22] R. D. Blanton, Design and Testing of Regular Circuits, Ph.D. dissertation, University of Mic...
	[23] S. Boubezari and B. Kaminska, “A deterministic built-in self-test generator based on cellula...
	[24] D. Brand, “Exhaustive simulation need not require an exponential number of tests”, IEEE Tran...
	[25] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark circuits and a t...
	[26] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark circu...
	[27] R. Brown et al., “Complementary GaAs technology for a GHz microprocessor”, Technical Digest ...
	[28] R. Bryant, “Graph-based algorithms for boolean function manipulation”, IEEE Transactions on ...
	[29] R. Bryant, “Division, Pentium style: An analysis of Intel's mistake(s)”, Carnegie Mellon Uni...
	[30] Cadence Design Systems, Verilog-XL Reference Manual, Vol. 1, Version 1.6, Lowell, Mass., 1991.
	[31] J. D. Calhoun and F. Brglez, “A framework and method for hierarchical test generation”, IEEE...
	[32] F. Casaubieilh et al., “Functional verification methodology of Chameleon processor”, Proc. D...
	[33] P. Cederqvist et al., Version Management with CVS, Signum Support AB, Linkoping, Sweden, 1992.
	[34] K. Chakrabarty, B. T. Murray, J. Liu, and M. Zhu, “Test width compression for built-in self ...
	[35] A. K. Chandra et al., “AVPGEN - a test generator for architecture verification”, IEEE Transa...
	[36] B. Chen, C. L. Lee, and J. E. Chen, “Design verification by using universal test sets”, Proc...
	[37] C.-A. Chen and S. K. Gupta, “A methodology to design efficient BIST test pattern generators”...
	[38] T. C. K. Chou, “Beyond fault tolerance”, IEEE Computer, Vol. 30, pp. 47-49, April 1997.
	[39] P. Chung and I. Hajj, “ACCORD: Automatic catching and correction of logic design errors in c...
	[40] P. Chung, Y. Wang, and I. Hajj, “Logic design error diagnosis and correction”, IEEE Transact...
	[41] R. P. Colwell and R. A. Lethin, “Latent design faults in the development of the Multiflow TR...
	[42] W. Daehn and J. Mucha, “Hardware test pattern generation for built-in testing”, IEEE Test Co...
	[43] R. Dandapani, J. H. Patel, and J. A. Abraham, “Design of test pattern generator for built-in...
	[44] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the ...
	[45] R. A. DeMillo et al., Software Testing and Evaluation, Benjamin/Cummings, Menlo Park, Calif....
	[46] S. Devadas, A. Ghosh, and K. Keutzer, “Observability-based code coverage metric for function...
	[47] C. Dufaza and G. Cambon, “LFSR based deterministic and pseudo-random test pattern generator ...
	[48] M. Fujita, T. Kakuda, and Y. Matsunaga, “Redesign and automatic error correction of combinat...
	[49] G. Ganapathy et al., “Hardware emulation for functional verification of K5”, Proc. Design Au...
	[50] D. Gizopoulos, A. Paschalis, and Y. Zorian, “An effective BIST scheme for Booth multipliers”...
	[51] M. C. Hansen, Symbolic Functional Test Generation with Guaranteed Low-Level Fault Detection,...
	[52] M. C. Hansen and J. P. Hayes, “High-level test generation using physically-induced faults”, ...
	[53] M. C. Hansen and J. P. Hayes, “High-level test generation using symbolic scheduling”, Proc. ...
	[54] J. P. Hayes, “On the properties of irredundant logic networks”, IEEE Transactions on Compute...
	[55] S. Hellebrand et al., “Pattern generation for deterministic BIST scheme”, Proc. Internationa...
	[56] S. Hellebrand, S. Tarnick, and J. Rajski, “Generation of vector patterns through reseeding o...
	[57] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufman...
	[58] A. Hosseini, D. Mavroidis, and P. Konas, “Code generation and analysis for the functional ve...
	[59] S.-Y. Huang et al., “ErrorTracer: A fault simulation-based approach to design error diagnosi...
	[60] Intel Corp., “Pentium processor specification update,” 1998, available from http:// www.inte...
	[61] Intel Corp., “Statistical analysis of floating point flaw in the Pentium processor”, Technic...
	[62] J. Jain et al., “Probabilistic design verification”, Proc. International Conference on Compu...
	[63] P. Jain and G. Gopalakrishnan, “Efficient symbolic simulation-based verification using the p...
	[64] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems, Addison- Wesley, Readi...
	[65] S. Kang and S. A. Szygenda, “The simulation automation system (SAS); concepts, implementatio...
	[66] M. Kantrowitz and L. M. Noack, “I’m done simulating; Now what? Verification coverage analysi...
	[67] H. Kim, “C880 high-level Verilog description”, Internal report, University of Michigan, 1996.
	[68] K. N. King and A. J. Offutt, “A Fortran language system for mutation-based software testing”...
	[69] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall, Englewood Cliffs, N. J., 1993.
	[70] J. Kumar, “Prototyping the M68060 for concurrent verification”, IEEE Design and Test, Vol. 1...
	[71] W. Kunz and D. K. Pradhan, “Recursive learning: A precise implication technique for efficien...
	[72] W. Kunz, D. K. Pradhan, and S. M. Reddy, “A novel framework for logic verification in a synt...
	[73] S. Kuo, “Locating logic design errors via test generation and don't care propagation”, Proc....
	[74] H. K. Lee and D. S. Ha, “An efficient forward fault simulation algorithm based on the parall...
	[75] H. K. Lee and D. S. Ha, “On the generation of test patterns for combinational circuits”, Dep...
	[76] J. Lee and J. H. Patel, “A signal-driven discrete relaxation technique for architectural lev...
	[77] J. Lee and J. H. Patel, “An architectural level test generator for a hierarchical design env...
	[78] J. Lee and J. H. Patel, “Architectural level test generation for microprocessors”, IEEE Tran...
	[79] H. Liaw, J. Tsaih, and C. Lin, “Efficient automatic diagnosis of digital circuits”, Proc. Eu...
	[80] A. P. Lowell, “The care and feeding of watchdogs”, Embedded Systems Programming, pp. 38-52, ...
	[81] F. Maamari and J. Rajski, “A method of fault simulation based on stem regions”, IEEE Transac...
	[82] A. Mahmood and E. McCluskey, “Concurrent error detection using watchdog processors—A survey”...
	[83] E. J. McCluskey, Logic Design Principles, Prentice-Hall, Englewood Cliffs, N. J., 1986.
	[84] MIPS Technologies, MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0, May 1994.
	[85] J. Miyake et al., “Automatic test generation for functional verification of microprocessors”...
	[86] F. Muradali, V. K. Agarwal, and B. Nadeau-Dostie, “A new procedure for weighted random built...
	[87] B. T. Murray and J. P. Hayes, “Hierarchical test generation using precomputed tests for modu...
	[88] B. T. Murray and J. P. Hayes, “Test propagation through modules and circuits”, Proc. Interna...
	[89] B. T. Murray and J. P. Hayes, “Testing ICs: Getting to the core of the problem”, IEEE Comput...
	[90] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “Serial interfacing for embedded memory tes...
	[91] P. Narain et al., “A high-level approach to test generation”, IEEE Transactions on Circuits ...
	[92] M. Nicolaidis, “Test pattern generators for arithmetic units and arithmetic and logic units”...
	[93] M. Nicolaidis, “Theory of transparent BIST for RAMs”, IEEE Transactions on Computers, Vol. 4...
	[94] G. Odawara et al., “A logic verifier based on boolean comparison”, Proc. Design Automation C...
	[95] A. J. Offutt et al., “An experimental determination of sufficient mutant operators”, ACM Tra...
	[96] S. Palnitkar, P. Saggurti, and S.-H. Kuang, “Finite state machine trace analysis program”, P...
	[97] J. H. Patel and L. Y. Fung, “Concurrent error detection in ALU's by recomputing with shifted...
	[98] I. Pomeranz and S. M. Reddy, “On error correction in macro-based circuits”, Proc. Internatio...
	[99] M. Postiff, LC-2 Programmer’s Reference Manual, Revision 3.1, University of Michigan, 1996.
	[100] D. Pradhan (ed.), Fault-Tolerant Computing: Theory and Techniques, Vol. 2, Prentice-Hall, E...
	[101] J. Rajski and J. Tyszer, “Recursive pseudoexhaustive test pattern generation”, IEEE Transac...
	[102] K. K. Saluja, R. Sharma, and C. R. Kime, “A concurrent testing technique for digital circui...
	[103] T. M. Sarfert, R. G. Markgraf, and M. H. Schulz, “A hierarchical test pattern generation sy...
	[104] N. R. Saxena and J. P. Robinson, “Accumulator compression testing”, IEEE Transactions on Co...
	[105] E. M. Sentovich et al., “SIS: A system for sequential circuit synthesis”, Dept. of Elec. En...
	[106] D. Siewiorek and R. Swarz, Reliable Computer Systems: Design and Evaluation, Digital Press,...
	[107] Texas Instruments, The TTL Logic Data Book, Dallas, 1988.
	[108] S. M. Thatte and J. A. Abraham, “Test generation for microprocessors”, IEEE Transactions on...
	[109] M. Tomita and H. Jiang, “An algorithm for locating logic design errors”, Proc. Internationa...
	[110] N. A. Touba and E. J. McCluskey, “Synthesis of mapped logic for generating pseudorandom pat...
	[111] J. Turino, “Test economics in the 21st century”, IEEE Design and Test, Vol. 14, pp. 41-44, ...
	[112] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using mutant schemata”, Pr...
	[113] D. Van Campenhout, H. Al-Asaad, J. P. Hayes, T. Mudge, and R. Brown, “High- level design ve...
	[114] B. Vasudevan et al., “LFSR-based deterministic hardware for at-speed BIST”, Proc. VLSI Test...
	[115] R. Wei and A. Sangiovanni-Vincentelli, “PROTEUS: A logic verification system for combinatio...
	[116] M. R. Woodward, “Mutation testing – its origin and evolution”, Information & Software Techn...
	[117] M. Yoeli (ed.), Formal Verification of Hardware Design, IEEE Computer Society Press, Los Al...

