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ABSTRACT

LIFETIME VALIDATION OF DIGITAL SYSTEMS VIA FAULT
MODELING AND TEST GENERATION

by
Hussain Said Al-Asaad

Chair: John P. Hayes

The steady growth in the complexity of digital systems demands more efficient algo-
rithms and tools for design verification and testing. Design verification is becoming
increasingly important due to shorter design cycles and the high cost of system failures.
During normal operation, digital systems are subject to operational faults, which require
regular on-line testing in the field, especially for high-availability and safety-critical appli-
cations. Fabrication fault testing has a well-developed methodology that can, in principle,
be adapted for efficient design validation and on-line testing. This thesis investigates a
comprehensive “lifetime” validation approach that uses fabrication fault testing and simu-
lation techniques, and accounts for design errors, fabrication faults, and operational faults.
The validation is achieved by the following sequence of steps: (1) explicit error and fault

modeling, (2) model-directed test generation, and (3) test application.

We first present a hardware design validation methodology that follows the foregoing
validation approach. We analyze the gate-level design error models used in prior research
and show how to map them into single stuck-line (SSL) faults. We then describe an exten-
sive set of experiments, which demonstrate that high coverage of the modeled gate-level

errors can be achieved with small test sets obtained with standard test generation and sim-



ulation tools for fabrication faults. Due to the absence of published error data, we have
systematically collected design errors from a number of microprocessor design projects,
and used them to construct high-level error models suitable for design validation. Experi-
mental results indicate that very high coverage of actual design errors can be obtained
with test sets that are complete for a small number of design error models. We further
present a new error model for control errors in microprocessors and a validation approach

that uses it.

We next show how to achieve built-in validation by embedding the test application
mechanism within the circuit under test (CUT). This is realized by built-in self-test
(BIST), a design-for-testability technique that places the testing functions physically
within the CUT. We demonstrate how BIST, which in the past has been typically used
only for fabrication faults, can be applied to on-line testing. On-line BIST can provide full
error coverage, bounded error latency, low hardware and time redundancy. We present a
method for the design of efficient test sets and test generators for BIST, especially for
high-performance scalable datapath circuits. The resultant test generator designs meet the
following goals: scalability, small test set size, full fault coverage, and very low hardware
overhead. We apply our method to various datapath circuits including a carry-lookahead

adder, an arithmetic-logic unit, and a multiplier-adder.



CHAPTER 1
INTRODUCTION

The field of digital systems has undergone a major revolution in recent decades. Cir-
cuits are shrinking in physical size while growing both in speed and range of capabilities.
This rapid advancement is not without serious problems, however. Especially worrisome
are verification and testing, which become more important as the system complexity
increases and time-to-market decreases. The inadequacy of existing verification methods
is illustrated by the 1994 Pentium microprocessor’s FDIV design error, which cost its
manufacturer (Intel) an estimated $500 million [29]. The FDIV error involved a set of
missing entries in a lookup table used in the hardware algorithm implementing the divide
operation, and caused the Pentium’s floating-point divide instructions to produce inaccu-
rate results for certain input data [61]. The inadequacy of existing testing methods is also
illustrated by the 1990 breakdown of AT&T’s long distance network, which cost AT&T
around $75 million [38].

Due to the high cost of failure, verification and testing now account for more than half
of the total lifetime cost of an integrated circuit (IC) [111]. Increasing emphasis needs to
be placed on finding design errors and physical faults as early as possible in the life of a
digital system, new algorithms need to be devised to create tests for logic circuits, and
more attention should be paid to synthesis for test and on-line testing. On-line testing
requires embedding logic that continuously checks the system for correct operation. Built-
in self-test (BIST) is a technique that modifies the IC by embedding test mechanisms
directly into it. BIST is often used to detect faults before the system is shipped and is

potentially a very efficient way to implement on-line testing.



This thesis presents a comprehensive validation approach for digital systems that is
based on fault modeling and test generation. Contrary to most prior research, the approach
aims at detecting design errors and physical faults throughout the lifetime of a digital sys-
tem. In this chapter, we review the types of faults and errors that arise during the system’s
lifetime, and the relevant methods for detecting and simulating these faults and errors. We

then discuss our proposed approach to lifetime validation.

1.1 System Development

Digital systems are manufactured on either a single chip, called a system-on-a-chip
(SOC), or on several chips. In this thesis, we assume that digital systems follow the SOC-
style, however, the results can be easily extended to multiple-chip systems. Figure 1.1
shows the lifetime of a typical IC-based digital system (SOC) divided into three phases:
design, manufacturing, and operation. During the design phase, an initial design concept is
transformed in a top-down manner into an IC specification (mask layout). The design
phase for a new system involves an extensive requirements analysis, resulting in a detailed
system specification describing what the system must do. Then a behavioral description is
prepared, which describes the system’s operation in detail. Following the behavioral
design, a register-transfer level (RTL) design is created that includes modules such as
buses, registers, logic blocks, and finite state machines. The RTL components are in turn
implemented using gate-level components, such as gates and flip-flops. Finally, a mask

layout targeting a certain IC technology, such as CMOS, is generated.

Systems designed in the above fashion are said tbidrarchical We use the term
moduleto refer to a design block at any abstraction level whose function is clearly

defined. A module at a certain level of the system’s hierarchy abstracts away the details of

. Wearout
Useful life

Design Manufacturing Operation

Specifications o
Design . ) . L Finished
concept | Behavioral desig Chip fabrication IC
—>

RTL design Packaging

Logic design

Figure 1.1 Lifetime of a typical system-on-a-chip (SOC).



module cpu(clock,clear,dbus,abus,write_mem_bar,read_mem_bar);

input clock,clear;

inout [15:0] dbus;

output [15:0] abus;

output write_mem_bar,read_mem_bar;

wire [15:0] ir_out;

wire [2:0] R1,R2,W,flags_out;

wire [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;

datapath DP(clock,clear,dbus,abus,ir_out,flags_out,R1,R2,W,RE1,RE2,WI
S3,52,51,S0,M, load_pc_bar, load_ir_bar, load_mar_bar,
load_flags_bar, load_regl_bar,load_reg2_bar,sel_rf_mux, sel_pc
sel_mar_mux, sel_ab_mux,sel_alu_mux,reg2_to_dbus_bar,zero_
trapvec_bar);

control CO(clock,clear,write_mem_bar,read_mem_bar,R1,R2,W,RE1,RE2,WE,
S$3,52,51,S0,M,load_pc_bar,load_ir_bar, load_mar_bar, load_flags_bar
load_regl_bar,load_reg2_bar, sel_rf_mux, sel_pc_mux,sel_mar_mux,
sel_ab_mux, sel_alu_mux,reg2_to_dbus_bar,zero_or_sign,trapvec_bar
ir_out,flags_out);

endmodule

module control(........ );

case (machine_state)
"IFETCH_STATE:
begin
read_mem_bar_temp = 1'b0;
write_mem_bar_temp = 1'b1,;
RE1_temp = 1'b0;
RE2_temp = 1'b0;

endmodule

(a) (c)

Figure 1.2 Microprocessor design at the (a) behavioral, (b) RTL, and (c) gate levels.

the lower level which implements it. An example is given in Figure 1.2, where the hierar-
chical structure of a microprocessor is shown along with some modules at different
abstraction levels. Figure 1.2a shows a behavioral Verilog description of the microproces-
sor and Figure 1.2b shows the RTL design of its datapath module. Figure 1.2c shows the
gate-level netlist of one of the multiplexers in the datapath module. Designs at the behav-

ioral and register-transfer levels are often considerédgaslevel

Computer-aided design (CAD) tools are normally used throughout the design process
for synthesis, optimization, and verification. Synthesis tools speed up the design cycle and
reduce the human design effort and cost. For example, a synthesis tool transforms a design
from a higher level of abstraction, such as the microprocessor behavioral design in Figure
1.2a, to a lower one such as the gate-level design in Figure 1.2c. Optimization tools
enhance the design quality, while verification tools ensure the correctness of the final

design.



The manufacturing phase in the lifetime of a digital system takes the IC mask layout
and yields a finished IC. First, the system is fabricated on a chip and then it is packaged
into the finished IC that is ready to be used. The final phase of the system’s lifetime is nor-

mal operation, where the system performs its intended job.

Faults occur throughout the lifetime of a digital system. They can be classified by the
phase in which they occur as follows: design faults (more commonly called desas)
which appear in the design phase, fabrication faults which appear in the manufacturing
phase, and operational faults which occur during normal operation. Fabrication and opera-

tional faults are normally considered to be “physical” faults.

Design faults The three major types of design faults in a system are those “inherited” by
the system, those made by human designers, and those made by the computers that aid in
the design process [18]. Inherited faults are those that exist before starting the design pro-
cess. For example, conflicting specifications are considered as inherited faults. These faults
cannot be completely eliminated because no system is completely new. Human design
faults fall into two major categories: data preparation faults and transcription faults. Data
preparation faults usually result from making wrong decisions, miscalculations, etc. Tran-
scription faults are the result of transferring data from one medium to another without
changing its content. Faults due to mistakes in keying design data into a computer are con-
sidered transcription faults. Examples of data preparation and transcription faults are
shown in Figure 1.3. Human design faults must be detected as early as possible because it
costs a lot to detect and correct them later. They can happen at any stage of the design pro-
cess and can remain undiscovered throughout the lifetime of the system. The third source

of design faults is the CAD system used to automate and speed up the design cycle. Bugs

/I Instruction decoding /I Instruction decoding
/I Decoding of register file inputs /I Decoding of register file inputs
/I Decoding of R1 . . /I Decoding of R1
/I Instruction decoding
if (ir_out[15:12] == 4'b1101) /7 Decoding of register file inputs if (ir_out[15:12] == 4'b1101)
R1_temp = 3'b111; /I Decoding of R1 R1_temp = 3'b110;
else ) o else
R1_temp = ir_out[8:6]; R1_temp = ir_out[8:6]; R1_temp = ir_out[8:6];
Correct code Data preparation fault Transcription fault

Figure 1.3 Examples of data preparation and transcription faults.



in the CAD software (simulators, translators, layout generators, etc.) can lead to incorrect
design. A hardware malfunction in the CAD workstation such as a bad storage sector on

the disk can also cause design faults.

Fabrication faults. These defects are not directly attributable to human error; instead they
result from an imperfect manufacturing process. For example, shorts and opens are com-
mon defects in the manufacture of very large-scale integrated (VLSI) circuits using CMOS
technology, the industry standard. These defects can have a severe effect on the behavior
of an IC. For example, if the transistdp of the NOR gate circuit shown in Figure 1.4 is
shorted, then there will be a direct conducting path from VDD to GND, wkig#n 01. Such

a path will not only produce an erroneous value at the outploit also may cause the over-

all integrated circuit to fail due to the increase in static power consumption and heat. Other
CMOS fabrication defects include incorrect transistor threshold voltage, improper doping
profiles, mask alignment errors, and poor encapsulation. Accurate identification of fabrica-

tion defects is important in improving the manufacturing yield [64].

Operational faults. Most of these faults are caused by external disturbance during the nor-
mal operation of the digital system. Common sources of operational faults are electromag-
netic interference, operator mistakes, environmental extremes, and wearout. For example,
if a digital system is subjected to extreme temperature variations, the system can produce
incorrect results. Moreover, excessive temperature and humidity accelerate the aging of
components. Some operational faults arise due to the movement of the system, especially
in mobile applications. Also, some IC faults are due to electron migration, where metal con-

nectors inside an IC package thin out with time and break. Operator mistakes are consid-

VDD
T
A 1
T
Aj j B 4 )
z z
B
A B
T, T,
= GND

Figure 1.4 A NOR gate and its transistor implementation.



ered in this class because an operator may provide incorrect commands which lead to

system failure.
Operational faults are usually classified according to their duration:

* Permanentaults remain in existence indefinitely if no corrective action is taken.
Many of these are residual design or manufacturing faults. Those that are not most
frequently occur during changes in system operation, for instance, after system
start-up or shutdown, or as a result of a catastrophic environmental disturbance
such as a collision.

* Intermittentfaults appear, disappear, and reappear repeatedly. They are difficult
to predict, but their effects are highly correlated. Most intermittent faults are due
to marginal design or manufacturing. The system works well most of the time, but
fails under atypical environmental conditions.

» Transientfaults appear and disappear quickly, and are not correlated with each

other. They are most commonly induced by random environmental disturbances.

To detect faults, we need to apply input stimuli (tests) that will force the circuit under
test to fail. A circuit is said to falil if the function it implements differs from the function it
was designed to implement. Fault models provide a consistent and technology-indepen-
dent mechanism for how a logic function might fail, as well as a standard yardstick for
measuring the quality of a set of tests. In developing a fault model, it is important to strike
a balance between accuracy and complexity. The model must also match the characteris-

tics of the design level(s) at which it is used.

The modeling of design errors has rarely been considered before due to the lack of pub-
lished error data. Abadir et al. [2] defined a set of likely design errors for combinational
logic and have shown that complete test sets for fabrication faults detect many, but not all,
such errors. In Chapter 2, we reduce most of the known gate-level design errors to five
classes. Al Hayek and Robach [15] have adapted mutation errors from the software testing
method called mutation testing, to hardware design verification in the case of small VHDL
modules. Mutation testing [44][45] generates tests that distinguish a program under test

from its mutants, where a mutant is created by injecting a small error (mutation) such as



changing an add to subtract. The rationale for the approach is based on two controversial
hypotheses: 1) programmers write programs that are close to correct ones, and 2) a test set
that distinguishes a program from all its mutants is also sensitive to more complex errors.
Current mutation-testing tools are slow and are only suitable for testing relatively small

programs [112].

Developing fault models for fabrication faults has received a lot of attention in the past.
The most common such fault model is thiagle stuck-lingSSL) fault model [4], under
which any single signal line in a logic-level system model can become permanently fixed
(stuck) at a logical 1 or O value. It is a simple, technology-independent, logical fault
model. While it represents only a small number of different manufacturing faults directly,
tests derived for SSL faults detect most faults occurring in practice. Since the number of
SSL faults is proportional to the number of lines in the circuit, it is feasible to consider all

possible SSL faults, even in large-scale designs.

Another model for fabrication faults is theput pattern(IP) fault model [22], under
which a fault changes a module’s response to some input pattern. Formally, an IP faultin a
single-output modul® changes the response Mfto the input patterv from F,, to Fy,

The number of IP faults in a circui is proportional toG x 2P wher6 is the number of
modules inC andp is the average number of inputs to the modulefurctional faultin a
moduleM changes the function implemented Byinto a known faulty function, and can
be represented by a set of IP faults. On the other handll &aultin M changes the func-
tion implemented by into an unknown faulty function. To detect a cell fault, exhaustive

testing ofM is needed.

Few formal higher-level fabrication fault models exist, and those that do are often not
sufficient to detect all actual faults. Thatte and Abraham [108] classified faults in micro-
processors according to their effect on some register-level components. These effects
include such symptoms as register decoding errors, and data transfer errors. Other higher-
level fault models are extensions of the gate-level fault models. For example, Bhatta-
charya and Hayes [21] extended the SSL fault model to include all bits of a bus, leading to

the concept of bus faults.



Since operational faults and fabrication faults are physical in nature, fabrication fault
models are also used for operational faults. The SSL fault model is also the most com-

monly used model for operational faults.

Testing is the process of error/fault detection. It involves exercising a system with input
patterns (test vectors) and observing the resulting response vectors to ascertain whether
the system behaves correctly. Testing methods can be classified by the types of faults
addressed: design verification for design faults, manufacture testing for fabrication faults,

and on-line testing for operational faults.

1.2 Design Verification

Design verification is the process of ensuring that a design exhibits certain required or
“correct” behavior. There are two broad approaches to hardware design verification: for-
mal methods and simulation-based methods. Formal methods try to verify the correctness
of a system by using mathematical proofs [117]. Such methods implicitly consider all pos-
sible behavior of the models representing the system and its specification. The accuracy
and completeness of the system and specification models are a fundamental limitation for
any formal method. Furthermore, formal methods are not yet feasible for large, complex

designs due to their excessive time and memory requirements.

An example of a formal verification method is boolean comparison [28][94][115],
where verification becomes proving the equivalence of two logical representations of the
same design. Most proposed algorithms for boolean comparison apply to gate-level
designs and are based on ordered binary decision diagrams (OBDDs) [28]. Since an
OBDD is a canonical representation of a logic function, OBDD-based verification meth-
ods aim at constructing the OBBD for each of the two design representations and then
proving their equivalence. These algorithms often fail for large circuits due to the large

memory requirements for storing the OBDDs.

Recently, Kunz and Pradhan [71][72] introduced a procedure called recursive learning,
which they use to prove the equivalence of two gate-level designs. The main idea is to use
structural methods to capture similarity between two sub-circuits and then use an OBDD-

based functional approach to prove the equivalence of the two circuits. Such a method is



useful for verifying the functionality of a circuit after simple modifications have been
made to the circuit. However, recursive learning cannot be used to verify the equivalence

of two designs at different levels of abstraction.

Simulation-based design verification tries to uncover design errors by detecting a cir-
cuit’s faulty behavior when tests (simulation vectors) are applied. Several types of tests

can be used for verification:

» Exhaustive testsSimulation using all possible input combinations as tests is a
possibility, at least for small combinational circuits.

* Focused testd hese are hand-written by the designers focusing on basic function-
ality and important exceptional or “corner” cases in the design. These tests may
be effective; however, the process of generating such tests is far from being fully
automated. Recently, tools have been developed to assist in the generation of
focused tests [35][58].

* Random testsRandom vectors can cover a substantial number of design faults,
but their coverage is uncertain even with very large test sets [65]. Random simu-
lation provides a cheap way to take advantage of the billion-cycles-a-day
simulation capacity of networked workstations available in many big design orga-
nizations. Sophisticated systems have been developed that are biased towards
corner cases, thus improving the quality of the tests significantly [7].

* Universal tests Implementation-independent “universal” test sets [24][36]
exploit any unateness properties of the functions being implemented, but the tests
become exhaustive when, as is often the case, there are no unate variables.

» Physical-fault-oriented testAnother approach is to use specific, deterministic
test sets generated for a physical (fabrication) fault model like the SSL model to
verify the design. It has been shown that many, but not all, gate-level design errors
can be detected by using test sets derived for SSL faults [2]. We verify this result

experimentally in Chapter 2.

Instead of the usual binary values for the tests described above, symbolic simulation
[63] uses logical expressions for the state and input variables. The expressions must cover

all valid test cases and avoid those that violate the circuit’s input constraints. For example,
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the expressions must cover the test cases {00, 01, 10} and avoid {11} for the selection bus
of a 3-input multiplexer. This technique is suitable for applications where input constraints
can be easily determined. Another simulation-based comparison approach, called probabi-
listic design verification [62], uses integer values for input variables. This method estab-
lishes a transformation from the boolean function realized by a circuit to an arithmetic
function. To compare two gate-level designs, the circuits are first transformed to arith-
metic functions and then simulated with integer values for inputs instead of the usual

binary values.

Common to all the tests mentioned above is that they are not targeted at specific actual
design errors. This poses the problem of quantifying the effectiveness of a test set, such as
the number of errors detected or “covered”. Various coverage metrics have been proposed
to address this problem. These include code coverage metrics from software testing
[7][20][32], finite state machine coverage [58][66][96], architectural event coverage [66],
and observability-based metrics [46]. A shortcoming of all these metrics is that the rela-
tionship between the metric and the detection of actual design errors is not well under-

stood.

To overcome the problems of the above approaches, model-based design verification
attempts to model design errors directly and generate tests for the synthetic models. An
example of model-based design verification is Al Hayek and Robach’s method [15] which
was adapted from mutation testing [44]. Although mutation testing is considered too
costly for wide-scale industrial use, it is one of the few approaches that has yielded an
automatic test generation system for software testing, as well as a quantitative measure of

error coverage (mutation score) [68].

Although model-based design verification is intended for design error detection, the
generated deterministic test sets also appear to be useful for error location, diagnosis, and
correction [39][40][73]. This is the case since these test sets (simulation vectors) can be
surprisingly small and can guarantee the detection of broad categories of design errors. In
contrast, random vectors [59][98] do not guarantee the detection of all errors, and the use

of exhaustive tests [98] is rarely feasible.
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Design verification via model-based testing suffers from a major limitation. Since no
complete set of design error models is known, a system that passes the testing is correct
only with respect to the considered error models. Hence, correctness with respect to
unmodeled errors cannot be guaranteed. In spite of this, simulation is an effective tech-
nique for design verification, and experience has shown that it helps discover most design

errors early in the design process.

1.3 Manufacture Testing

Manufacture testing, also called acceptance testing, deals with the detection of mal-
functions in a digital system due to fabrication faults. In principle, it is possible to generate
tests without the use of an explicit fabrication fault model. For example, exhaustive, uni-
versal, and random tests can be used to detect fabrication faults. However, in practice, test-
ing usually employs a fault model, and tests are generated to detect all occurrences of the
modeled faults. If the system passes the tests, it is declared free from faults and can be
shipped to customers. Otherwise, the system is diagnosed to identify the causes of failure

and improve the yield of future production.

Most deterministic fabrication-fault-oriented test generation algorithms are based on
the following three basic steps: (1) activate the currently selected fault, (2) propagate an
error signal from the site of the fault to an observable output, and (3) justify the internal
signals by assigning values to the primary inputs. We next describe the test generation and

fault simulation methods used in prior research.

Gate-level test generationThe most studied approaches to test generation employ gate-
level structural models; nearly all commercial test generators do so. The most widely
known gate-level test generation algorithms are@kalgorithm and PODEM (Path Ori-
ented DEcision Making) [4].

If a line in a circuit is 0 (1) when it should be 1 (0), the error signal value on that line is
represented by the symbbI (D) for discrepancy. Consider the 2-input multiplexer circuit
in Figure 1.5. A stuck-at-1 fault at the output of g&gcan be activated by attempting to

make the output 0. A signal on this line will be detected as an error if it is assigned the
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Stuck-at-1 fault site
+ Sensitized path
-~ P

Figure 1.5 A 2-input multiplexer circuit.

valueD. The faultG, stuck-at-1 is activated by assigning O to one or botkaridc. Since

the output ofG, is not a primary output, we need to propagatel@herror signal from the
output of G, to the primary output so that it can be observed. This is done by assigning
values to signals in the circuit to sensitize the outpubpfo G5's output, i.e. by assigning

0 to the output ofG,. The error propagation process just described is célguopaga-

tion. After propagating the error, we need to assign the primary inputs of the circuit to sat-
isfy the assignments made to internal signals. So, we need to assign O td tomatisfy

the value 0 aGG,’'s output. This process of determining complete and consistent specifica-
tions of circuit signal values is called justification. After justification is completed, the
values of the primary input signals form the test for the fault. Hence the test for the fault
G, stuck-at-1 isscd= 000.

The D-algorithm provides a systematic implementation of Ekpropagation and justi-
fication steps described above. In the cas®qdropagation, severd)'s (D’s) may be
propagated simultaneously, since sometimes an error signal must be propagated along
more than one path to reach an observable output. IDtBkorithm, theD-propagation
and justification operations make only local assignments of signal values. To justify a
value on the output of gatg, the D-algorithm makes assignments to the input<Goff
these are not primary inputs, assignments to them become objectives for subsequent justi-

fication steps.

Both D-propagation and justification involve decisions or choices. Whenever there are
several alternative ways to justify a line or propagate an error, we choose one of them to
try. But in doing so we may select a decision that leads to an inconsistency or conflict.

Therefore most search strategies use backtracking to systematically explore the complete
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space of possible solutions and recover from incorrect decisions. Most gate-level testing
algorithms use chronological backtracking where after a conflict is detected, the test gen-

eration algorithm returns to and alters the last decision made.

The D-Algorithm uses a greedy value assignment policy—it assigns signal values at
the earliest opportunity. This reduces the number of signal evaluations but this makes the
decision-making more vulnerable to conflicts and hence increases backtracking. The
PODEM test generation algorithm avoids this problem by backtracking only at primary
inputs. PODEM does not justify internal values explicitly, as in Eralgorithm. To sat-
isfy an internal objective such aszaor D on some internal line, a value is assigned to a
primary input and the circuit is simulated. If the simulation proves that the assignment
does not satisfy the objective, PODEM assigns another input value. If during simulation,
two values conflict on a line, the algorithm backtracks by changing the value of the last
assigned input. When both values have been tried unsuccessfully, the algorithm backtracks
to the next-to-last assigned input. In this way, PODEM can exhaustively explore all possi-

ble circuit states, but only implicitly.

A number of test generation techniques have been developed that extend PODEM.
Their goal is to reduce the number of backtracks by identifying choices a test generation
algorithm might make that cannot lead to a solution, without actually pursuing every deci-
sion. For example, the FAN algorithm [4] seeks to identify conflicts at fanout branches
within a circuit, thereby avoiding backtracks at the primary inputs and the cost of simulat-
ing large parts of the circuit. Conflicting assignments at fanout branches cannot be satis-

fied by any assignment at primary inputs.

The D-algorithm and PODEM can be extended to generate tests for synchronous
(clocked) sequential circuits. The extension is based on a modeling technique which trans-
forms a sequential circuit into an iterative combinational array, one cell of which is called
a time frame. In this transformation a flip-flop is modeled as a combinational element hav-
ing an additional inpud) to represent its current state and an additional owgptd repre-
sent its next state, which becomes the current state in the next time frame. An input vector

of the iterative combinational array represents an input sequence for the sequential circuit.
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High-level test generation Due to the high complexity of gate-level test generation and
the hierarchical nature of the design process, several high-level or functional test generation
methods have been introduced. The design is then described by an interconnection of high-
level (RTL) modules, which include word gates, decoders, multiplexers, encoders, demul-
tiplexers, tristate buffers, comparators, 1-bit adders, and buses. An example of a small high-
level design is shown in Figure 1.6. High-level test generation has the following potential

advantages:

» Fast module evaluatiorSince modules are described at the functional level, they
can be evaluated faster than their gate-level equivalents. For example, evaluating
the code in Figure 1.6a is faster than evaluating the approximately 90 gates in a
gate-level equivalent of Figure 1.6b.

» High-level implication Implication at the high level may lead to finding values of
signals where low-level implication fails. For examptes 0 andD =5 in Figure
1.6b imply thatB = 5. However, it is not possible to reach to this implication using
an equivalent gate-level design of Figure 1.6b.

» Unique sensitizationAt the high level, efficient procedures can be developed to
determine the signals necessary to propagate fault effects at the inputs of a high-
level module to its outputs. For example, to propagate a fault effect from @put
of the multiplexer in Figure 1.6b, we need to séb 0. Moreover, a propagation
check routine may also be developed to anticipate conflicts earlier and hence
reduce the number of backtracks.

* Reduced backtrackinghis is due to the following: (1) high-level descriptions
enclose reconvergent fan-out and hence leads to fewer poor decisions, and (2)

module-level decision making leads to improved global implication and conse-

cin=0 I
{cout, C} = A + B; A A
If (s == 1'b0) 8 ml A
D=¢C; <

else
D =B; BS L

(a) (b)
Figure 1.6 A high-level design example: (a) behavioral and (b) RTL.
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guently conflicts are detected earlier and alternatives are tried sooner.

Several high-level branch-and-bound combinational test generation methods for SSL
faults have been introduced [31][91][103) these methods, the design description is an
interconnection of high-level modules. Each module is represented by a data structure
using some form of a high-level representation, which may be expanded to the gate level
once the SSL faults inside the module are targeted. To target high-level modules whose
gate-level design is unknown and to minimize the need of dynamically expanding those
whose gate-level design is known, either faults inside the module are transferred to its
input(s)/output(s) or a complete test set for SSL faults is precomputed for the module.
Typical experimental results show that high-level test generation produce tests for SSL
faults with less CPU time, less memory, and better coverage than gate-level test genera-

tion.

The test generation algorithm of Sarfert et al. [103] is divided into two phases: a ran-
dom phase and a deterministic phase. The random phase applies pseudo-random patterns
in parallel for all SSL faults. The deterministic phase targets the remaining SSL faults heu-
ristically in the following order: faults at the primary inputs of the design, faults inside
modules by expanding one module at a time to gate level, faults in input(s) and output(s)
of modules. The test generation algorithm of Calhoun and Brglez [31], an extension of
PODEM that is called MODEM, is similar to that of Sarfert et al.

Narain et al. [91] use precomputed test sets for modules in the form of one test for
every SSL fault. The advantage is that the bad value is known, hence the error propagation
is simpler. The disadvantages are: (1) precomputed tests may not be justifiable at the high-
level and hence the coverage may be decreased, (2) the test generation time may increase
since we need to justify more precomputed tests, and (3) overspecification of signals,

where no unknown bits are allowed, may result in a large number of backtracks.

The test generation algorithm of Narain et al. is an extension to gate-level algorithms
with a justification-first strategy, as in PODEM, or a propagation-first strategy, as in the
D-Algorithm. To minimize the effect of backtracking on the test generation algorithm, a

method calledlependency-directed backtrackirggintroduced. Unlike the usual chrono-
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logical backtracking method, dependency-directed backtracking causes the branch-and-
bound algorithm to jump immediately to the decision nodes that are responsible for a con-

flict.

Thatte and Abraham [108] propose a high-level test generation scheme for micropro-
cessors based on a system graph model. It uses knowledge about the register-transfer oper-
ations that are normally present in the high-level description of the instruction-set
architecture. The system graph model has a vertex for every register in the microproces-
sor. An edge is inserted between nodeandB if an operation to transfer data from regis-
ter A to registerB is possible. So, data transfer operations in the microprocessor are
mapped to paths in the system graph. It is assumed that physical failures can corrupt the
high-level operations of the microprocessor. Fault models are defined for the following
functions: register decoding, instruction decoding and control, data storage, and data
transfer. For example, a fault in register decoding leads to reading from or writing to the
wrong register. The test generation algorithm produces sequences of instructions to detect
the above faults in the microprocessor with the hope of detecting the low-level SSL faults.
The approach has the following limitations: (1) it is only applicable to microprocessors,
(2) it tends to generate large sequences of instructions for certain faults, and (3) it is unable

to deal directly with datapath faults.

Lee and Patel [77] present an architecture-level test generator (ARTEST) for a hierar-
chical design environment based on precomputed tests for high-level modules. The system
model used by ARTEST is composed of a gate-level control unit and a high-level datapath
unit. The faults considered are limited to the datapath only. Lee and Patel assume that all
possible error signals associated with each module is unknown. Testing involves interac-
tion between a high-level test generator for the datapath and a gate-level test generator for
control, with a complex interface algorithm that transfers objectives between these two
test generators. ARTEST tries to minimize calls to the interfacing algorithm, hence high-
level dependency-directed backtracking is used first until a maximum number of back-

tracks is reached and then gate-level backtracking is used.

In a subsequent paper [76], Lee and Patel suggest that a high-level branch-and-bound

algorithm is likely to be inefficient in making high-level search decisions when the mod-
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ule diagram of the circuit under test is complex, in particular where the data and control
are highly intertwined. As an alternative to the branch-and-bound algorithm, they propose
a signal-driven discrete relaxation technique for the architecture-level test generation
problem. An underdetermined system of non-linear equations is derived for each control
unit instruction, using symbolic simulation. The resulting system of equations is solved

iteratively using a Gauss-Seidel algorithm.

Lee and Patel [78] further present another high-level technique to generate tests for
datapath faults in microprocessor-like circuits. This method separates the hierarchical test
generation into two phases) @én instruction-sequence assembling algorithm at the archi-
tecture level andii) a relaxation-based algorithm that produces a fully-specified instruc-

tion sequence. The technique may be summarized as follows:

1. Perform symbolic simulation for each instruction to derive a system of equations
that represent the instruction behavior in the datapath.

2. Derive a structural data flow graph (DFG) for each instruction. The inputs (out-
puts) of DFG include the primary inputs (outputs) of the microprocessor and
present- and next-state lines. The DFG is used only for path selection without
explicitly examining the detailed functionality of the DFG nodes.

Calculate the justification and propagation cost for state lines.

4. Inject a test vector at the input of module under test.

Assemble an instruction sequence for both fault propagation and signal justifi-
cation. The sequence is heuristically assembled based on testability measures.

6. Derive a complete system of equations for the instruction sequence. Use discrete

relaxation algorithm to solve it.

Murray and Hayes [87] present a test generation algorRathPlanthat processes test
data, including precomputed test stimulus and response values, as indivisible units con-
tained in structures called test packages. High-level module inputs and outputs are identi-
fied as control or data. The signal values carried by buses are considered to be vector
sequences. The test, propagation, and control information for a module are often grouped
together into a test packadgeathPlanuses test packages for faults of a modul¢o acti-

vate errors and other test packages, called propagation test packages, to propagate the
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responses oM to primary outputs. Justification is treated the same as propagation—test
packages are used to determine the inputs of modules once their outputs are Rabwn.

Plan requires that all modules have transparent paths where fault responses are either
unchanged or inverted when passing through modules en route to primary outputs. More-

over, it can only handle combinational circuits with regular fanout.

In [88], Murray and Hayes present an improved test generation algoR#thPlan2to
handle the problems of error propagation through modules with no transparent mode and
those with irregular fanout. It is noted that modules are normally partially transparent—
some input combinations at the input of a module cannot be distinguished at the output of
the module. A propagation theory is developed to determine if error propagation can be
achieved by a path through partially transparent modules to primary outputs. This also
leads to a method for complete propagation of error information over multiple non-trans-

parent paths.

Hansen and Hayes [52][53] present a high-level functional fault modeling and test gen-
eration method that ensures full detection of low-level SSL faults. In this method, a set of
independent functional faults, called SSL-induced faults (SIFs), are derived or “induced”
from the gate-level SSL faults. The method is illustrated by manually deriving a set of
complete functional circuit models and tests for representative 74X-series and ISCAS-85
benchmark circuits. The results demonstrate that functional testing can, with less effort
than conventional methods, produce near-minimal test sets that provide complete cover-
age of SSL faults in practical circuits. A fault genera®Fgenwas developed to generate
SIFs automatically from circuit description and a test generation algorithm SWIFT for

SIFs was proposed, however, it was not completely implemented.

Fault Simulation. Fault simulation [4] consists of modeling a circuit’s behavior in the
presence of faults. By comparing the faulty response of the circuit to its fault-free response
using the same test s€t we can determine the faults detectedTbyrault simulation has
many applications such as test set evaluation, fault-oriented test generation, and fault dic-

tionary construction.

There are several general methods for fault simulation such as serial, parallel, deduc-
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Figure 1.7 Use of fault simulation in test generation.

tive, and concurrent [4]. Serial fault simulation is the slowest method of all, but uses the
least memory. It is based on simulating the fault-free circuit and the circuit in the presence
of one fault at a time, and then comparing the responses of the faulty and the fault-free cir-
cuits; if they differ, the fault is detected. The process is repeated for all faults in sequence,
hence the execution time is proportional to the number of faults in the circuit. Parallel fault
simulation simulates the good circuit and a fixed numberVEayf faulty circuits simulta-
neously. The values of a signal in the good circuit and the values of the corresponding sig-
nals in theW faulty circuits are packed together in the same memory location of the host
computer. It is faster than serial simulation but it needs more memory and more complex
code. The deductive and concurrent fault simulation techniques determines all faults in the
circuit detected by a given test in one forward pass through the circuit. These methods are

fast, but have unpredictable memory requirements.

An important and relatively new use of simulation is in test generation for both design
errors and physical faults (Figure 1.7). We develop an error/fault simulator ESIM (Chapter
2 and Appendix A) and use it to evaluate the coverage of modeled gate-level design errors
by specific test sets. The underlying algorithm of ESIM is critical path tracing, a fault sim-
ulation method that simulates the fault-free circuit under a test satd uses the com-
puted signal values for tracing sensitized paths from primary outputs towards primary
inputs to determine detected faults ByThe method has received attention [5][74][81]
because it directly identifies the faults detected by a test without simulating all possible

faults, and thus is faster than serial fault simulation.
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1.4 On-Line Testing

On-line testing addresses the detectioo@érationalfaults, and is found in computers

that support critical or high-availability applications. The goal of on-line testing is to
detect fault effects, that is, errors, quickly and take appropriate corrective action. For
example, in some safety-critical applications, the computer system is shut down after an
error is detected. In other applications, error detection triggers a reconfiguration mecha-
nism that allows the system to continue its operation, perhaps with some degradation in
performance. On-line testing can be performed by external or internal monitoring using
either hardware or software; internal monitoring is referred teatesting Monitoring

is internal if it takes place on the same substrate as the circuit under test (CUT). This is

usually considered to be inside an IC.

There are four primary parameters to consider in the design of an on-line testing

scheme:

» Error coverage (EC)This is defined as the fraction of all modeled errors that are
detected, usually expressed in percent. Critical and highly available systems
require very good error detection error coverageto minimize the impact of
errors that lead to system failure.

» Error latency (EL) This is the difference between the first time the error is
activated and the first time it is detectdfll is affected by the time taken to
perform a test and by how often tests are executed. A related paramgtelt is
latency (FL), defined as the difference between the onset of the fault and its
detection. Clearlyi-L = EL, so wherEL is difficult to determineFL is often used
instead.

» Hardware redundancy (HR) his is the extra hardware (IC chip area) needed to
perform on-line testing.

» Time redundancy (TRThis is the extra time needed to perform on-line testing.

An ideal on-line testing scheme would have 100% error coverage, error latency of 1
clock cycle, no hardware redundancy, and no time redundancy. It would require no rede-

sign of the CUT, and impose no functional or structural restrictions on the CUT. Most on-
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line test methods meet some of these constraints without addressing others. Consideration
of all the parameters discussed above in the design of an on-line testing scheme can create
conflicting goals. High coverage can require higlh HR and TR Schemes with immedi-

ate detection(EL = 1) minimize time redundancy, but require more hardware. On the
other hand, schemes with delayed detect{&L > 1) reduce the time and hardware

redundancy on the expense of increased error latency.

To cover all classes of operational faults described earlier, two different modes of on-
line testing are employedtoncurrent testingvhich takes place during normal system
operation, anghon-concurrent testingzhich takes place while normal operation is tempo-
rarily suspended. These modes can often be combined to provide a comprehensive on-line

testing strategy at acceptable cost.

Non-concurrent testing is either event- or time-triggered, and is characterized by low
hardware and time redundancy. Event-triggered testing is initiated by key events or state
changes in the life of a system, such as start-up or shutdown, and its goal is to detect per-
manent operational faults. It is usually advisable to detect and repair permanent faults as
soon as possible. Event-triggered tests resemble manufacturing tests. Any such test can be
applied on-line, as long as the required testing resources are available. Typically the hard-
ware is partitioned into components, each of which is exercised by tests specific to that
component. Figure 1.8 depicts a taxonomy of on-line testing techniques for microcontrol-
lers. RAMSs, for instance, are tested by manufacturing tests specifically designed for
RAMs, such as March tests [93].

Time-triggered or periodic testing is activated at predetermined times during system
operation. It is done periodically to detect permanent operational faults using the same
types of tests applied by event-triggered testing (see Figure 1.8). This testing approach is
useful in systems that run for extended periods, where no significant events occur that can
trigger testing. Periodic testing is also essential for detecting intermittent faults. Such
faults typically behave as permanent faults for short time intervals. Since they usually rep-
resent conditions that must be corrected, diagnostic resolution is important. Periodic test-

ing can identify latent design or manufacturing flaws that only appear under the right
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Figure 1.8 Taxonomy of on-line testing methods for microcontrollers.

environmental conditions.

Non-concurrent testing cannot detect transient or intermittent operational faults whose
effects disappear quickly. Concurrent testing, on the other hand, continuously checks for
errors due to such faults. However, concurrent testing is not by itself particularly useful for
diagnosing the source of errors, so it is often combined with diagnostic software. It may

also be combined with non-concurrent testing to detect or diagnose complex faults of all

types.

A common method of providing hardware support for concurrent testing, especially for
detecting software control errors and hardware residual design errors, is a watchdog timer
[80]. This is a counter that must be reset by the system periodically to indicate that the sys-
tem in question is functioning properly. A watchdog timer is based on the assumption that
the system is fault-free—or at least alive—if it is able to perform the simple function of
resetting the timer at appropriate intervals. Proper system sequencing can be monitored
with very high precision by combining watchdog timer reset operations with various soft-
ware checks. More complex hardware watchdogs can be constructed that implement these

software checks in hardware [82].
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A key element of concurrent testing for data errors is redundancy. For exasple,
cation with comparisorfDWC) [64] can detect any single error at the expense of 100%
hardware redundancy. In many applications, this high degree of hardware overhead is
unacceptable due to its impact on weight, cost, and power consumption. Moreover, it is
difficult to prevent minor variations in timing between duplicated modules from invalidat-
ing comparisons. A possible lower-cost alternative is time redundancy. For example,
recomputing with shifted operandRESO) [97] achieves almost the same error coverage
of DWC with 100% time redundancy but very little hardware redundancy. Testing tech-
niques based on time redundancy have been proposed for regular circuits such as iterative
logic arrays and trees [64]. However, their usefulness in on-line testing for general logic
circuits has not been demonstrated. A third form of redundancy which is very widely used
is information redundancy, that is, the addition of redundant information such as a parity
check bit to form error detecting codes [64]. Such codes are particularly effective for
detecting memory and data transmission errors, since memories and networks are suscep-
tible to transient errors. Coding methods are also widely used to detect errors in data com-

puted during critical operations.

As noted above, for critical or highly available systems, it is desirable to have a com-
prehensive approach to on-line testing that covers all expected permanent, intermittent,
and transient faults. In recent years, BIST [4] has emerged as an important method for test-
ing manufacturing faults, and it is increasingly promoted for on-line testing as well. BIST
is a design-for-testability technique that places the testing functions in the CUT, including
test pattern generation, response compaction, response analysis, and test control. On-line
BIST targets residual design errors/faults, i.e. errors that escape detection in the design
phase, and physical faults arising during the normal operation of the system. Testing is
thus performed concurrently to detect faults as soon as they occur. For on-line BIST to be
feasible, we usually want to design hardware test generators that provide complete cover-
age of the modeled faults, low hardware overhead, and short elapsed time between the

occurrence of a fault and its detection.
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1.5 Lifetime Validation

The methodology of manufacture testing is fairly well developed and understood. Fab-
rication faults are first represented by well-defined fault models. Then automatic test pat-
tern generation (ATPG) and simulation techniques are used to generate tests for the
modeled faults. Finally, the tests are applied to the circuit under test and the resulting
responses are compared with those of the specification to determine if the manufactured
chip is fault-free. The similarity between design verification, manufacture testing, and on-
line testing, as illustrated in Figure 1.9, suggests that design errors and operational faults
can be modeled in a similar way to fabrication faults. Hence, if we combine the design
development, manufacturing, and field operation phases of system lifetime and develop a
common approach to testing and verification, we achieve a comprehensive verification
approach that we call “lifetime validation”. This approach will, in principle, systemati-
cally detect all types of faults that arise during the lifetime of a system, as suggested in

Figure 1.9.

Safety-critical systems, such as some automotive controllers, attempt either to avoid

failures completely or else to detect them fast enough to prevent system crashes. Hence,

Design Fabrication
error model fault model

Verification Fabrication Operational
tests fault tests fault tests

Fabricated Operational
system system
(residual)

Operational
fault model

Wearout

Prototype
system

Fabrication faults
|| -

Design errors Operational faults

- |

Design development Manufacturing Field deployment

Figure 1.9 Relation between design verification, manufacture testing, and on-line
testing.
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Figure 1.10 Block diagram of the proposed design verification method.
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freedom from design errors is a primary goal where high-quality verification is required in
the design development phase. However, with the current shorter design cycles and the
increased complexity of digital systems, leakage of design errors from the design phase to
the operational system is anticipated. Hence, a second goal in safety-critical design is to
detect operational faults and respond to them. The combined verification/testing approach
that we are proposing can deal with errors in both the development and operational phases.
To detect and respond to faults and errors, we may need to carry out the combined tests
on-line or concurrently. Hence, we also need to investigate on-line testing and develop

built-in hardware test generators.

Our lifetime validation approach is thus based on the following sequence of steps: (1)
explicit error and fault modeling, (2) model-directed test generation, and (3) test applica-
tion. For the case of design verification, we employ software (simulatable) models for
both the implementation and specification. A block diagram of the design verification
methodology is shown in Figure 1.10. Error models are developed and then used to guide
test generation. The resulting test sequebieapplied to the simulatable models of both
the implementation and the specification to produce the outc&y@sdR,, respectively.

A discrepancy betweeR, andR: indicates an error, either in the implementation or in the

specification. We generate design verification tests targeting a set of design error models
using conventional automatic test pattern generation techniques for physical (fabrication)
faults. An important advantage of this approach is that it produces a small set of test vec-

tors that can reveal possible design errors.
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For the case of manufacture testing, the implementation is a single-chip SOC. The test
sequencés and the responsi; are either supplied by an external tester or generated by
hardware within the chip; the latter case corresponds to BIST. The segienapplied to
the inputs of the CUT and the corresponding respdtse compared againg; to detect
physical faults. On-line testing for residual design errors and physical faults can take
advantage of the BIST hardware used for manufacture testing. On-line BIST, however,
requires additional control hardware so that the actual testing is performed in a periodic
fashion to detect transient and intermittent operational faults. We investigate this topic in
Chapter 4.

1.6 Thesis Outline

This thesis develops a systematic approach to lifetime verification of digital systems
with stringent safety and availability requirements. The approach aims to use testing and
simulation techniques to improve the quality of error detection throughout the lifetime of a

digital system.

In this chapter, we divided the lifetime of a digital system into three phases: design,
manufacturing, and operation. We also identified the types of faults that arise during these
phases and discussed the abstraction of fault effects into fault models. We also discussed
the methods for detecting all types of faults, and proposed a lifetime validation methodol-

ogy that targets the faults using manufacture testing and simulation methods.

Chapter 2 discusses our results on design verification for gate-level circuits. We present
a simulation-based design verification method that uses conventional ATPG techniques
for fabrication faults to generate the verification tests. We present an extensive study of
the design error models at the gate level and analyze their detection requirements. We
show how to systematically map the modeled design errors into SSL faults, and present
experimental data showing that the verification test sets generated are small in size and

have high coverage of the modeled errors.

Chapter 3 presents a design verification methodology that extends our gate-level vali-
dation method to high-level designs. We show how actual error data can be gathered and

how design error models suitable for design verification testing can be derived. We
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present experiments that indicate that high coverage of actual design errors is achieved
with test sets that are complete for a small number of synthetic error models. We also

present a new error model for microprocessors and a validation approach that uses it.

In Chapter 4, we examine built-in validation where test generation and application
occurs within the CUT. We explore the design of efficient test sets and test-pattern genera-
tors for BIST with the target applications being high-performance, scalable datapath cir-
cuits for which fast and complete fault coverage is required. We show how to apply our
technique to various datapath circuits including a carry-lookahead adder, an arithmetic-

logic unit, and a multiplier-adder.

Chapter 5 summarizes the research contributions of this thesis and discusses future

research directions.



CHAPTER 2
GATE-LEVEL DESIGN VALIDATION

Manufacture testing for fabrication faults is well understood. Fabrication fault models,
such as the SSL model, have been extensively studied and validated. Moreover, excellent
automatic test pattern generation (ATPG) tools have been developed. As discussed in
Chapter 1, the similarity between manufacture testing and design verification suggests that
manufacture-testing techniques can be adapted to model-based design validation. For this
purpose, we need to evaluate and improve the existing design error models and develop
ATPG methods to detect them. This chapter investigates an automated model-based
design verification scheme for gate-level logic circuits that borrows methods from simula-
tion and test generation for fabrication faults, and verifies a circuit with respect to a mod-
eled set of design errors. The next chapter extends this approach to high-level design

validation.

In Section 2.1, we examine the previously proposed design error models, and reduce
them to five types. Then we study in detail the detection requirements of these error types.
Section 2.2 describes the mapping of design errors into SSL faults, as well as the process
of generating tests for them using standard test generation and simulation tools for SSL
faults. Section 2.3 presents the results of applying our method to representative combina-
tional and sequential benchmark circuits. Finally, Section 2.4 summarizes the contribu-

tions of this chapter.

2.1 Tests for Design Errors

Many types of design errors affecting logic circuits are identified in the research litera-

ture [1][2][36][65]. These error types are not necessarily complete, but they are believed

28
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to be common in both manual and automated logic synthesis. We condense the errors
identified by Abadir et al. [2] into four categories. (A similar classification is given inde-

pendently in [36]). We also add a fifth category for sequential circuits.

» Gate substitution error (GSE)This refers to mistakenly replacing a gate by
another gate with the same number of inputs. The extra and missing inverter errors
of [1][2][36][65] are considered as substitution of an inverter for a buffer, and a
buffer for an inverter, respectively.

» Gate count error (GCE)This corresponds to incorrectly adding or removing a
gate, and includes the extra and missing gate errors of [2]. This category is com-
bined with gate substitution in [36], where, unlike here, XOR and XNOR gates are
not considered. A class of “local” errors is defined in [65] which includes only
some of the errors in this category.

* Input count error (ICE):This corresponds to using a gate with more or fewer
inputs than required.

* Wrong input error (WIE):This error corresponds to connecting a gate input to a
wrong signal. The “signal-like-source” error [65], is a special case of WIE.
Although a WIE may be viewed as a multiple ICE, a multiple ICE cannot model

a WIE in an inverter.
We further identify the following error model for sequential circuits:

» Latch count error(LCE): This error occurs when a latch is incorrectly added or
omitted, due to human error or using imperfect CAD tools for synthesis or (re)

timing analysis.

The errors in each category are studied next, and the tests needed to detect them are

determined. The following assumptions are made concerning the design to be verified:

* A gate-level implementation is available that is either combinational or synchro-
nous sequential.

» The gate types used are AND, OR, XOR, NAND, NOR, XNOR, BUF (buffer) and
NOT.

* As in [2][36][65], a functional specification of the design is available which is
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completely simulatable, that is, any input pattern (sequence) can be applied and
produces a completely specified output pattern (sequence).
» At most one design error is present. This assumption is made in the standard SSL

model and, indeed, in most other models used in testing for fabrication faults.

Notation. Let E be the set of all 2input vectors of am-input gateG. We divideE into the
disjoint subset¥,, Vi,..., V,, whereV, contains all input vectors with exactkyls in their
binary representatio) < k< n . Particularly useful are the disjoint\égts Vi, Voge and

Vevendefined as follows:

VnuII = VO VaII = Vn

Vodd = L] Vi Veven = [ Vi

i=oddOi#n i=zevend iz00i#n

For example, in the case of 3-input NAND gaté,,, = {000}, V, = {111}, Vyyq =
{001,010,100}, andV/,,,= {011, 101, 110}. We calV,;, Vai» Voga @ndVee thecharac-

terizing setsr C-setsof G.

Table 2.1 shows the output responses of each gate type to its various C-sets. The sets
V., andV,, are nonempty and always have cardinality one. For the single-input gates,
Veven@ndV,qq are empty. For multiple-input gates, the $&j,4 contains at least two ele-
ments, while the se¥,,,is empty only whenn = 2 . The cardinality &f.,cn (Vogd 1S
7 | (Zn_l—l) whenn is odd, and2” "' -2 Qn_l ) whem is even. Finally,v,

denotes an arbitrary vector of the Bgt

The above notation enables us to express sets of vectors in a concise way. For example,

the complete test set for SSL faults in arinput NAND gate isV,0V,_; . When

Table 2.1 Responses of the various gate types to their C-sets.

Coset n=1 neven (noddand N> 3
NOT BUF AND NAND OR NOR XOR XNOR
Voui 1 0 0(0) 1(2) 00) | 1(1) 0(0) 1(1)
Veven n/a n/a 0 (0) 1(1) 1(1) | 0(0) 0 (0) 1(1)
Voug | nia | nia | 0(0) 1) 1@ ]| 00 | 10 0 (0)
Vail 0 1 1(2) 0(0) 1) | 0(0) 0(1) 1(0)
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n = 3, we can also write these tests¥g, [ V ={111, 011, 101, 110}. In general,

even
to verify the identity of a gat&, that is, to determine the tests required for its verification,

we use the above notation in conjunction with Table 2.1.

Gate Substitution Errors (GSEs).According to experiments reported in [1], the most fre-
guent error made by human designers is gate substitution, accounting for around 67% of all
errors. Gate substitution refers to mistakenly replacing a gate symbol (in a schematic dia-
gram) or a gate operator (in an HDL descripti@)vith another gat€&’ that has the same
number of inputs. We represent this error by G/G’. For gates with multiple inputsita
ple-input GSEMIGSE) can have one of six possible forms: G/AND, G/NAND, G/OR, G/
NOR, G/XOR, and G/XNOR. Each multiple-input gate can have five MIGSEs. For exam-
ple, all MIGSEs can occur on an AND gate except G/AND, which is not considered an
error. For gates with a single input, i.e., buffers and invertesingle-input GSESIGSE

can have one of two possible forms: G/INOT and G/BUF. Each single-input gate can have
only one SIGSE. To cover extra or missing inverters in GSEs, a buffer can be inserted in

each of a gate’s fanout branches as well as in inputs that fan out.

It has been suggested that most GSEs can be detected by a complete test set for SSL
faults [2]. Our simulation study (Section 2.3) shows that such a test set can cover 80% to
100% of MIGSEs and 100% of SIGSEs. The actual coverage of MIGSEs is a function of
the circuit structure, as well as the types of gates used in the circuit. Our goal here is to

achieve 100% coverage for GSEs.

A single-input gate can be identified by one test vector from elhgror V,,. On the
other hand, a multiple-input gate can be identified by three test vectors: on&figrone
from V44 and one fromVy, (if nis even) oV, (if nis odd). Hence, three test vectors are
sufficient to identify am-input gate. Two test vectors suffice in some cases. For example,

an AND gate can be identified by applying one test vector Yfqgrand one fronV,qq

The number of tests needed to testainput gate for SSL faults is+ 1  for the gates
AND, NAND, OR, and NOR, while it is two or three for XOR and XNOR depending on
the parity ofn. So, the number of tests needed to test for SSL faults is greater than or equal

to the number of tests needed to test for MIGSES in most cases.



32

Figure 2.1 Circuit realizing the XOR function.

We now introduce some notation to specify the effects of C-sets on a gate within a cir-
cuit. If the inputs of gaté& in circuit C can be forced to the pattewby assigning the pri-
mary inputs ofC, thenG is controllable by v; otherwise, it isuncontrollableby v. If the
output of G with respect to the pattem is sensitizable to a primary output then the
response of is said to beobservableat G; otherwise, it isunobservableA gateG is V-
controllableif G is controllable by at least one vecton the input vector se¥. If vis also
observable a6, thenG is excitableby V (V-excitabld. A gateG is fully excitableif G is

excitable by every nonempty C-set@fotherwise, it igartially excitable

To illustrate these definitions, consider the circuit in Figure &land G, are both
controllable by the pattern 00, whif@; is uncontrollable by 00. The response to the pat-
tern 00 is observable &, but it is not observable &,. The gateG; is {00,11}-excitable
becausés, is controllable by 11, and the response of 11 is observalils.ddowever,G;
is not {00}-excitable becaus@; is uncontrollable by all the elements of the set {00}. The

gatesG,, G,, andG; are partially excitable.
The following theorem solves the verification problem for GSEs:

Theorem 2.1 A necessary and sufficient condition for a test set S to verify a fully excitable
gate is that S produce the test vectogssfiown in Table 2.2 at the inputs of the gate and

sensitize the gate output to a primary output.

Proof: We prove the case for an AND gate with an odd number of inputs only; the other
cases can be proved similarly. Sufficiency follows directly from Table 2.2. To prove
necessity, assume thaverifies the AND gates but does not produce eithev,, v qq OF

{Vous Voadt @t G's inputs. It is clear from Table 2.2 that there is no single vector capable of

verifying an AND gate. Hence, the seproduces one of the following sets at the inputs of



33

Table 2.2 The test vectors required to verify an  n-input gate.
. Test Test Test
Gate Fanin n set T, set T, set Ty
NOT _
(BUF) n=1 {Vant or {Viust {VainViunk {Van Viun
n=2 {Viuir Voddt {Vaib Voder Vnuit Vaik Vioum Vodadt
Vo, V. or
AND n odd ¢ al 0\‘}“'} {Van Vodar Vourk | {Vaun Vodar Vai Vevent
(N AND) null Vodd!
neven & Vo, V. or
n#2 { r\)/ull Vo dd} {Vnull’ Voddr Valk Veven} {Vnullv Vodadr Valh Veven}
all Veven.
n=2 {Van Voadt {Van Vodd: Vaunt {Van Vouir Voadt
Vo V. or
OR n odd { nall 5ven} Vb Veven Vait {Vauib Vodar Vaih Vevent
(NOR) all Veven
neven & Vi, V, or
nz2 { n\‘;g”, \%ZZ} {Vnullv Veven Valh Vodd} {Vnullv Vodadr Valk Veven}
n=2 {Viun Vant {Van Voda: Vaunt {Vai Vun Voddt
Vora: V., , Vb Or
XOR nodd {Vodd1 Veven} { \3‘“ Sven ‘a/zll} {Vnully Vodads Valk Veven}
(XNOR) odad» Vevenr Vnull
neven & {Vhum Vait or
Vet Vam V., , Vv Vaulh Vodds Valp Ve
nz2 Vever Vod d} { null Yall Veven odd} { null Yodd» Vall even}

G {Vnulh Vall}’ {VnuII’ Vever}1 {Veven Vall}’ {Voddi Vever}’ or {Vnulli Veven Vall}- Table 2.1 shows
that none of these are capable of verifying the AND gate. H&mast produceYy, Voqd
or {Vou Voaat @t G’s inputs. Note that the above analysis implies that two test vectors are

sufficient to verify a fully excitable gatél

All gates in a fanout-free circuit are fully excitable. In a circuit with fanout, it is possi-
ble that some input combinations cannot be forced at the inputs of some gates. For exam-
ple, no element 0¥, can be forced at the inputs of the AND g&gin Figure 2.1. From
Table 2.1 we see tha,, is necessary to distinguish a 2-input AND gate from an XNOR
gate, so, the replacement of the AND by an XNOR gate cannot be detected. This replace-
ment does not change the function of the circuit, hence it is considered tolbelatect-
ableMIGSE. Likewise, some input combinations can be forced at the inputs of some gates
but their responses cannot be observed. For example, the pattern 00 can be forced at the
inputs ofG; in Figure 2.1, but the response®f cannot be propagated to the primary out-
put. The above examples show that it is natural to have gates which are not fully excitable

and therefore have undetectable design errors. It also suggests a modification of the test
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vectorsT; in Table 2.2 to verify a partially excitable gate.

If a partially excitable gat& is excitable by all but one of its nonempty C-sets, tkien
is calledstrong partially excitableotherwise, it is calle@veak partially excitableTo illus-
trate, consider again the circuit in Figure 2.1. The g&gs5,, andG; are strong partially
excitable because they are excitable by two out of the three nonempty C-sets of the respec-
tive gates. An example of a weak partially excitable gate is a 3-input XOR with all inputs
connected to a single source. In this case, the gate is excitable by onlytwafddV,,)

of its four C-sets.

Since a strong partially excitable gdkds not excitable by one of the nonempty C-sets,
one of its MIGSEs is undetectable. The remaining four MIGSE&@an be detected with
at least two vectors; Table 2.1 implies that an arbitrary vector detects only th@ZEe fofe
MIGSEs. Therefore, we have to apply at least three test vectdss $o that ifG is not
controllable by one of the vectors or one of the vectors’ responses is not observable, then

the other two will detect the detectable MIGSESs. This leads to the following result.

Theorem 2.2 If all gates of a circuit are either fully excitable or strong partially excitable,

then the test set,§hown in Table 2.2 detects all detectable GSEs in the circuit.

Proof: If a gateGis fully excitable, ther is controllable by the test vectorsTg and their
responses are observablé€atSince each test set i for a particular gate is a superset of
the test set irT; for the same gate, all GSEs will be detected. If, on the other hansl,
strong partially excitable, then it is not controllable by one of the test vectors or the
response of one of the vectors is not observablg. adt follows from Table 2.1 that if we
remove a test vector faB from T,, then the remaining vectors detect all the detectable
GSEs on that gatél

A further analysis ofl, shows that to verify a weak partially excitable gate, we have to
apply the pattern3; shown in Table 2.2. Since we cannot always assert that the gates in
the design under test are fully excitable or strong partially excitable, we may have to apply
the pattern3; to detect all GSEs. Note that a test set generated for GSEs assuming that the
gates are weak partially excitable, will detect all GSEs in the circuit. On the other hand, a

test set generated for GSEs by assuming the gates are fully excitable or strong partially
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excitable may not detect all GSEs.

A complete test set for SSL faults guarantees the detection of all SIGSEs [2]. Tests for
MIGSEs also cover many SIGSEs. A complete tesfTsier MIGSESs in an SSL-irredun-
dant circuit, i.e. a one with no undetectable SSL faults, is also a complete test set for SIG-
SEs on all circuit lines except inputs with fanout,Tifproducesv,; at the input of every
AND and NAND gatey,,, at the input of every OR and NOR gate, and their responses are
observable. From this result we conclude that detection of most SIGSEs is ensured by test
setsT, andTs, but not byT,. Our experiments show that the test $gtletects all SIGSEs

in all SSL-irredundant benchmark circuits considered in Section 2.3.

Gate Count Errors (GCEs). We distinguish two types of gate count errors: extra-gate and
missing-gate errors. Aextra-gate design errafEGE) is defined as inserting a ga&é that

has itsminputs taken from the inputs of a gat& and feeding the output @’ to G. As a
consequence, the number of inputs of gateecomesi— m+ 1 . We represent an EGE by
EG@G',G). It is easily seen that EG(AND,AND), EG(AND,NAND), EG(OR,OR),
EG(OR,NOR), EG(XOR,XOR), and EG(XOR, XNOR) are undetectable. Explicit test gen-

eration for EGEs is not needed due to the following result.
Theorem 2.3 A complete test set for GSEs is also a complete test set for EGEs.

Proof: An EGE can be mapped easily into a GSE. BGG) is nothing but the GSE”/
G’, whereG” is determined bys as follows: (1) ifG is an AND or NAND, thenG” is an
AND; (2) if Gisan OR or NOR, the®” is an OR; (3) ifG is an XOR or XNOR, theis”
is an XOR. Hence, any test set that detect all GSEs will detect all EGEs.

Most, but not all, EGEs can also be detected by a complete test set for SSL faults. A
complete test set for SSL faults in the circuit of Figure 2.2 is {000, 100, 001, 010}. This

test set does not detect if the XOR gate is an extra gate. For that, we need the test 011.

P

Figure 2.2 Example showing an EGE that is not detected by a complete test set
for SSL faults.
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Figure 2.3 The missing-gate design error (MGE).

N=n+m-1
—(c)= =

Figure 2.4 Reducing the problem of detecting MGEs to detecting GSEs.

A missing-gate design errdMGE) is defined as removing a ga& that hasm inputs
and feeds an-input gateG, and then changing the inputs Gf into inputs ofG; see Fig-
ure 2.3. As a consequence, the number of inpuG bécomedN = n+ m—1 . We repre-
sent the MGE by MGE’,G). As in the extra-gate case, the errors MG(AND, AND),
MG(AND, NAND), MG(OR, OR), MG(OR, NOR), MG(XOR, XOR), and MG(XOR,
XNOR) are undetectable.

Consider the problem of finding a minimal set of vectors that detect all MGEs Nt an
input gateG. For each MGG’,G), we insert a gat&” as shown in Figure 2.4, whe@' is
chosen so that the function of the circuit is not changed. For exampeisian AND or
NAND, thenG” is an AND gate. We have to detect the GSE G”/G’ in order to detect
MG(G’,G).

Theorem 2.4 Thetestsety O V\_;0Vy_, VoOV,0OV, ,and,00V,0V, are
each sufficient and near-minimal for detecting MGEs on an N-input fully excitable AND
(or NAND), OR (or NOR), and XOR (or XNOR) respectively.

Proof: We prove the NAND case; the proofs for the other cases are similar. First, we prove
thatV,, _, isasubset of every test set detecting all MGEs dd-amput NAND gate. Since

Gis a NAND gateG” of Figure 2.4 is an AND gate. To detect gate substitutions for the 2-
input AND gateG”, we need to apply the vectar,, at its inputs. Sinc&” can have any

two inputs ofG, we have to apply 00 to any combination of two input&ofSince the other
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inputs ofG must be 1s to propagate the output sign&bbdto the output of5, all the vectors

that contain two Os must be applied. Herég, » must be appl®d to

Second, we need to prove that at lebist 1 offheectors ofV,,_; must belong to
every test set detecting all MGEs on ldrinput NAND gate. To detect the GSEs of the 2-
input AND gateG”, we need to apply the vectuog,,to it. So, we have to apply 01 or 10 to
any two inputs ofG. Since the other inputs @& must be 1s to propagate the output signal
of G” to the output ofG, the vectors that have one 0 must be applied. It remains to prove
thatwe need atleadd —1  vectorsdf,_, . An arbitrary vectovgf_; will ensure the
presence o¥,4qin N —1 of the E;E configurations. Another vector will ensure the pres-
ence ofv,yq in anotherN —2 configurations. Continuing with this way, we find that the
one before the last vector will ensuvg in the last configuration. Since it is irrelevant
which N — 1 vectors are used, and since a near-minimal test set is acceptable, we will sim-
ply employ all theN vectors of V,_; .We conclude that the test 8&{_, 0OV _,
ensures the detection of all 2-input MGEs orNainput NAND gate.

Third, we must prove that the test§, _; O V_,  ensure the existeneg@ndve,.,
for anym-input gateG” according to Figure 2.4. inis odd, then there ama v,44 vectors
for G” in V_,and EEE VevenVectors forG” in V _; . On the other hand, inis even,

then there aren v,gqvectors forG” in V_, and EEE VevenVectors forG” in V, _,.

Finally, we need to prove that a minimal test set fomalinput MGEs (n> 2) in anN-
input NAND gate must include,;. Table 2.2 implies that to detect the gate substitution on
G”, we need the sety;, Vogdt OF { Vil Voddt When mis odd, and the setM, 1, Voadt OF
{Vall» Veved Whenm iseven andm# 2 . Sinceqq Veved IS guaranteed, then we need only
eitherv,, or v,,; on G”. Forcingv,, on G” requires just forcing/,, on G. On the other
hand, forcingv,, on G” requires forcingsx i“g;g}'g vectors ofs. Hence,v,; must be

selected to minimize the test set size.
To keep the theorem simple, it is stated it in terms of a near-minimum number of tests.
In fact, each test set defined by this theorem has one test more than the minimum. For

example, the 11-member test set generated for MGEs in a 4-input NAND&st& =
{1111, 1110, 1101, 1011, 0111, 1100, 1010, 1001, 0110, 0101, 0011}. If one of the tests
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{1110, 1101, 1011, 0111} is droppe8,still detects all MGEs. However, all MGEs
cannot be detected with fewer than 10 vectors. In general, Theorem 2.4 gives near-mini-
mal test sets for aN-input fully excitable gate. It is easy to prove that these test sets detect

all the MGEs of aiN-input partially excitable gate with high probability.

Input Count Errors (ICEs) and Wrong Input Errors (WIES). Input count errors (ICES)
are classified into extra input and missing input errors.eXtra input design erro(EIE)

is defined as the replacement of mmput gate =2 ) by anrf+ 1 )-input gate with the
additional input connected to an arbitrary signal in the circuinidsing input design error
(MIE) is the replacement of agate af£3 ) inputs by am{1  )-input gate wimosé
inputs are connected to an arbitrary subset of the origindle represent an EIE of a gate
G by El(e,G) whereeis the extra input. We represent an MIE of a gatey MI(m,G) where

m s the source of the missing input.

To detect an EIE at a given input of an AND or NAND gate, that input must be setto 0
to activate the error, the other inputs must be forced to 1, and the gate’s output signal must
be propagated to a primary output. This is exactly the requirement of a test for a stuck-at-1
fault at the input of the gate in question. Similarly, testing for EIEs at ixmftan OR or
NOR gate is the same as testing f¥@tuck-at-0. To test for an MIE on an AND ga& the
inputs of G are set to 1, the signal considered to be missing is set to (Gamalitput sig-
nal is propagated to a primary output. This is more restrictive than a test for stuck-at-O at
the output ofG. Similarly, testing for an MIE on a NAND, OR, and NOR is more restric-

tive than testing the gate output for stuck-at-1, stuck-at-1, and stuck-at-0, respectively.

The foregoing tests are complete for AND, NAND, OR, and NOR gates. Hence, a com-
plete test set for ICEs in a given circuit detects all SSL faults at AND, NAND, OR, and
NOR gates. A complete test set for ICEs also detects some SSL faults affecting XOR and
XNOR gates. For example, testing for EIEs at the input of an XOR or XNOR gate is

equivalent to testing for stuck-at-0 fault at the same input.

A wrong input error(WIE) is defined as connecting a gate input to a wrong signal
source. We represent a WIE on a g&déy WI(u,w,G), whereu is the wrong input of the

gate andv is the correct input. If a test vecteidetects WI(,w,G), then it must set1 andw
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to opposite values and propagate the signaltata primary output. WIE appears to be the
second most common design error—around 17% of the errors reported in [1]. The rela-
tionship between MIEs and WIEs is as follows: A complete test set for MIEs on gates of
type AND, NAND, OR, or NOR is a complete test set for WIEs on the same gates. To
prove this relationship, consider an AND g&evith inputsx,, X,,..., X, and output. Letz

be an arbitrary signal in the circuit. The complete test set for MIESGowill detect
MI(zG) and hence set the inputs of the gate to 1s, propagate primary output, and set

zto 0 with at least one vectarof the test set. Sincesetsx; andz to opposite values, and
propagates; to a primary output, Wk;,zG) is detected for every. A similar argument

holds for the other gate types.

In practice, it is hard to find a complete test set for MIEs. The fact that a givex®)I(
is undetectable does not imply that WixG) is undetectable for eveny. Also, a com-
plete test set for MIEs does not guarantee the detection of WIEs in XOR, XNOR, NOT,

and BUF gates. Hence, we cannot conclude that a test set for MIEs covers all WIEs.

The numbers of ICEs and WIEs in a circuit are Iarge—approxime(te(lkz) , Where
is the number of distinct signals in the circuit. Hence, we use simulation to extract the
errors detected by the test &t = Sqg 0 Sggeld Syge - WhB8, Ssss andSyge are
complete test sets for SSL faults, GSEs, and MGEs, respectively. In fact, all EIEs are
detected by the test set for SSL faults alone [2], hence, we only have to generate tests for
the undetected MIEs and WIEs. Our experimental results show that most MIEs and WIEs
are detected by the s&t

A basic question concerning MIEs (WIES) is the source of the missing (wrong) input. It
must not depend on the erroneous gate’s output, otherwise, the circuit can become sequen-
tial and asynchronous. Errors that make a circuit sequential can be detected by a leveliza-

tion procedure [4].

The coverage relationships among the various design errors are summarized as follows.
A complete test set for MIGSEs detects all EGEs. On the other hand, a complete test set
for SSL faults detects all EIEs and SIGSEs. Complete test sets for MIEs, MGEs, and

WIEs do not guarantee the detection of other error types. For example, a test for MIEs
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detects many, but not necessarily all, SSL faults.

Latch Count Errors (LCEs). Latch count errors (LCES) are classified into extra and miss-
ing latch errors. We assume that all latches are of the clocked D type, synchronized by a
common clock signal. Arextra latch design erro(ELE) is defined as the insertion of a
latch into any line in the circuit. Anissing latch design erraqfMLE) is the replacement of

a latch by a line linking its data input and output terminals. It is impractical to consider all
possible MLEs due to their impact on the circuit’s state space and test generation complex-

ity. Hence, we only consider MLEs affecting the circuit’s primary inputs and outputs.

In contrast to the design errors studied in the previous subsections, to check for LCEs, a
test sequence rather than an unordered set of test patterns is needed. To test for an ELE, a
transition sequence, either O 1 or 1 - 0, is applied at the input of the latch and its
response is propagated to a primary output. Similarly, to test for an MLE, a transition
sequence is applied at the line where the latch may be missing and the transition sequence

is propagated to a primary output.

Design Error Undetectability. We noted earlier that some design errors are undetectable.

This leads to a type of redundancy that is quite different from that previously studied [54].

A gateG in a circuit C hasredundant inputsf the function implemented b is not
changed when a proper subset of the input&afre removed. A circuiC is calledGl-
irredundantif no gate inC has redundant inputs. Gl-redundancy does not imply SSL-
redundancy. For example, a 5-input XOR with all inputs connected to the same source is
Gl-redundant but SSL-irredundant. Similarly, SSL-redundancy does not imply Gl-redun-
dancy. For example, a buffer whose input is connected to ground is SSL-redundant but GI-

irredundant.

An undetectable design erras one for which no test vector exists. For example, the
substitution of an XNOR gate fd@B; in Figure 2.1 cannot be detected by any input vector.
Hence, the MIGSE @XNOR is undetectable. The following theorem characterizes unde-
tectable GSEs:

Theorem 2.5 In a Gl-irredundant and SSL-irredundant circuit C, the following holds: (1)
C has no undetectable SIGSEs; (2) If G/G’ is an undetectable MIGSE then every other
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MIGSE on G is detectable, and & 0{ XOR XNOR
OR NOR and vice versa.

the@ [0 { AND, NAND,

Proof: If there is an undetectable SIGSE G/GGnthen the output of is not sensitizable

to a primary output. Hence, SSL faults cannot be detected at the outButohsequently

C is SSL-redundant. Therefore, € is SSL-irredundant, then it must be free from
undetectable SIGSEs. For the case of MIGSEs, let us consider a 2-input AND gate. Since
the circuit is SSL-irredundant, the AND gate is excitable by the C¥dgtandV, 4 This
implies that the MIGSEs AND/NAND, AND/OR, AND/NOR, and AND/XOR are
detectable. The only possible undetectable MIGSE is AND/XNOR, which requires that the
AND gate not be excitable by,,. Figure 2.1 shows an example of this redundant MIGSE.

A similar analysis leads to the other possible undetectable MIGSEs shown in Table 2.3.

Although XOR and XNOR have two possible undetectable MIGSEs, only one unde-
tectable MIGSE can be found in a gate in an SSL-irredundant and Gl-irredundant circuit.
Let us prove this for the case of an XOR g&evith odd number of inputs. Assume that
is in a circuitC in which both XOR/OR and XOR/AND are undetectable. This implies that
Gis only excitable by, andV, . So, if two of the inputs t@ are removed’s output is
not changed. Hend® has redundant inputs and the cira@its not Gl-irredundant. There-
fore, only one undetectable MIGSE can be found on a gate for a Gl-irredundant and SSL-

irredundant circuit. The final part of Theorem 2.5 follows directly from Table2.3.

Table 2.3 Possible redundant MIGSEs on an  n-input partially excitable gate.

n=2 nevenand n# 2 n odd
Gate type
Strong Weak Strong Weak Strong Weak
AND AND/XNOR | Impossible | Impossible| AND/XNOR | AND/XOR | AND/XOR
NAND | NAND/XOR | Impossible | Impossible | NAND/XOR |NAND/XNOR|NAND/XNOR
OR OR/XOR | Impossible [ Impossible| OR/XOR OR/XOR OR/XOR
NOR | NOR/XNOR | Impossible | Impossible| NOR/XNOR | NOR/XNOR | NOR/XNOR
XOR/OR XOR/OR XOR/OR XOR/OR
XOR or Impossible | Impossible or or or
XOR/NAND XOR/NAND | XOR/AND | XOR/AND
XNOR/NOR XNOR/NOR | XNOR/NOR | XNOR/NOR
XNOR or Impossible | Impossible or or or
XNOR/AND XNOR/AND |XNOR/NAND|XNOR/NAND
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From the above theorem we can infer that if the gates in a Gl-irredundant and SSL-irre-
dundant circuitC are restricted to AND, NAND, OR, NOR, NOT, and BUF, th€rcon-

tains no undetectable GSEs.

The number of gates that can have undetectable MIGSESs in a cieaities with the
circuit structure and the types of gates@n For example, fanout-free circuits have no
undetectable GSEs. On the other hand, a 2-input XOR circuit implemented using four 2-
input NAND gates has up to four undetectable MIGSEs: each NAND gate can be replaced

with an XOR without affecting the overall XOR function.

2.2 Verification Test Generation

This section describes our method for modeling and detecting design errors. In order to
use standard ATPG tools, we map the error types under consideration into SSL faults. The
mapping process consists of modifying the target circuit’s netlist (or equivalent descrip-
tion) and injecting a predefined set of SSL faults. A test set is then generated for these

faults in the modified netlist which detects all errors in the original design.

To map MIGSEs and MGEs into SSL faults, each gate in the original netlist is replaced
by a functionally equivalent circuit calledgate replacement modul& few selected SSL
faults are injected in the gate replacement module, so that the test for each injected fault
forces the input of the gate to be a vector from one of the sets required to verify the gate.
To cover all possible MIGSEs in a circuit, we must assume that the gates are weak par-
tially excitable. Consider, for example, the AND replacement module shown in Figure 2.5.
The faultsc stuck-at-0d stuck-at-0, an@ stuck-at-0 force the inputs of the AND replace-
ment module to,, Voqe @ndvy, respectively. These input patterns determine if the AND

gate in the circuit is correct or not, i.e., the presence of any MIGSE on the gate is detected.

O stuck-at-0

Figure 2.5 The replacement module for detecting GSEs in a 2-input AND gate.
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The requirements to be met by a gate replacement mad() of a gateG are as fol-

lows:

» The function oMM(G) must be the same as thatGaf

» Atestfor aninjected SSL fault ik(G) must force the input o& to a certain vec-
tor that is needed to verifg.

* The injected SSL faults must be sensitizable to the outpgu{@j.

 If aninjected SSL fault in M(G) is detected by a vector] V; , then it must be
detected by any vector of;. This requirement simplifies the detection of the

injected SSL faults by the test generator, and leads to smaller test sets.

The gate replacement modules for MIGSEs and MGEs on all gate types can be
designed systematically using the “detection signag, Yogs Yeven @ndY,, that are
shown in Figure 2.6. Aletection signal Ms defined to be 1 if and only if the input pattern
v belongs to the characterizing 3£t Since the characterizing sets are disjoint, only one of
the detection signals, Yoqe Yeven @andY,, can be 1 for a given. A test for a stuck-at-0
fault at one of the detection signals will force the input of the gate the functions of
the gates in terms of the detection signals (Table 2.4) are used in designing the gate
replacement modules. The equations of Table 2.4 can be simplified for the special case of
2-input gates whery,,.,is always 0. For example, consider a 2-input AND gate whose
gate replacement module is shown in Figure 2.5. From Table¥g.4, Y, YoddYeven SiNCe
Yeven= 0, thenYy, = Y u1Yods The signal andd in Figure 2.5 areY,,,, and Y,y respec-

tively, hence gat&; implements the equation, = Y1 Yods

Figure 2.7 shows the GSE replacement modules for a 2-input XOR amdirgrut

_>D Yall

Yodd

vV —+4

) >

n odd n even

Figure 2.6 Generation of the detection signals for an n-input gate.
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Table 2.4 Equations for n-input gate replacement modules for GSEs.

Gate )
- Equation

Type Fanin n

AND -- Yan = T/nuII_YoddT/even

NAND -- Yan= Ynurt Yodd * Yeven

OR - Ynut= Yait Yodd * Yeven

NOR -- Ynun = YanYoddYeven
even Youd = YarYrurY.

XOR odd all ﬁull iven
odd Yodd * Yain= YnunYeven
even Youd= Yan+ Your+ Y.

XNOR _odd _ all null even
odd Yodd Yan= Ynui t Yeven

‘/FOTCESVa”
u
a o Forcesy +D—_D: Forcesioag
o
b ‘/ FOI’CGS/Odd

“Z aneDamrae=Da

o

AN

= Stuck-at-1 Forcesvy
o stuck-at-0

\Forcewnu” >)) ) ' IjV\Forceweven

(@) (b)

Figure 2.7 Gate replacement module for detecting GSEs in (a) a 2-input XOR and
(b) an n-input AND ( n odd).

AND (n odd). GSE replacement modules for the other gates can be constructed in a simi-
lar manner using Table 2.4. The gate replacement modules for MGEs can also be designed
in a systematic way similar to that for GSEs. The gate replacement modules for MGEs are
more complex due to the requirement of generavngndY,, signals that detect the pres-

ence ofv, andv,., at the inputs. Figure 2.8 shows the MGE replacement module for a 3-
input AND gate.

The mapping of MIGSEs and MGEs into SSL faults is many-to-one. Detecting a given
set of injected SSL faults detects a larger set of MIGSEs and MGEs. For example, detec-
tion of the three SSL faults in Figure 2.5 detects five MIGSESs. There is a one-to-one cor-
respondence between net errors (EIEs, MIEs, and WIES) and SSL faults. The mapping of
an EIE into an SSL fault is very simple: to detect whether an AND or NAND gate’s input

X is extra, we need to s&tto 0, set every other input to 1, and propagate the gate’s output
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Figure 2.8 Gate replacement module for detecting MGEs in a 3-input AND gate.

MIE WIE
Design error Equivalent circuit Design error Equivalent circuit
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Missing module input  Correct module
input : nput .
=D =D =D
e e f ¢

Figure 2.9 Mapping MIEs and WIEs into SSL faults.

signal to a primary output. This is the same as testingf&tuck-at-1. Also, to test for an
extra input in an OR, NOR, XOR, or XNOR gate, a test for the input stuck-at-1 is

required.

The detection of MIEs and WIEs is modeled by a mapping circuit calledtattach-
ment moduleas shown in Figure 2.9. L&l andC’ be the circuits obtained before and

after adding the net attachment module. The following requirements must be met:

» The function of circuiC must be the same as thaiGf
» Atestfor the injected SSL fault in the net attachment module must detect the MIE
or WIE.
* The injected SSL fault must be sensitizable in the net attachment module.
A typical design of a net attachment module for MIEs appears in Figure 2.1Gaidf
an AND or NAND, thenG; must be an XNOR and the faybtstuck-at-1 is injected. On
the other hand, if5, is any of the gates {OR, NOR, XOR, XNORY}, thég, must be an
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Figure 2.10 A net attachment module (a) for MIEs and (b) for WIEs.

. \E p stuck-at-0
Latch &D%D—» Latch Q r} /Z>_>

p stuck-at-0
(@) (b)

Figure 2.11 (a) Latch and (b) line replacement modules to detect ELEs and MLEs,
respectively.

|
s
|Q.

XOR and the faulp stuck-at-0 is injected. In both cases, the outpuGefs independent

of zand hence the function of the circuit is not changed. Also, the SSL fault is sensitizable
to the output of the net attachment module and the vector testing it detectsGJI(A
typical design of the net attachment module for a WIE is shown in Figure 2.10b. The out-
put of the net attachment modulezs= d , hence the circuit function is preserved. The
test forp stuck-at-0 forces opposing values mrandd, and hence the corresponding WIE

will be detected by the same test.

The detection of ELEs is performed by replacing the latch bylateh replacement
moduleshown in Figure 2.11a, and then generating a test sequence for the SSp fault
stuck-at-0, which is also a test sequence for the ELE. Similarly, the detection of MLEs is
performed by replacing the line by tiae replacement modulags shown in Figure 2.11b.
The test sequence generated for the SSL faudtuck-at-0 is also a test for the MLE.

Hence, LCEs are easily mapped into SSL faults.

The overall verification process is divided into two phases. The first phase generates
tests for gate errors (MIGSEs and MGESs) and is shown in Figure 2.12. If the circuit is
sequential, additional tests for LCEs are generated. The second phase performs the error

simulation for net errors (MIEs, WIES) and then generates tests for the undetected ones;
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Figure 2.12 First phase of the design verification process.

the flowchart of phase 2 is similar to that of phase 1. Complete coverage of net errors may
require several iterations through phase 2. If after checking for all modeled errors, the
implementation is found to match the functional specifications, we can conclude with high

confidence that the circuit is correct as designed.

2.3 Experimental Results

In this section we describe the experiments performed to support the preceding analy-
sis; these experiments used the combinational ATPG tool ATALANTA [75] and the
sequential ATPG tool ATTEST [17]. To determine the ability of a given test set to detect
design errors and SSL faults, we developed an error/fault simulator ESIM. For combina-
tional circuits, the simulator uses parallel-pattern evaluation and critical path tracing [4]. It
simulates the circuit with multiple vectors concurrently and determines the detected
errors/faults without explicit simulation of each error/fault. ESIM uses parallel fault simu-
lation [4] for sequential circuits. Additional details of ESIM, as well as experiments and

examples to demonstrate its capabilities, can be found in Appendix A.

The circuits used for the experiments are the ISCAS 85 combinational benchmarks

[25], some standard, combinational 74X-series circuits [107], and the ISCAS 89 sequen-
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Table 2.5 Design error coverage in combinational benchmarks using complete
SSL test set generated by ATALANTA.

- Detected Detected Detected

= Test |Detected GSEs GCEs ICEs Detected

3] set SSL WIEs
O size | faults SIGSE | MIGSE | EGE | MGE | EIE | MIE
cl7 5 100.0 100.0 80.0 100.0 n/a 100.0 | 57.5 88.0

c432nr 44 100.0 100.0 89.1 100.0 | 955 | 100.0 | 73.1 96.9
c499nr 52 100.0 100.0 97.9 46.2 93.8 | 100.0 | 88.8 98.9
c880 47 100.0 100.0 90.3 100.0 | 94.6 | 100.0 | 84.9 98.6
7485 25 100.0 100.0 88.4 100.0 | 89.8 | 100.0 | 83.4 92.7
74181 18 100.0 100.0 96.2 88.9 90.6 | 100.0 | 81.8 94.0
74283 12 100.0 100.0 91.3 100.0 | 84.1 | 100.0 | 74.5 92.2

tial benchmarks [26]. We conducted a preliminary experiment to determine the coverage
of design errors using a complete test set for all detectable SSL faults. The resulting data
given in Table 2.5 show that a complete test set for SSL faults guarantees the detection of
all SIGSEs and EIEs, confirming results in [2]. The detection of the other design error
types is not guaranteed but they are likely to be detected because the test set does exercise
each net in the circuit. Note that all the circuits in Table 2.5 are relatively small and SSL-
irredundant. The circuits c432nr and c499nr are the irredundant equivalents of c432 and

c499 respectively.

Our next experiments are concerned with generating nearly complete test sets for all
modeled design errors. They use the method described in the previous section to generate
test vectors targeting specific errors. The modified netlist is supplied to ATALANTA
which generates a test set. The generated test sets are then evaluated using simulation to
find their coverage of GSEs, as shown in Table 2.6. Since tests for MIGSEs cover EGEs
(Theorem 2.3), the results on detecting EGEs are shown in Table 2.6. The coverage of
MGEs is also shown in Table 2.6. Testing for MIEs, and WIEs is performed only for those
errors that are not detected by error simulation using th&set Sqg, U Sgseld Syge
The coverage of EIEs is the same as that shown in Table 2.5 because a complete test set
for SSL faults detects all EIEs. The error simulation results for MIEs and WIEs also

appear in Table 2.6. Tests were generated using ATALANTA for the remaining undetected
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Table 2.6 Design error coverage in combinational benchmarks using verification
tests generated by ATALANTA.

; Tests targeting [Error simulation for MIEs
Tests targeting GSEs MGEs and WIEs using Sy

5
8 Test | ®0 29 o |Test| 3 @ | Test 2 o 2 0
o set | 80 | 88 | S0 |set | §o |set| 3L | 5E
size oS = g | size | €83 | size T2 3

Q Qv [a) Q [a) [a)

cl7 5 100.0 | 100.0 100.0 n/a n/a 10 82.5 95.7
c432nr 39 92.8 100.0 | 100.0 92 99.9 174 88.8 99.5
c499nr 39 99.8 100.0 46.2 43 98.4 | 133 93.2 99.7
€880 49 92.8 100.0 | 100.0 66 100.0 | 162 95.0 99.8
7485 14 88.4 100.0 | 100.0 47 94.4 85 89.3 96.4
74181 15 98.5 100.0 88.9 36 99.5 69 94.9 98.8
74283 10 94.7 100.0 | 100.0 31 100.0 | 51 88.7 95.2

Table 2.7 Improved coverage of MIEs and WIEs after the second
phase of test generation using ATALANTA.

Tests targeting MIEs not Tests targeting WIES not
%‘ detected by St detected by St
6 Té)et?lsjggt Detected MIEs Tsc‘)et?lsgggt Detected WIEs
cl7 13 95.0 12 100.0
c432nr 190 89.9 195 99.6
c499nr 220 95.8 147 99.8
c880 225 96.5 192 99.9
7485 91 91.2 92 96.4
74181 83 96.6 78 98.9
74283 58 90.0 56 96.4

MIEs and WIEs after the error simulation. ATALANTA reported that a large percentage of
those errors are undetectable. Adding the generated teStangproves the coverage of
MIEs and WIEs, as shown in Table 2.7.

The coverage of design errors using the generated test sets is quite high, 80%—-100% in
most cases. We are confident that most detectable design errors of the modeled types are
actually detected. To explore this further, we analyzed the 7485, 74181, and 74283 circuits
in depth. We found that MIGSEs and EGESs not detected by our test sets are undetectable,
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Table 2.8 Design error coverage in combinational benchmarks using verification
tests generated by ATTEST.

= | Size |resing | S8 | B4 | By | B9 | B | Eg | Bg
s | o |Gmer| 28 | 88 | 80 | 86 | 34 | 3L | 5Y
S go | 8&s | &% | 3= | g% | 8% | 8%
c1355 265 3.2 100.0 | 82.3 | 100.0 | 97.1 99.2 83.5 99.3
c1908 465 3.7 100.0 | 84.8 97.6 90.3 99.2 90.8 97.3
€2670 797 7.9 99.7 87.5 87.6 91.6 93.2 90.4 98.7

c3540 650 11.2 99.3 89.7 90.6 81.6 94.2 88.4 98.6
c5315 1263 8.1 99.8 89.6 98.9 93.8 98.3 99.8 99.5
c6288 324 55.7 99.6 85.8 100.0 n/a 99.3 97.9 99.7
c7552 1364 23.5 100.0 86.6 97.4 91.2 96.4 99.4 98.7

a. In minutes on a HALstation 300.

and hence, these test sets cover 100% of the detectable MIGSEs and EGEs.

It is difficult to compare the coverage results obtained in this section to related work in
the literature for several reasons: (1) different error models are used; (2) test set sizes are
missing from the results of [65]; and (3) standard benchmarks are not used in most prior
work. The test generation times for the circuits in Table 2.6 and Table 2.7 were found to

range from a few seconds to a few minutes on a HALstation 300.

To check that our method can use any standard SSL test generator and to determine the
design error coverage for the large SSL-redundant ISCAS 85 circuits, we performed the
test generation experiments using the advanced SSL test generator ATTEST [17]. The
error simulation results of the generated test sets are shown in Table 2.8. As expected, the

generated test sets are small and have high coverage of the modeled errors.

We further experimented with the proposed method using a representative set of non-
scan sequential benchmarks from the ISCAS 89 suite [26]. To simplify test generation, we
attached a single clear (reset) input to all storage elements in each circuit. We also used the
commercial ATTEST SSL test generator [17] to generate the verification test sequences
St = Sgq U Sgseld Syge U Se g U Sy g- The simulation results (Table 2.9) were
determined by the error simulator ESIM, and demonstrate the effectiveness of the gener-

ated test sequences. The coverage of design errors is high for all circuits, except for s420
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Table 2.9 Design error coverage in sequential benchmarks using verification test
sequences generated by ATTEST.

= | Size ? 20|80 |8n |Bo | @ ? ® ? 3 o
3 | of |Testing | 5% |50 | S0 |Sw |sW |58 |5l | gl | gl | guw
= time 20 Q0 | 20 |20 |20 |25 |25 |8 (2 | o
O St o0 |35 | O | oW | o= sl |52 |83 | 8L |83
[a] (@) [a] ()] (@] (@] (@] (@] (@] (]
s27 49 0 100.0/100.0| 95.0 |{100.0| n/a [100.0| 74.7 | 94.4 |1100.0|100.0
s208 | 448 8 956 191.3|879|(87.8|838|916 | 724 |93.0]|87.5]| 81.8
s298 | 448 27 86.4 | 91.1 | 93.6 [100.0|96.92| 77.5 | 67.5 | 84.6 |100.0|100.0

s344 | 264 180 | 93.9|97.3|90.7 |100.0| 85.0 | 91.9 | 76.9 | 94.2 |100.0| 95.0
s349 | 352 28 94.9 | 97.7 | 90.8 |100.0| 85.0 | 93.5 | 79.9 | 95.9 [100.0| 95.0
s386 | 500 132 | 851 |97.1 (927|784 |98.2|69.6 | 67.1 | 87.6 |100.0| 92.9
s420 | 499 114 | 545|58.1(694|719|48.1|51.8| 328|528 |81.3 | 36.8
s641 | 360 14 876 935|948 | 735|906 | 81.7 | 65.2 | 90.4 | 78.9 | 89.8

a. In minutes on a HALstation 300.

whose internal nets have low controllability and observability.

2.4 Discussion

We have presented an error-based method for verifying logic circuits using standard
simulation and ATPG tools. We showed that all common gate-level design errors can
readily be mapped into SSL faults, and presented a systematic method to perform this
mapping. Our experimental results show that complete test sets for the SSL faults detect
almost all detectable design errors. The test sets are small and provide high coverage—the
percentage of detected design errors from all modeled errors, detectable and undetectable,
is greater than 90% for most of the benchmark circuits. The experiments also show that
the fraction of undetectable design errors is significant in practical circuits, even when
they are SSL-irredundant. For example, 11.6% of the MIGSEs in the 7485 comparator cir-
cuit are undetectable. We ensure full detectability of design errors by injecting SSL faults
into a modified netlist and apply an ATPG program to it. Any such program can be used
off the shelf, so future improvements in ATPG tools can be applied directly to this type of
design error detection. Furthermore, as we show in the next chapter, the verification
method considered here can be extended to higher levels of abstraction such as the regis-

ter-transfer or behavioral level of design.



CHAPTER 3
HIGH-LEVEL DESIGN VALIDATION

In this chapter, we extend the work in Chapter 2 to high-level design validation. Like
the gate-level validation approach, our high-level methodology is based on modeling
design errors and generating simulation vectors for them via testing techniques for fabri-
cation faults. Section 3.1 presents a review of high-level design verification and testing
techniques. Section 3.2 describes a method for design error collection and presents some
design error statistics that we have collected. Section 3.3 discusses design error modeling
and illustrates test generation with these models. An experimental evaluation of the pro-
posed methodology and error models is presented in Section 3.4. Section 3.5 introduces a
new error model for microprocessors and a validation approach that uses it. Section 3.6

discusses the experimental results and gives some concluding remarks.

3.1 Introduction

Simulation-based design verification tries to uncover design errors by detecting a cir-
cuit’s faulty behavior when deterministic or pseudo-random tests (simulation vectors) are
applied. Microprocessors are usually verified by simulation-based methods, but require an

extremely large number of simulation vectors whose coverage is often uncertain.

Hand-written test cases form the first line of defense against bugs, focusing on basic
functionality and important corner (exceptional) cases. These tests are very effective in the
beginning of the debug phase, but lose their usefulness later. Recently, tools have been
developed to assist in the generation of focused tests [35][58]. Although these tools can

significantly increase design productivity, they are far from being fully automated.
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The most widely used method to generate verification tests automatically is random test
generation. It provides a cheap way to take advantage of the billion-cycles-a-day simula-
tion capacity of networked workstations available in many big design organizations.
Sophisticated systems have been developed that are biased towards corner cases, thus
improving the quality of the tests significantly [7]. Advances in simulator and emulator
technology have enabled the use of very large sets as test stimuli such as existing applica-
tion and system software. Successfully booting the operating system has become a com-

mon quality requirement [49][70].

Common to all the test generation techniques mentioned above is that they are not tar-
geted at specific design errors. This poses the problem of quantifying the effectiveness of a
test set, such as the number of errors covered. Various coverage metrics have been pro-
posed to address this problem. However, the relationship between the metrics and the

classes of design errors they detect is not well understood.

A different approach is to use synthetic design error models to guide test generation as
we have done in the previous chapter. Such a method is also found in the area of software
testing. Mutation testing [44] considers programs, termed mutants, that differ from the
program under test by a single small error, such as changing the operator from add to sub-
tract. Although considered too costly for wide-scale industrial use, mutation testing is one
of the few approaches that has yielded an automatic test generation system for software
testing, as well as a quantitative measure of error coverage (mutation score) [68].
Recently, Al Hayek and Robach [15] have adapted mutation testing to hardware design

verification in the case of small VHDL modules.

This chapter addresses design validation via error modeling and test generation for
complex high-level designs such as microprocessors. The implementation to be verified
and its specification are assumed to be given. For microprocessors, the specification is
typically the instruction set architecture (ISA), and the implementation is a description of
the new design in a hardware description language (HDL) such as VHDL or Verilog.
Synthetic error models are used to guide test generation, and the tests are applied to
simulated models of both the implementation and the specification. A discrepancy

between the two simulation outcomes indicates an error, either in the implementation or in
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the specification.

As discussed in Chapter 1, several high-level manufacture testing techniques for fabri-
cation faults have been proposed. Most of these methods use high-level knowledge about
the design in the test generation algorithm to detect gate-level fabrication faults. A few
other methods introduce high-level fault models to speed up the test generation. For exam-
ple, Thatte and Abraham [108] defined high-level fault models for the following functions:
register decoding, instruction decoding and control, data storage, and data transfer. The
corresponding test generation algorithm produces sequences of instructions which detect
the above faults in the microprocessor with the hope of detecting the low-level SSL faults.
A general problem of high-level manufacture testing is the absence of high-level ATPG

techniques and supporting software tools.

From the above discussion, we can conclude that high-level validation is more complex
than gate-level validation due to the following reasomsth{e lack of high-level design
error data and good design error models, ardhe inadequacy of high-level ATPG tools.

In the rest of this chapter, we develop a set of high-level design error models based on

actual error data and show how to generate tests for them.

3.2 Design Error Collection

As discussed earlier, hardware design verification and physical fault testing are closely
related conceptually. The basic task of physical fault testing (hardware design verification)
is to generate tests that distinguish the correct circuit from faulty (erroneous) ones. The
class of faulty circuits to be considered is defined by a logical fault model. Logical fault
models represent the effect of physical faults on the behavior of the system, and free us
from having to deal with the plethora of physical fault types directly. The most widely
used logical fault model, the SSL model, combines simplicity with the fact that it forces
each line in the circuit to be exercised. Typical hardware design methodologies employ
hardware description languages as their input medium and use previously designed
high-level modules. To capture the richness of this design environment, the SSL model

needs to be supplemented with additional error models.

The lack of published data on the nature, frequency, and severity of the design errors
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occurring in large-scale projects is a serious obstacle to the development of error models
for hardware design verification. Although bug reports are collected and analyzed inter-
nally in industrial design projects the results are rarely published. Examples of user-ori-
ented bug lists can be found in [60][84]. Some insight into what can go wrong in a large

processor design project is provided in [41].

The above considerations have led us to implement a systematic method for collecting
design errors. Our method uses the CVS revision management tool [33] and targets ongo-
ing design projects at the University of Michigan, including the PUMA high-performance
microprocessor project [27] and various class projects in computer architecture and VLSI
design, all of which employ Verilog as the hardware description medium. Designers are
asked to archive a new revision via CVS whenever a design error is corrected or whenever
the design process is interrupted, making it possible to isolate single design errors. We
have augmented CVS so that each time a design change is entered, the designer is
prompted to fill out a standardized multiple-choice questionnaire, which attempts to gather
four key pieces of information: (1) the motivation for revising the design; (2) the method
by which a bug was detected; (3) a generic design-error class to which the bug belongs,
and (4) a short narrative description of the bug. A uniform reporting method such as this
greatly simplifies the analysis of the errors. A sample error report using our standard ques-
tionnaire is shown in Figure 3.1. The error classification shown in the report is the result of

the analysis of error data from several earlier design projects.

Design error data has been collected from four VLSI design class projects that involve
implementing the DLX microprocessor [57], from the implementation of the LC-2 micro-
processor [99] which is described later, and from preliminary designs of PUMA’s
fixed-point and floating-point units [27]. The distributions found for the various represen-
tative design errors are summarized in Table 3.1. Error types that occurred with very low
frequency were combined in the “others” category in the table. The number of design
errors recorded per day for the duration of one particular class project is shown in Figure

3.2 [113]. The graph reflects the somewhat sporadic nature of student design projects.



(replace the _ with X where appropriate)
MOTIVATION:

X bug correction

_ design modification

_ design continuation

_ performance optimization
_ synthesis simplification

_ documentation

BUG DETECTED BY:

_ inspection
_ compilation
X simulation
_ synthesis

BUG CLASSIFICATION:

Please try to identify the primary source
of the error. If in doubt, check all
categories that apply.

X combinational logic:

X wrong signal source

_ missing input(s)

_ unconnected (floating) input(s)
_ unconnected (floating) output(s)
_ conflicting outputs

_ wrong gate/module type

_ missing instance of gate/module

_ sequential logic:

_ extra latch/flipflop

missing latch/flipflop

extra state

missing state

wrong next state

other finite state machine error

_ statement:

_ if statement

_ case statement

_ always statement

_ declaration

_ port list of module declaration

_ expression (RHS of assignment):

missing term/factor
extra term/factor
missing inversion
extra inversion
wrong operator
wrong constant
completely wrong

_ buses:

_ wrong bus width
_ wrong bit order

_ verilog syntax error
_ conceptual error
_ new category (describe below)

BUG DESCRIPTION: Used wrong field from
instruction

Figure 3.1 Sample error report.

Table 3.1 Actual error distributions from three groups of design projects.

Design error category Relative frequency [%]

DLX PUMA LC-2

1. Wrong signal source 29.9 28.4 25.0
2. Conceptual error 39.0 19.1 0.0
3. Case statement 0.0 10.1 0.0
4. Gate or module input 11.2 9.8 0.0
5. Wrong gate/module type 12.1 0.0 5.0
6. Wrong constant 0.4 5.7 10.0
7. Logical expression wrong 0.0 55 10.0
8. Missing input(s) 0.0 5.2 0.0
9. Verilog syntax error 0.0 3.0 0.0
10. Bit width error 0.0 2.2 15.0
11. If statement 11 1.6 5.0
12. Declaration statement 0.0 1.6 0.0
13. Always statement 0.4 14 5.0
14. FSM error 3.1 0.3 0.0
15. Wrong operator 1.7 0.3 0.0
16. Others 11 5.8 25.0
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# Errors detected
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Figure 3.2 Number of errors detected per day for the duration of one class project.

3.3 Error Modeling

Standard simulation and logic synthesis tools have the side effect of detecting some
design error categories of Table 3.1, and hence there is no need to develop models for
those particular errors. For example a simulator such as Verilog-XL [30] flags all Verilog
syntax errors (category 9), declaration statement errors (category 12), and incorrect port
list of modules (category 16). Also, logic synthesis tools, such as those of Synopsis, usu-
ally flag all wrong bus width errors (category 10) and sensitivity-list errors irativays

statement (category 13).

To be useful for design verification, error models should satisfy three requirements: (1)
tests (simulation vectors) that provide complete coverage of the modeled errors should
also provide very high coverage of actual design errors; (2) the modeled errors should be
amenable to automated test generation; (3) the number of modeled errors should be rela-
tively small. The error models need not mimic actual design bugs precisely, but the tests
derived from complete coverage of modeled errors should provide very good coverage of

actual design bugs.

Basic error models.A set of error models that satisfy the requirements for the restricted
case of gate-level logic circuits was introduced in Chapter 2. Several of these models
appear useful for the higher-level (RTL) designs found in Verilog descriptions as well.
From the actual error data in Table 3.1, we derive the following set of five basic error

models:
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» Bus SSL error (SSLA bus of one or more lines is (totally) stuck-at-0 or stuck-at-1
if all lines in the bus are stuck at logic level 0 or 1. This generalization of the stan-
dard SSL model was introduced in [21] in the context of physical fault testing.
Many of the design errors listed in Table 3.1 can be modeled as SSL errors (cate-
gories 4 and 6).

* Module substitution error (MSE)his refers to mistakenly replacing a module by
another module with the same number of inputs and outputs (category 5). This
class includes word gate substitution errors and extra/missing inversion errors.

» Bus order error (BOE)This refers to incorrectly ordering the bits in a bus (cate-
gory 16). Bus flipping appears to be the most common form of BOE.

» Bus source error (BSE)his error corresponds to connecting a module input to a
wrong source (category 1).

» Bus driver error (BDE) This refers to mistakenly driving a bus from two sources

(category 16).

To detect a basic errain a circuitC, we need to activate, propagate the erroneous
values to an observable output@ and justify the corresponding internal signalsf

We next study the activation conditions for the basic design error models.

» SSL: For ammwide bus to be stuck-at 0, there afé-21 tests that can activate the
error, namely, anyn-bit vector that has at least one bit setto 1. Hence the bus SSL
error can be easily activated.

 MSE: The number of tests needed to detect a substitution error of mivljudg
moduleM, is one; any input vector that distinguishdsfrom M, suffices as a test.
Hence, ifM; can be replaced by othkmodules, we need at mdstests to detect
MSEs onM;. The number of possible tests that can detect the substitutibh of
by M, is equal to the number of minterms of the difference funcfiomhich is
defined as the logical OR of the Exclusive-OR of the corresponding outpis of
andM,. For the special case of standard word gates, to verify-gput m-wide
n, m= 2, word gateG using the results in Chapter 2, we need to apply each of the
four testsv, i, Vai, Vode @NAVeyento an arbitrary gate db. This requirement can be

satisfied by a single test ihn>4 and the output of the word gate can be propa-
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gated through a transparent path to a primary output. In this case, a single test can
detect 5 MSEs on a word gate. Note that for the case aftanide inverter, any
test will activate the error.

» BOE: A single test s sufficient to activate a bus order error. However, the number
of possible tests is dependent on the number of possible ways a wrong order can
occur. For the case of incorrectly flipping the order ofratwide (m even) bus,
any non-symmetrical vector is a test. (A vectds non-symmetrical if there exists
abiti of vsuchthatw; #v,_;_, .) Forexample, the test vector 1000 detects incor-
rectly flipping the order of a 4-bit bus. Since the number mfwide
non-symmetrical vectors is™2- 22, which amounts to 93.75% of the possible
vectors on an 8-bit bus, then BOEs are likely to be activated by random vectors.

* BSE: A single test that places different values on the wrong and correct buses is
sufficient to activate this error. The number of possible tests for a BSE on an
mwide bus is equal to the number of instances where the wrong and correct buses
have different values, i.€”"— 2" . This number amounts to 99.60% of the pos-
sible vectors on an 8-bit bus, hence BSEs are likely to be activated by random
vectors.

» BDE: Any test that enables more than two bus drivers simultaneously and produce

conflicting bus signals is sufficient to activate this error.

After activating the basic error, we need to propagate the resulting erroneous signal to
an observable output. We therefore need to define a criterion for propagating error values
(D or D) through modules. A simple criterion is to maximize the numbed/@ error sig-
nals propagated from the initial error site. To illustrate, consider a 2-impatde AND
word gate with inputé\ andB and outpu®. To propagate an error signal frofto Z, the
input B is set such that a maximum number@fD is propagated t@. For example, if
A = 01XDD1, then we setB = XXX11X . In general, iA, = D oA, = D then
B, = 1 otherwiseB; = X . To illustrate further, consider a multiplexer with outgut
selection bus, and data inputé, A, A,, ... To propagate an error signal from data Byis
to Z, we need to set th8bus to the fixed valu& while setting all the other input buses to

X's. On the other hand, to propagate an error fromS3telis toZ, we need to set several
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data buses to specific values. For exampl& # 01D , then wAsetthe complement
of A;. This propagates a maximum number@D signals toZ, since every bit ofZ is
eitherD orD.

After propagating the error to an observable output, we must justify the internal signals
of the circuit to reach to a consistent solution. We define the criterion for justifying inputs
of modules to obtain the desired outputs as maximizing the nuiioéiX's appearing at
the inputs. The justification algorithm for a module enumerates all solutions, sorts them
based on the values b, and returns the test with the largésbnce it is executed for the
first time and the test with the largedtamong the remaining tests in every consequent
execution. To illustrate, consider a standard 4-bit adder with a carry,@uid input vector
asbsa,b,a,b,a,b,C,. TO justify ¢, = 1, the first and best test is TIXXXXXXXXX which cor-
responds tdN = 2, and the next test is 1011XXXXXXX which correspondhslto 4.

Direct generation of tests for the basic error models is difficult, and is not supported by
currently available CAD tools. While the errors can be easily activated as we have shown
above, propagation of their effects can be difficult, especially when modules or behavioral
constructs do not have transparent operating modes [88]. In the following, we illustrate

manual test generation for various basic error models.

Test generation examplesBecause of their relative simplicity, the foregoing error models
allow tests to be generated and error coverage evaluated for RTL circuits of moderate size.
We consider the test requirements of two representative combinational circuits: a
carry-lookahead adder and an ALU. The test generation is done manually here, but in a
systematic manner that can potentially be automated. Three basic error models are
considered: BOEs, MSEs, and BSEs. Test generation for SSL faults is discussed in [4][21];
no tests are needed for BDEs, since the circuits under consideration do not have tristate

buses.

Our first example is the 74283 4-bit fast adder [107]. An RTL model [51] of the adder
appears in Figure 3.3. It consists of a carry-lookahead generator (CLG) and a few word
gates. We show how to generate tests for some design error models in the adder and then

discuss the overall coverage of the targeted error models.
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Figure 3.3 High-level model of the 74283 carry-lookahead adder.

* BOE on busA: A possible non-symmetrical vector that activates this errégis
= OXX1, whereX denotes an unknown value. The erroneous valukisfthenA;
= 1XX0. Hence, we can represent the errory DXXD, whereD (D) is 1 (0)
in the good circuit and 0 (1) in the erroneous circuit. One way to propagate the
error signal through the AND gat8, is to setB = 1XX1. Hence, we ge6, =
1XX1, G5 = DXXD, andG; = DXXD. Now for the module CLG we have =
1XX1, G = DXXD, andC, = X. The resulting outputs ai@ = XXXXandC, = X.

This implies thatS = XXXXand hence the error signal is not detected at the pri-
mary outputs. We need to assign more input values for error signal propagation.
If we setC, = 0, we getC = XXD0, C, = X, andS= XXXD. Hence, the error
signal is propagated ®and the complete test vectoiAsB, C, = OXX11XX10.

* BSE on busP with correct source G;: To activate the error we need to apply
opposite values to at least one bit of t(handG; buses. If we start witR; = XXX0
andGs = Py = XXX1, we reach to a conflict through implications. If we ®y=
XXXL andG; = Py = XXX0, we obtainP = XXXD, A = XXX1, andB = XXXI.
However, no error is propagated through the CLG module SBweeXXXL. After
all the activation conditions are explored, we conclude that the error is redundant
(undetectable).

* MSE G5/XNOR: To distinguish the word AND gaté&; from an XNOR gate, we
need to apply the all-0 pattern to one of the gates forrfigndso, we start with the
valuesGg = OXXXandG, = 0XXX By making implications, we find that there is
a conflict when selecting the valuesAfndB. We then change to another set of
activation conditiorGs = XOXXandG, = XOXX. This also leads to a conflict. After
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trying all possible combinations, we conclude that no test exists, hence the error

is redundant.

On generating tests for all BSEs in the adder we find that just 2 tests detect all 33
detectable BSEs, and a single BSE is redundant as shown above. We further targeted all
MSEs in the adder and found that 3 tests detect all 27 detectable MSEs; the MSE
G4/XNOR is redundant. Finally, we found that all BOEs are detected by the tests gener-
ated for BSEs and MSEs. Therefore, complete coverage of BOEs, BSEs, and MSEs is

achieved with only 5 tests.

In our second example, we try to generate tests for some modeled design errors in the
€880 ALU, a member of the ISCAS 85 benchmark suite [25]. A high-level model based on
a Verilog description of the ALU [67] is shown in Figure 3.4. The ¢880 is composed of six
modules: an adder, two multiplexing units, a parity unit, and two control units. The circuit
has 60 inputs and 26 outputs, and its standard gate-level implementation has 383 gates.
The design error models to be considered in the c880 are again BOEs, BSEs, and MSEs

(inversion errors on 1-bit signals). We next generate tests for these error models.

Cin
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Figure 3.4 High-level model of the ¢880 ALU.
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» BOESs:In general, we attempt to determine a minimum set of assignments needed
to detect each error. Some BOEs are redundant such as the BBEP&RITY),
but most BOEs are easily detectable. Consider, for example, the B@EOne
possible way to activate the error is to 48] = 1 andD[0] = 0. To propagate the
error to a primary output, the path across IN-MUX and then OUT-MUX is

selected. The signal values needed to activate this path are:

Sel-A=0 Usel D=1 Usel ABB=0 Usel G=0
PassB= 0 PassA=1 PassH= 0 F-shift=0
F-add=0 F-and=0 F-xor=0

Solving the gate-level logic equations férandC we get:
G[1:2]=01 C[3]=1 C[5:71=011 C[14]=0

All signals not mentioned in the above test have don't care values. We generated
tests for all BOEs in the ¢880. We found that just 10 tests detect all 22 detectable
BOEs and serve to prove that another 2 BOEs are redundant.

» BSEs:The buses in the ALU were grouped according to their size since the cor-
rect source of a bus must have the same size as the incorrect one. We targeted
BSEs with bus widths of 8 and 4 only. We found that by adding 3 tests to the 10
tests generated for BOES, we are able to detect all 27 BSEs affecting the c880’s
multibit buses. Since the multiplexing units are not decoded, most BSEs on their
1-bit control signals are detected by the tests generated for BOEs. Further tests are
needed to get complete coverage of BSEs on the other 1-bit signals.

» MSEs: Tests for BOEs detect most but not all inversion errors on multibit buses.

In the process of test generation for the c880 ALU, we noticed a case where a test
for an inversion error on a buscan be found even though the BOEAIs redun-

dant. This is the case when arbit bus f odd) is fed into a parity function.
Testing for inversion errors on 1-bit signals needs to be considered explicitly,
since a BOE on a 1-bit bus is not possible. Most inversion errors on 1-bit signals
in the c880 ALU are detected by the tests generated for BOEs and BSEs. This is

especially true for the control signals to the multiplexing units.
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Conditional error model. The preceding examples, as well as prior work on SSL error
detection [2][21], show that the basic error models can be used with RTL circuits, and that
high, but not complete, error coverage can be achieved with very small test sets. These
results are further reinforced by our experiments on microprocessor verification (Section
3.4) which indicate that a large fraction of actual design errors (67% in one case and 75%
in the other) is detected by complete test sets for the basic errors. To increase coverage of
actual errors to the very high levels needed for design verification, additional error models
are required to guide test generation. Many more complex error models can be derived
directly from the actual data of Table 3.1 to supplement the basic error types, the following

set being representative:

» Bus count error (BCE)This corresponds to defining a module with more or fewer
input buses than required (categories 4 and 8).

* Module count error (MCE)This corresponds to incorrectly adding or removing
a module (category 16), which includes the extra/missing word gate errors and the
extra/missing registers.

» Label count error (LCE)This error corresponds to incorrectly adding or remov-
ing the labels of a case statement (category 3).

» Expression structure error (ESEJhis includes various deviations from the cor-
rect expression (categories 3, 6, 7, 11, 15), such as extra/missing terms,
extra/missing inversions, wrong operator, and wrong constant.

» State count error (SCE)This error corresponds to an incorrect finite state
machine with an extra or missing state (category 14).

* Next state error (NSE)This error corresponds to incorrect next state function in
an FSM (category 14).

Although this extended set of error models increases the number of actual errors that can
be modeled directly, we have found them to be too complex for practical use in automated

test generation. For example, it is impractical to enumerate missing modules (MCES) since
the possible instances depend on many module parameters including type, number of

inputs, sources of inputs, number of outputs, and destination of outputs.

The more difficult actual errors are often composed of multiple basic errors, where the
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component basic errors interact in such a way that a test to detect the actual error must be
much more specific (have fewer don'’t cares) than a test to detect any of the component
basic errors. Modeling these difficult composite errors directly is impractical as the num-
ber of error instances to be considered is too large, and such composite modeled errors are
too complex for automated test generation. However, as noted earlier, a good error model
does not necessarily need to mimic actual errors accurately. What is required is that the
error model necessitates the generation of these more specific tests. To be practical, the
complexity of the new error models should be comparable to that of the basic error mod-
els. Furthermore, the (unavoidable) increase in the number of error instances should be
controlled to allow trade-offs between test generation effort and verification confidence.
We found that these requirements can all be met in many practical situations by augment-

ing the basic error models with a condition.

A conditional error(C,E) consists of a conditio® and a basic errdE; its interpreta-
tion is thatE is only active wherC is satisfied. In generaC; is a predicate over the signals
in the circuit during some time period. To limit the number of error instances, we restrict
to a conjunction of terms of the forify, = w;,) , wheygs a signal in the circuit anal; is
a constant of the same bit-width gsand whose value is either all-Os or all-1s. The num-
ber of terms (condition variables) appearingdns said to be th@rder of (C,E). Specifi-

cally, we consider the following conditional error types:

» Conditional single-stuck line errors (CS3lof ordern;
» Conditional bus order errors (CB@fof ordern;

» Conditional bus source errors (CBg®Bf ordern.

Whenn = 0, a conditional error@,E) reduces to the basic erré& from which it is
derived. Higher-order conditional errors enable the generation of more specific tests, but
lead to a greater test generation cost due to the larger number of error instances. Although
the total set of alN signals we consider for each term in the condition can possibly be

reduced, CSSherrors wheren > 2 are probably not practical.

For gate-level circuits (where all signals are 1-bit), it can be shown that CSSL1 errors

cover the following basic error models: MSEs (excluding XOR and XNOR gates), missing
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2-input gate errors, BSESs, single BCEs (excluding XOR and XNOR gates), bus driver

errors. Higher-order CS3lerrors improve coverage even further.

3.4 Coverage Evaluation

The effectiveness of a verification methodology can be measured by its ability to
uncover actual design errors in an unverified design. An experiment was designed to eval-
uate the effectiveness of our verification methodology when applied to two stu-
dent-designed microprocessors. A block diagram of the experimental set-up is show in
Figure 3.5. As design error models are used to guide test generation, the effectiveness is

closely related to the synthetic error models used.

To evaluate our methodology, a circuit is chosen for which design errors are to be sys-
tematically recorded during its design. LBy be the final, presumably correct design.
From the CVS revision database, the actual errors are extracted and converted such that
they can be injected in the final desiDg. In the evaluation phase, the design is restored to
an (artificial) erroneous statB,, by injecting a single actual error into the final desigg
This set-up approximates a realistic on-the-fly design verification scenario. The experi-
ment answers the question whether gilgn the proposed methodology would produce a

test that determinel3, to be erroneous. This is done by examining the actual errby jn

Design and debugging process

Evaluation of verification methodology

A Modeled error

Design errar
i model
Design
revisions !
P — D - D
( ® Inject singlé 1 [ Inject 2
@ & actual errof modeled—>
N I error
[ Test for
I Simulate«—mgprglreg Simulate
I l l
* Actual erro(:atalbase ! Expose Expose
| actual error modeled error
|

Figure 3.5 Experimental set-up to evaluate the proposed design verification
methodology.
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and determining if a modeled design error exists that is dominated by the actual error. Let
D, be the design constructed by injecting an error mddi@ito D,. If any test that detects

the modeled erra¥ in D, also detects the actual errorlp, thenM is called adominated

error. Consequently, if we were to generate a complete test set for every error defined on
D, by M, Dywould be found erroneous by that test set. Note that the concept of dominance
in the context of design verification is slightly different than in physical fault testing.
Unlike the testing problem, we cannot remove the actual design error Brptoefore
injecting the dominated modeled error. This distinction is important because generating a
test for an error of omission, which is generally very hard, becomes relatively easy if given

Dg instead oD;.

The erroneous desiddy considered in this experiment is somewhat artificial. In reality
a design evolves over time as bugs are introduced and eliminated. Only at the very end of
the design process, is the target circuit in a state where it differs from the final dggign
just a single design error. Prior to that time, the design may contain more than one design
error. To the extent that the design errors are independent, it does not matter if we consider
a single or multiple design errors in each verification step. Furthermore, our results are

independent of the order in which one applies the generated tests.

The preceding coverage-evaluation experiment was implemented for two small but rep-
resentative designs: a simple microprocessor and a pipelined microprocessor. We present

our results in the remainder of this section.

A simple microprocessor.The Little Computer 2 (LC-2) [99] is a simple computer used

for teaching purposes at the University of Michigan. It has a representative set of 16 instruc-
tions that are subset of the instruction sets of most current microprocessors. To serve as a
test case for design verification, we designed behavioral and RTL synthesizable Verilog
descriptions for the LC-2 microprocessor (Appendix B). The behavioral model of the LC-2
consists of 235 lines of behavioral Verilog code. The RTL design consists of a datapath unit
composed of library modules and a few custom modules, and a control unit described as a
finite-state machine with five states and 27 output control signals. The RTL design consists
of 921 lines of Verilog code, excluding the models for library modules such as adders, reg-

ister files, etc. A gate-level model of the LC-2 can thus be obtained using logic synthesis
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Figure 3.6 RTL block diagram of the LC-2 microprocessor.

tools. A simplified block diagram of the design is shown in Figure 3.6 The design errors
made during the design of the LC-2 were systematically recorded using our error collection

system (Section 3.2).

For each actual design error recorded, we derived the necessary conditions to detect it.
An error is detected by an instruction sequesdé the external output signals of the
behavioral model (specification) and the RTL model (implementation) are distinguished
by s. We found that some errors are undetectable since they do not affect the functionality
of the microprocessor. The detection conditions are used to determine if a modeled error

that is dominated by the actual error can be found. An example where we were able to do
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3Y2Y¥1 YO 3Y2Y1YO ¢
Incrementer Incrementef

Incorrect design Correct design

Figure 3.7 An example of an actual design error that is dominated by an SSL error.

/I Instruction decoding /I Instruction sequence
/I Decoding of register file
inputs @3000
/I 1- Decoding of R1 main:
JSR sub0
CORRECT CODE: L
if (ir_out[15:12] == 4'b1101) sub0:
R1_temp = 3'b111; Not RO, R7
else RET //1101 0000 0000
R1_temp = ir_out[8:6]; 0000
1
ERRONEOUS CODE: /I After execution of instructions
/I PC = 3001 in correct design
R1_temp = ir_out[8:6]; /I PC = CFFE in incorrect design
Design error Test sequence
(a) (b)

Figure 3.8 An example of (a) an actual design error for which no dominated mod-
eled error was found, and (b) an instruction sequence that detects the actual error.

that is shown in Figure 3.7. The error is a BSE on data input 1 of a multiplexer (mux)
attached to the program counter PC. Testing for input 1 stuck-at-1 will detect the BSE
since the outputs of PC and the increment unit are always different, i.e., the error is always
activated, and testing for the SSL will propagate the signal on input number 1 of the multi-
plexer to a primary output of the microprocessor. A case where we were not able to find a
basic or conditional modeled error dominated by the actual error is shown in Figure 3.8a.
Here the error occurs when a signal is assigned a value independent of any condition.
However, the correct implementation requires an if-then-else construct to control the sig-
nal assignment. To activate this error, we need to setir_out[15:12] == 4'b1101, ir_out[8:6]
# 3'b111, and RF[ir_out[8:6]¥ RF[3'b111], where RH] refers to the contents of the reg-
isteri in the register file. An instruction sequence that detects this error is shown in Figure
3.8b.
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Table 3.2 Actual design errors and the corresponding dominated modeled
errors for LC-2.

Actual design errors Corresr,rﬁ)gggligg grc;gisrmted
Easily Unde- Un-

Category Total detected tectable SSL BSE CsSsSL1 Known
Wrong signal source(s) (1) | 4 0 0 2 2 0 0
Expression error (7) 4 0 0 2 0 1 1
Bit width error (10) 3 3 0 0 0 0 0
Missing assignment(s) (16) | 3 0 0 0 0 2 1
Wrong constant(s) (6) 2 0 0 2 0 0 0
Unused signal (16) 2 0 2 0 0 0 0
Wrong module (5) 1 0 0 1 0 0 0
Always statement (13) 1 1 0 0 0 0 0
Total 20 4 2 7 2 3 2

We analyzed the actual design errors in both the behavioral and RTL designs of the
LC-2, and the results of the experiment are summarized in Table 3.2. A total of 20 errors
were made during the design process, of which four errors are easily detected by the Ver-
ilog simulator and/or logic synthesis tools and two errors are undetectable. The actual
design errors are grouped by category; the numbers in parentheses refer to the correspond-
ing category in Table 3.1. The columns in the table give the type of the simplest dominated
modeled error corresponding to each actual error. For example, among the 4 remaining

wrong-signal-source errors, two dominate an SSL error and two dominate a BSE error.

We can infer from Table 3.2 that most errors are detected by tests for SSL errors or
BSEs. About 75% of the actual errors in the LC-2 designs can be detected after simulation
with tests for SSL errors and BSEs. The coverage increases to 90% if tests for CSSL1 is

also used.

A pipelined microprocessor.The second design case study was mainly carried out by
David Van Campenhout [113]. It considers the well-known DLX microprocessor [57]
which has more of the features found in contemporary microprocessors. The particular
DLX version considered is a student-written design that implements 44 instructions, has a
five-stage pipeline and branch prediction logic, and consists of 1552 lines of structural Ver-
ilog code, excluding the models for library modules such as adders, register-files, etc. A

simplified block diagram of the design is shown in Figure 3.9. The design errors committed
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Figure 3.9 Block diagram of the DLX microprocessor.

Table 3.3 Actual design errors and the corresponding dominated modeled errors

for our DLX implementation.

Actual design errors Corresponding dominated modeled errors

Category Detectable |NV SSL BSE CSSL1 CBOE CSSL2 kn%r\]\;n
Missing module(s) (2) 14 0 2 0 6 1 0 1
Wrong signal source(s) (1) 11 1 4 5 1 0 0 0
Complex (2) 3 0 3 0 0 0 0 0
Inversion (5) 3 3 0 0 0 0 0 0
Missing input(s) (4) 3 0 0 0 1 0 0 0
Unconnected input(s) (4) 3 3 0 0 0 0 0 0
Missing minterm (2) 1 0 0 0 0 0 1 0
Extra input(s) (2) 1 0 1 0 0 0 0 0
Total 39 7 10 5 8 1 1 1

by the student during the design were systematically recorded using our error collection

system.

As in the previous experiment, Van Campenhout analyzed the detection requirements

of each actual error and constructed a modeled error dominated by the actual error, wher-

ever possible. The results of this experiment are summarized in Table 3.3. A total of 39

detectable design errors were recorded by the designer. The actual design errors are
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grouped by category; the numbers in parentheses refer again to Table 3.1. The correspon-
dence between the categories is imprecise, because of inconsistencies in the way in which
different student designers classified their errors. Also, some errors in Table 3.3 are
assigned to a more specific category than in Table 3.1, to highlight their correlation with
the errors they dominate. ‘Missing module’ and ‘wrong signal source’ errors account for
more than half of all errors. The columns give the type of the simplest dominated modeled
error corresponding to each actual error. Among the 10 detectable ‘missing module(s)’
errors, two dominate an SSL error, six dominate a CSSL1 error, and one dominates a

CBOE; for the remaining one, no dominated modeled error was found.

A conservative measure of the overall effectiveness of our verification approach is
given by the coverage of actual design errors by complete test sets for modeled errors. Any
complete test set for the inverter insertion errors (INV) also detects at least 21% of the
(detectable) actual design errors. Any complete test set for the INV and SSL errors covers
at least 52% of the actual design errors. If a complete test set for all INV, SSL, BSE,
CSSL1 and CBOE is used, at least 94% of the actual design errors will be detected.

3.5 Mutation Control Errors

The preceding error models can, in principle, be used with all types of designs. In this
section, we describe a related error model intended specifically for microprocessor-like
circuits. This model targets control errors in designs where datapath and control are
clearly separated. It is similar to the conditional error model with the condition being
dependent on a single instruction and its cycles. We next define the model, present a muta-

tion-based validation approach using it, and illustrate the validation approach on the LC-2.

Mutation control error model. A mutation control error (MCE@enoted i(c,s,vc,ve) is a
change in the control signaiin the cyclec of the instruction of the microprocessor from
the correct valuerc to the erroneous valuee For example, in an ADD instruction, the
MCE (ADD, execute, load_flags, 1’'b1, 1’b0) corresponds to incorrectly maintaining the

contents of the flags in the ADD’s execute cycle.

MCEs are classified by their detectability as redundant (undetectable), invalid, or test-

able. Of these, only testable MCEs are targeted for test generati@uuindant MCHor
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instructioni does not change the functions performed.bjhe following conditions typi-

cally lead to redundant MCEs:

» Unchanged visible stattCEs which do not affect the processor or memory state
are redundant. These includé: feading a register or memory without storing a
new result, if) loading a register or memory multiple times without reading it until
some final value is loaded, anid { changing registers not visible to the instruction
set, which are not used across several instructions.

» Disabled signalsMCEs on disabled signals are redundant. For example, an MCE
that changes a select signal of a register file with a disabled read port will not

affect instruction behavior.

Invalid MCEsviolate usage constraints on modules, buses, or the overall microproces-

sor, for example:

* Module input constraintsThese prevent inconsistencies such gsefading and
writing to memory in the same clock cycle, and) Getting the select bus of a
3-input multiplexer to 11.

» Bus constraintsThese are bus usage rules suchids bus cannot have multiple
active drivers at the same time, and @ bus cannot be read if it has no data
source, e.g., if itis in the high-impedance state.

* Microprocessor constraintg hese are global operating constraints suchigan(
instruction must be fetched every instruction cycle, andope and only one of

the flags must be set.

Testable MCEshange a correct design to one with different functionality that meets all
the specified design constraints. Detection of such MCEs requires instruction sequences
that distinguish the correct design from erroneous ones. These sequences constitute tests

for the modeled errors.

MCE evaluation. We evaluated the effectiveness of MCEs by an experiment similar to the
one discussed in Section 3.4. The actual design errors are injected manually one at a time
in the final, presumed correct design of LC-2. We then determine whether testing for all

MCEs guarantees the detection of the injected design errors. This is done by deriving the
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/I Instruction decoding (cycle 2)

/I Decoding of register file inputs Detection requirements

ir_out[15:12] == 4'b1101;

CORRECT CODE: ir_out[8:6] = 3'b111;
o RF[7] = RF[ir_out[8:6]]
if (ir_out[15:12] == 4'b1101) // RET Propagate RF[R1_temp] to primary output

R1_temp = 3'b111;
else
R1_temp = ir_out[8:6];

ERRONEOUS CODE:

R1_temp = ir_out[8:6]; MCE(RET, Decode, R1_temp, 3'b111, ir_out[8:6])

Design error Dominated MCE

Figure 3.10 Example of an actual design error, its detection requirements, and
the corresponding dominated MCE.

Table 3.4 Actual design errors and the number of corresponding dominated
MCEs for LC-2.

Actual design errors No. of
Category  [Total | ygiaeily ienaie hbje | dominated MCLs
Expression error 2 0 0 2 2
Bit width error 1 1 0 0 0
Control| Missing assignment(s) 3 0 0 3 3
Unit Wrong constant(s) 1 0 0 1 1
Unused signal 1 0 1 0 0
Always statement 1 1 0 0 0
Wrong signal source(s) 3 0 0 3 1
Dgttﬁp' Bit width error 2 2 0 0 0
Unit Unused signal 1 0 1 0 0
Wrong module 1 0 0 1 1
Total 16 4 2 10 8

detection conditions for every actual ereand then determining if an MCE exists that is
dominated by e. We applied this process to the complex actual error described earlier (Fig-
ure 3.8) and we were able to find a dominated MCE for it as shown in Figure 3.10. We
analyzed manually all design errors in the test implementation of the LC-2 and the results
are summarized in Table 3.4. A total of 16 design errors were found, nine in the control unit
and the rest is in the datapath unit. Four of these errors are easily detected by the Verilog
simulator, two are redundant, and the rest are testable. We can infer from Table 3.4 that all
testable design errors in the LC-2 control unit are detected after simulation with tests for
eight MCEs, and only two testable errors in the datapath unit are not guaranteed to be
detected. However, by analyzing their detection requirements, we found that the probabil-

ity of these two errors being undetected or masked is extremely low.
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Validation approach. We now outline a microprocessor validation algorithm that gener-

ates test sequences for MCEs. As usual, the microprocessor’s instructl@issdefined

by its ISA. The design constrain@T are derived from the ISA and the bus/module usage

rules. We assume that a microprocessor implementation IM is given that consists of a con-

trol unit and a datapath unit; the problem is to verify IM. Both the ISA and IM are specified

by a simulatable hardware description language (Verilog in our case).

The proposed verification algorithm is described in Figure 3.11 in five phases. The first

phase identifies all relevant control/data symbols in each instruction. For example, the

Procedure MV(instruction set architectud§A constraint<CT, implementatioriM)

1 extractlS from ISA
Phasel ; preprocess every instructionli® to identify its fields
3 for every instruction in IS
4 begin
5 for every instruction cycle
6 begin
7 simulate control and datapath units
8 if any constraint fronCT is violatedthen
9 report {erroneousM} and then stop
10 end
11 MSI := processor state IM after simulating all cycles of
12 for every instruction cycle
13 begin
14 for every control signat in IM
15 begin
16 ci ;= value ofcin IM
17 for every possible valuem of ¢ not equal tcci
18 begin
19 inject the MCE (i.e. seat := cm) to form a mutant
Phase 2 20 perform complete simulation of the mutant unider
21 MSM= final processor state in mutant
22 if any constraint fronCT is violatedthen MCE is INVALID
23 else if(MSI==MSM) then MCE is REDUNDANT
24 elseadd the TESTABLE MCE to error list
25 end
26 end
27 end
28 end
Phase 3 29 collapse the MCE list via dominance relations
30 set overall test sequenBe= @
31 while there are more MCEs in the list
32 begin
33 select an MCHn
Phase 4 34 generate an instruction sequesde detecim
35 remove all MCEs that are detectedshy
36 addsto S
37 end
38 applySto IM andISA
Phase5 39 if the responses are different then report {erronédis
40 elsereport {correciM}

Figure 3.11 The microprocessor validation algorithm.
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16-bit LC-2 instruction ADD DR, SR1, SR2 is represented by a sequence of (name, loca-

tion, value) symbols as follows:
(opcode,[15:12],0001), (DR,[11:9],N), (SR1,[8:6],N), (SR2,[2:0],N), (M,[5],0)

This sequence indicates that bits 15:12 of the instruction specify the opcode which is 0001
for ADD, bits 11:9 specify the destination register DR which is an unsigned integer (N),
bits 8:6 and 2:0 specify the source registers (which are also unsigned integers), and finally
bit 5 is a mode bitM which is set to 0. ¥ distinguishes ADD DR, SR1, SR2 from the
instruction ADD DR, SR1, imm5, where immb5 is a signed 5-bit constant.) Note that phase

1 is based only on the microprocessor’s ISA.

The second phase performs symbolic simulation of IM and its mutants, where a mutant
is IM with a single injected MCE. For every instructignwve first simulate the control unit
cycle by cycle, and evaluate the resulting control signals originating from the control unit.
Each such signal has the value undefined, constant, or symbolic; it is undefined if it is
never assigned a value in the instruction cycle under consideration. We then simulate the
datapath unit to compute the processor state at the end of the instruction cycle, and conse-
guently determine if IM violates any specified design constraint. After simulating all
cycles ofi, we compute the final processor std&l. For example, after simulating the
ADD instruction described above, we end up with RF[DR] = RF[SR1] + RF[SR2], where

RF denotes the register file.

Next the possible MCEs are injected one at a time and the resulting mutants are simu-
lated for all cycles of to obtain the final processor stafkSM By checking the constraints
and comparingSI to MSM, we can determine whether the current MCE is redundant,
invalid, or testable. Redundant and invalid MCEs are dropped at this stage, while testable

MCEs are inserted in the error list for later test generation.

The third phase in the verification algorithm is error collapsing to reduce the number of
MCEs. Dominance among MCEs in the same instruction can be established for this pur-
pose. An errog, is dominatedoy an errore, if any test fore, is also a test foe,, in which
caseg, can be dropped from the error list. Normally, some MCEs in cyolean instruc-

tion dominate others in cycjei < |, of the same instruction.
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The fourth phase of the algorithm is test generation. Applying the instruicisogener-
ally necessary to activate an MCE affectingVe then may need instructions that justify
the processor state needed to activate the MCE, and other instructions to propagate error

values to the primary outputs of the processor.

The final phase of the algorithm applies the generated instruction sequence tboth

andISA If a difference is detected in the responses, the implementation is erroneous.

Example: To illustrate our validation methodology, we apply it here to the LC-2 instruc-
tion ADD DR, SR1, SR2. We define the state of the LC-2 microprocessor as the contents
of all its storage elements, including the program counter (PC), instruction register (IR),
memory-address register (MAR), flags register (FLAGS), register file (RF), and temporary
registers (REG1 and REG2). The LC-2's initial state is thusy(PR,, MAR,, FLAGS,,

RF,, REGY, REG2). Table 3.5 shows the control signal values in the implementation for
the ADD instruction and the corresponding datapath actions. For every possibleWWICE
we injectminto the implementation to form a mutant that is manually simulated to deter-
mine the type om. The ADD instruction has a total of 58 MCEs of which 18 are testable.
Examples of these MCEs includé) MCE32 (ADD, execute, load_pc_bar,0,1) which cor-

Table 3.5 Simulation of the instruction ADD DR, SR1, SR2: control signal values
and corresponding datapath actions.

signal values

load_flags_bar := 1'bl
load_regl bar:=1'bl
load_reg2 bar:=1'bl
reg2_to_bus_bar:= 11
sel_ab_mux := 2'b00

load_flags_bar := 1'bl
load_regl_bar :=1'b0
load_reg2_ bar :=1'b0
teg2_to_bus_bar :=1'b
R1:=SR1

Simulation Instruction cycles

results 1: Fetch 2: Decode 3: Execute
read_mem_bar := 1’'b0jread_mem_bar := 1'b1|read_mem_bar := 1'b1
write_mem_bar := 1’'bliwrite_mem_bar := 1’'b1|write_mem_bar := 1'bl
load_pc_bar:=1'bl |load_pc_bar:=1bl |load_pc_bar := 1'b0
RE1 :=1'h0 RE1:=1bl RE1 :=1'b0 S3:=1bh1
RE2 :=1'b0 RE2 :=1'bl RE2 :=1'b0 S2:=1h0
WE :=1'b0 WE :=1'b0 WE :=1bl S1:=1h0

Control load_ir_bar := 1'b0 load_ir_bar := 1'b1 load_ir_bar := 1'b1 S0 :=1Db1

load_flags_bar:=1'b0 M:=1bl
load_regl_bar:=1bl R1:=SR1
load_reg2 bar:=1bl R2:=SR2
teg2_to_bus_bar := I'bW := DR
zero_or_sign := 1'bl

R1:=SR1 R2 := SR2 sel_alu_mux := 1'b0
R2 := SR2 W :=DR sel_rf_mux := 2’'b00
W = DR sel_pc_mux := 2'b00
MEM = MEMg MEM = MEMg MEM := MEM|,
IR := MEM[PCy] PC = PG PC:=PG+1
: PC:=P IR = IR IR := IR
Corégfgogtdﬁng Frcs 2 FLAGS, |FLAGS:=FLAG FLAGS = Detect(REG1 + REG2)
P REG1 := REG REG1 := RF[SR1 REG1 := REGp
actions REG2 := REG% REG?2 := RF[SR2] REG2 := REGR
RF := RR RF := RR, RF[DR] := REG1 + REG2
MAR := MAR MAR := MAR, MAR := MARg
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responds to the PC being stuck at the address of the ADD instruction in main memory and
hence executing the ADD instruction indefinitely, and (ii) MCE48 (ADD, execute, S1, O,

1) which corresponds to changing the ALU operation from plus to logical OR. To reduce
the number of testable MCEs, dominance relations among MCEs are used. Of the 18 test-
able MCEs, only MCE32 can be removed by dominance— any instruction sequence that
detects MCE48 will also detect MCE32.

In generating a test sequence for the MCEs of an instructiae first target MCEs in
the last cycle of with the hope that other MCEs in earlier cyclesi @afre detected by the
generated sequence. The specifications of LC-2 give the starting PC address as 3000H. So,
we start our PC value with a number larger than 3000H to give some space for justification
of instructions, say 3080H. We generated manually the 10-instruction test sequence shown
in Figure 3.12 to detect all 15 MCEs on control signals having constant values in the ADD

instruction.

To get some idea of the total number of MCEs in the LC-2, we analyzed its instruction
set and found that 430 MCEs (18.9%) are testable, 763 MCEs (33.5%) are invalid, and
1085 MCEs (47.6%) are redundant.

3.6 Discussion

The preceding experiments indicate that very good coverage of actual design errors in

307A: 0010 000 100000000 LD RO, 105H
307B: 0010 001 100000001 LD R1, 106H
307C: 0101 001 001 0 00 000 AND R2, R1, RO
307D: 1010 010 100000011 LDI R2, 103H
307E: 0010 000 100000000 LD RO, 100H
307F: 0010 001 100000001 LD R1, 101H
3080: 0001 001 001 0 00 OO0 ADD R1, R1, RO
3081: 0011 001 100000010 ST R1, 102H
3082: 0001 011 0100 00 010 ADD R3, R2, R2
3083: 1000 010 100000100 BRZ 104H
3100: 0000 0000 0000 0110 Data = 6

3101: 0000 0000 0000 0101 Data =5

3102:  XXXX XXXX XXXX XXXX Storage

3103: 0011 0001 0000 0100 Data = 3104H
3104: 0000 000000000000 NOP

3105: 0000 0000 0000 0001 Data=1

3106: 0000 0000 0000 0010 Data = 2

Figure 3.12 A test sequence for most MCEs in the ADD DR, SR1, SR2 instruction.
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high-level designs can be obtained by complete test sets for a limited number of modeled
error types, such as those defined by our basic and conditional error models. Thus our
methodology can be used to construct focused test sets aimed at detecting a broad range of
actual design bugs. More importantly, perhaps, it also supports an incremental design ver-
ification that can be implemented as follows: First, generate tests for SSL errors. Then
generate tests for other basic error types such as BSEs. Finally, generate tests for condi-
tional errors. As the number of SSL errors in a circuit is linear in the number of signals,
complete test sets for SSL errors tend to be relatively small. In our experiments such test
sets already detect at least half of the actual errors. To improve coverage of actual design
errors and hence increase the confidence in the design, an error model with a quadratic

number of error instances, such as BSE and CSSL1, can be used to guide test generation.

The conditional error models proved to be especially useful for detecting actual errors
that involve missing logic. Most ‘missing module’ and ‘missing input’ errors in Table 3.3
cannot be covered when only the basic error types are targeted. However, all but one of
them is covered when CSSL1 and CBOE errors are targeted as well. The same observation

applies to the ‘missing assignment(s)’ errors in Table 3.2.

Moreover, our experimental results suggest that high coverage of data as well as control
errors can be obtained by a test set for MCEs. An interesting observation is that most
MCEs are either invalid or redundant—only 18.9% of the MCEs in the LC-2 are testable.
This can significantly reduce the number of MCEs that need to be targeted by test genera-
tion. Moreover, the MCE model proved to be especially useful for detecting errors that
involve missing logic—all ‘missing assignments(s)’ errors in the LC-2 control unit are

covered by tests for MCEs.

The MCE error model and validation approach are, at least in principle, expandable to
microprocessors with instruction pipelines, multiple instruction issue, etc. The definition
of the MCE then needs to be generalizedlt{o,§,vc,ve), wherel represents a sequence of
one or more instructions. However, the complexity of the MCE model increases rapidly, so

the applicability of this approach remains to be seen.

The designs used in the experiments are small, but appear representative of real indus-
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trial designs. An important benefit of small-scale designs is that they allow us to analyze
each actual design error in detail. The coverage results obtained strongly demonstrate the
effectiveness of our model-based verification methodology. Furthermore the analysis and
conclusions are independent of the manner of test generation. Nevertheless, further valida-
tion of the methodology using industrial-size designs is desirable, and will become more

practical when CAD support for design error test generation becomes available.

Error models of the kind introduced here can provide metrics to assess the quality of a
given verification test set. For example, full coverage of basic (unconditional) errors pro-
vides one level of confidence in the design, coverage of conditional errors of medér

provides another, higher confidence level. Such metrics can also be used to compare test

sets and to spur further directed test generation.

We envision the proposed methodology eventually being deployed as suggested in Fig-

ure 3.13. Given an unverified design and its specification, tests targeted at modeled design
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Figure 3.13 Deployment of proposed design verification methodology.
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errors are automatically generated and applied to the specification and the implementation.
When a discrepancy is encountered, the designer is informed and perhaps given guidance

on diagnosing and fixing the error.



CHAPTER 4
BUILT-IN VALIDATION

Chapters 2 and 3 present gate-level and high-level validation methods aimed at detect-
ing design errors by generating tests for them. These methods’ goals were to generate a
small number of tests that have high coverage of design errors and to apply the generated
tests to software models of the specification and implementation. In this chapter, we are
interested in detecting residual design errors and fabrication faults that may have escaped
the detection during the design and manufacturing phases, and operational faults that
appear during normal operation. However, to apply the tests on-line, i.e during normal

operation, we need to efficiently generate the tests using built-in hardware or software.

Section 4.1 discusses the need for built-in validation and its achievement via built-in
self-test (BIST). Section 4.2 reviews previous work on designing hardware test generators
for BIST and Section 4.3 describes a new approach to designing scalable test sets and test
generators. In Section 4.4 we apply this approach to carry-lookahead adders and several

other examples.

4.1 Built-In Self-Test (BIST)

To reduce the cost of testing, design for testability (DFT) techniques are often used,
where testability criteria are considered early in the design phase. BIST is a design-for-
testability technique that places the testing functions physically with the circuit under test
(CUT). It has several advantages over the alternative, external tesjitite @bility to test
in-system and at-speedi)(reduced test application timaii | less dependence on expen-
sive test equipment, and/j the ability to automatically test devices on-line or in the field.

On-line testing is especially important for high-integrity applications such as automotive

82
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systems, in which we are interested.

When BIST is employed, a digital system is usually partitioned into a number of CUTSs,
each of which is logically configured as shown in Figure 4.1. In normal mode, a CUT
receives its inputsX from other modules and performs the function for which it was
designed. In test mode, a test pattern generator (TG) circuit applies a sequence of test pat-
ternsSto the CUT, and the test responses are evaluated by a response monitor (RM). This
chapter concentrates on the design of TG, although we also consider some relevant aspects
of RM. In the most common type of BIST, test responses are compacted in RM to form
response signatures. The signatures are compared with reference signatures generated or
stored on-chip, and the error signal indicates any discrepancies detected. We assume this

type of response processing in the following discussion.

Although BIST is sometimes considered as a technique to facilitate manufacture test-
ing, it is also useful for on-line testing. In on-line BIST, testing occurs during normal func-
tional operating conditions. Non-concurrent BIST is carried out while the system is in an
idle state. For example, the CUT can be configured for event-triggered testing, in which
case, the BIST control can be tied to the system reset signal, so that testing occurs during
system start-up or shutdown. Alternatively, concurrent BIST is carried out in parallel with
normal system operation. For example, BIST can be designed as a periodic testing tech-
nique with low fault latency. This requires incorporating a testing process into the CUT
that guarantees the detection of all target faults within a fixed time. A full test sequence

need not be applied to the CUT all at once; instead, it can be partitioned and applied in

X =\ . .
Mux > ® >
Circuit under test
S |—>
1 CuT »> Response¢ Error
Test _ monitor >
generato RM
TG
A
Control

Figure 4.1 Generic BIST scheme.
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periodic bursts.

Four primary parameters should be considered in developing a BIST methodology for
digital systems; these correspond with the design parameters for on-line testing discussed

earlier in Section 1.4.

» Fault coverageThis is the fraction of faults/errors of interest that can be exposed
by the test patterns produced by the TG and detected by the RM. Most RMs
produce the same signature for some faulty response sequences as for the correct
response, a property called aliasing. This reduces fault coverage even if the tests
produced by the TG provide full fault coverage. Safety-critical applications
require very high fault coverage, typically 100% of the modeled faults.

» Test set sizeThis is the number of test patterns produced by the TG. This
parameter is linked to fault coverage: generally, large test sets imply high fault
coverage. However, for on-line testing either at system start-up or periodically
during normal operation, test set size must be kept small to minimize impact on
system resources and reduce fault latency.

* Hardware overheadThis is the extra hardware needed for BIST. In most
applications, low hardware overhead is desirable.

» Performance penaltyThis is the impact on performance of the normal circuit
function, such as critical path delays, due to the inclusion of BIST hardware. In
on-line BIST, the performance penalty is directly related to the extra time needed

for testing, i.e. time redundancy.

We have been investigating the design of TGs in the four-dimensional design space
defined by the above parameters with the goals of 100% fault coverage, very small test
sets, and low hardware overhead. The specific CUTs we are targeting are high-speed data-
path circuits to which most existing BIST methods are not applicable. Our CUTN-are
input, scalable, combinational circuits with large valuesNof64 or more). They also
employ carry lookahead, a common structure in high-performance datapaths. It is well-
known that such circuits have small deterministic test sets that can be computed fairly eas-
ily. For example, it is shown in [51] that the standaxtit carry-lookahead adder (CLA)

design, which habl = 2n + 1 inputs, has easily-derived and provably minimal test sets for
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all stuck-line faults; these test sets contilinr 1 test patterns. Some low-cost, scalable TG
designs for datapath circuits based on C-testability (a constant number of test patterns

independent o) are known [50] [114], but they do not apply when CLA is used.

In the rest of this chapter, we describe a novel TG design methodology that addresses
all the above issues, and illustrate it with several examples. The TG’s structure is based on
a twisted ring counter, and is tailored to generate a regular, deterministic test set of near-
minimum size. Its hardware overhead is low enough to suggest that the TG can be incor-
porated into a standard cell or core design, as has been done for RAMs [90], adders [92]
and multipliers [50]. For a modest increase in hardware overhead and test set size, our
method can also minimize the performance penalty. The proposed approach covers the
major types of fast arithmetic circuits, and appears to be generalizable to other CUT types

as well.

4.2 Test Generator Design

A generic TG structure applicable to most BIST styles is shown in Figure 4.2 [34]. The
sequence generator SG producesrdit-wide sequence of patterns that can be regarded
as compressed or encoded test patterns, and the decoder DC expands or decodes these pat-
terns intoN-bit-wide tests, wherdl is the number of inputs to the CUT. Generallys N

and the SG can be some type of counter that produc@@ allbit patterns.

The most common TG design is a counter-like circuit that generates pseudorandom
sequences, typically a maximal-length linear feedback shift register (LFSR) [19], a cellu-
lar automaton [23], or occasionally, a nonlinear feedback shift register [42]. These designs
basically consist of a sequence generator only, and haweN. The resulting TGs are

extremely compact, but they must often generate excessively long test sequence to achieve

Sequence m/ Decoder N
generator 7 - DC +> S
SG
Compressed Test
test patterns patterns

Figure 4.2 Basic structure of a test generation circuit.
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acceptable fault coverage. Some CUTs, including the datapath circuits of interest, contain
hard-to-detect faults that are detected by only a few test paffggng An N-bit LSFR can
generate a sequen&that eventually includes™>— 1 patterns (essentially all possibili-
ties), however the probability that the testsTiy,qwill appear early inSis low. Two gen-

eral approaches are known to makesasonably short. Test points can be inserted in the
CUT to improve controllability and observability; this, however, can result in a perfor-
mance loss. Alternatively, some determinism can be introducedSntor example, by
inserting “seed” tests for the hard faults. Such methods aim to preserve the cost advan-
tages of LFSRs while makin§ much shorter. However, these objectives are difficult to
satisfy simultaneously. It can also be argued that pseudorandom approaches represent
“overkill” for datapath CUTs, which, like RAMs [90], seem much better suited to directed

deterministic approaches.

Weighted random testing adds logic to a basic LFSR to bias the pseudorandom
sequence it generates so that patterns from the desired tdsagpéar near the start &f
[19]. In a related method proposed by Dufaza and Cambon [47], an LFSR is designed so
that T appears as a square block at the beginning & test set must usually be parti-
tioned into many square blocks, and the feedback function of the LFSR must be modified
after the generation of each block, making this method complex and costly. The approach
of Hellebrand et al. [55] [56] modifies the seeds used by the LFSR, as well as its feedback
function. In other work, Touba and McCluskey [110] describe mapping circuits that trans-

form pseudorandom patterns to make them cover hard faults.

Another large group of TG design methods, loosely called deterministic or nonrandom,
attempt to embed a complete tdsdf sizeP in a generated sequengeA straightforward
way to do this is to stor@ in a ROM and address each stored test pattern using a counter.
SG is then a logP| -bit address counter and the ROM serves as DC. Unfortunately,
ROMs tend to be too expensive for storing entire test sequences. AlternatiyébgR | -
state finite state machine (FSM) that directly gener@itesn be synthesized. However, the
relatively large values dP andN, and the irregular structure @f are usually more than

current FSM synthesis programs can handle.

Several methods have been proposed that, like a ROM-based TG, use a simple counter
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for SG and design a low-cost combinational circuit for DC to convert the counter’s output
patterns into the members ©f[9] [43]. Chen and Gupta [37] describe a test-width com-
pression technique that leads to a DC that is primarily a wiring network. Chakrabarty et al.
[34] explore the limits of test-pattern encoding, and develop a method for embet@iding

into test sequences of reasonable length.

Some TG design methods strive for balance between the straightforward generation of
T using a ROM or FSM, and the hardware efficiency of an LFSR or counter. Perhaps the
most straightforward way to do this was suggested by Agarwal and Cerny [6]. Their
scheme directly combines the ROM and the pseudorandom methods. The ROM provides a

small number of test patterns for hard-to-detect faults and the LFSR provides theTest of

None of the BIST methods discussed above explicitly addresses the scalability of the
TG as the CUT is scaled to larger data word sizes. Scalable TGs based on C-testability
have been described for iterative (bit-sliced) array circuits, such as ripple-carry adders
[92] and array multipliers [50]. However, no technique has been proposed to design deter-
ministic TGs that can be systematically rescaled as the size of a non-bit-sliced suchit

as a CLA, is changed.

This next section introduces a class of TGs where SG is a compact )-bit twisted
ring counter and DC is CUT-specific. The output of SG can be efficiently decoded to pro-
duce a carefully crafted test sequerg#nat contains a complete test set for the CUT. As
we will see, both SG and DC have a simple, scalable structure of the bit-slicedStigpe.
constructed heuristically to match a DC design of the desired type, so we can view this

process as a kind of “co-design” of tests and their test generation hardware.

4.3 Scalable Test Generators

We first examine the scalability of the target datapath circuits and their test sets. A cir-
cuit or moduleM(n) with the structure shown in Figure 4.3 is loosely definedadableif
its output function Z) is independent of the numbarof its input data buses. Each such
bus isw bits wide; there may also bevebit control bus, whergv andv are constants inde-

pendent ofn. Bit-sliced arrays are special cases of scalable circuits in which wdih
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Figure 4.3 General scalable circuit.

input data bus corresponds to a slice or stage. Most datapath circuits compute a function
Z(A(n), B(n)), whereA(n) = A_1...AjAg andB(n) = B,,_;...B1By, and are scalable in the

preceding sense. They can be expressed in a recursive form such as
Z(A(n+1), B(n+1)) =ZZ(A(n), B(n)), A, Byl

For example, iZ is addition, we can write
ZaddA(n+1), B(n+1)) =Z,4{A(N), B(n)) + 2'x A, + 2" x B,

where the 2 factor accounts for the shifted position of the new opeiiapé (A,,B,,). Sim-
ilarly, a test sequenc®n) for a scalable circui(n) can be represented in recursive form.

S(n) is considered to be scalable if

SAN+1), B(n+1)) =[S(A(n), B(n)), An, By

As we will see, the test scaling functiogandScan take a few regular, shift-like forms for

the CUTs of interest.

To introduce our method, we use the very simple example of a ripple-carry incrementer
shown in Figure 4.4. Here the carry-in li@ is set to 1 in normal operation, but is treated

as a variable during testing. The increment funcigacan be expressed as

Zind(A(N+1)) =Zin(A) + 2" x Ay + Co (4.1)
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Whenn = 1, Equation (4.1) reduces to the half-adder equation

Zincd(A(1)) =Ag + Co (4.2)

and (4.2) is realized by a single half-adder. AnH1)-bit incrementeM;,(n) is obtained
by appending a half-adder stageMg,.(n —1). Figure 4.4 shows hoW;,,.(3) is scaled up

to implementV;,.(4).

A corresponding scaling of a test seque&gg(n) for n = 3 to 4 is also shown in the
figure. S,.(n) consists of B + 2 test patterns of the form,_1A.,...AqCo, €ach corre-
sponding to a row in the binary matrices of Figure 4.4. These tests exhaustively test all
half-adder slices d¥l,«(n) by applying the four patterns {00,01,10,11} to each half-adder
and propagating any errors to the outputs. For example, the first test pattern
AzAA1ACo = 00001 in§p(4) applies 00 to the top three half-adders, and 01 to the bot-
tom one. The next test 00011 applies 00 to the top two half-adders, 01 to the third half-
adder from top, and 11 to the bottom one, and so on. If a fault is detected in, say, the bot-
tom half-adder HA by some pattern, an error bit appears eitheZgor on HAy's carry-
out line; in the latter case, the error will propagate to ougyuiprovided the fault is con-
fined to HAy. ThusS§,,(n) detects 100% of all cell faults in the incrementer and, by exten-
sion, all SSL faults inM;,.(n), independent of the internal implementation of the half-
adder stages. The membersSj.(n) can easily be shown to constitute a minimal com-
plete test with respect to cell faults, SSL faults, IP faults, GSEs, EGEs, and EIEs. More-
over, they also provide high coverage of MGEs, MIEs, and WIEs. Note that, unlike a
ripple-carry adder, a ripple-carry incrementer sucMgs(n) is not C-testable, and can be
shown to require at leash2+ 2 tests for 100% fault coverage. This linear testing require-

ment is unusual in bit-sliced circuits, but is typical of CLA designs.

Each test in the sequencgs.(n) shown in Figure 4.4 has been carefully chosen to be a
shifted version of the test above it. Moreover, the first 1 tests have been chosen to be
bitwise complements of the second 1 tests. (We will see later that these special proper-
ties of §(n) can be satisfied in other, more general datapath circuits.) The sequence of the
2(n + 1) test patterns dbis exactly the state sequence of ant(1)-bit twisted ring (TR)

counter—this well-known circuit is also called a switch-tail, Johnson or Moebius counter
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[83]. This immediately suggests that a suitable test generatgr.(Pjfor M,.(n) is an @
+ 1)-bit TR counter, as shown in Figure 4.4. Clearly;J@) is also a scalable circuit.
Thus we have a TG design conforming to the general model of Figure 4.2, in which SG is

a TR counter and DC is vacuous.

Although at first glance, a TG like Tiz(4) seems to embody a large amount of BIST
overhead given the small size bf;,.(4), we can argue that, in fact, T{z(4) is of near-
minimal (if not minimal) cost. Assuming 10 test patterns are required, any TG in the style
of Figure 4.2 requires an SG of 10 states, implyjrigg,10| = 4 flip-flops, plus an inde-
terminate amount of logic to implement DOur design uses 5 flip-flops—one more than
the minimum—plus a single inverter. The fact that DC is vacuous in this particular case is
consistent with a basic property of the TR counter: it is almost fully decoded. In contrast, a
comparable (& + 2)-state ring counter hasi2 2 flip-flops and is fully decoded, whereas
an ordinary (binary) counter hdadog,(2n+2)| flip-flops but is fully encoded. Thus we

can hope to use TR counters in TGs that require little decoding logic.

As discussed in Chapters 1-3, tests for SSL faults detect several important types of
design errors and physical faults. Hence, detecting all SSL faults is a primary goal in our
general approach to designing TGs. We can now outline this approach for scalable datap-
ath circuits. It uses high-level information about the CUT to explore in a systematic, but
still heuristic, fashion a large number of its possible complete test sets to find a test set that
has a regulashift-complementSC)structure resembling that illustrated 8y.(n) in Fig-

ure 4.4. The main steps involved are as follows:

1. Obtain a high-level, scalable model of the CM{n).

2. Analyze this model using high-level functional analysis to derive a complete SSL-
fault test sefl(n) for M(n) for some small value af. Use don’t cares in the test
patterns wherever feasible.

3. ConvertT(n) to an SC-style test sequerte@)as far as possible.

4. Synthesize a test generald®(n) for Sn) in the style of Figure 4.5.

The test generatdrG(n) adds to the TR counter of Figure 4.4 a decoding aD@&yof iden-

tical combinational cell®C,,DC,,...,DC,,_; that modify the counter’s output as needed by
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Figure 4.5 General structure of TG( n) and its state behavior.

a particular CUT. The array structure DC ensures the scalability of TG. There is also a
small mode-control FSM to allo®C to be modified for complex cases like multifunction
circuits. The only inputs to the mode-control FSM are the sigHadsdL, which are active

in the second half of the states of the TR counter and the last state, respectively. The state
behavior of the TR counter and the mode-control FSM are shown in Figure 4.5; they have
2n + 2 andk states, respectively, whekas a fixed number independent of The total
number of states for T@j is thusk(2n + 2) , which approximates the number of tests in

the test set(n).

Our use of functional, high-level circuit models to derive test sets (Step 1 and 2 above)

is based on the work of Hansen and Hayes [52], who show that test generation for datapath
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circuits can be done efficiently at the functional level while, at the same time, providing
100% coverage of low-level SSL faults for typical implementations. The model required
for Step 1 is usually available for these types of circuits, since their scalable nature is
exploited in their specification and carries through to high-level modeling during synthe-
sis as illustrated by our incrementer example (Figure 4.4). Step 3 is perhaps the most diffi-
cult to formalize. It requires modifying and ordering the tests from Step 2 to obtain a
sequence of shifted test patterns that resemble the output of the TR counter, but retain the

full fault coverage of the original tests.

4.4 Design Examples

In this section, we apply the preceding approach to derive scalable test sets and test

generators for CLAs and some other common datapath circuits.

Carry-Lookahead Adder. A CLA is a key component of many high-speed datapath cir-
cuits, including arithmetic-logic units and multipliers. A high-level model of a generic
bit CLA Mc¢_a(n), with the 4-bit 74283 [107] serving as a model, was derived in [51] and
is shown in Figure 4.6. It is composed of & moduleMpgx(n) that realizes the functions

P, = A+B;, G, = AB;, and X; = A, B; , {i) a carry-lookahead generator (CLG)
moduleM¢, ¢(n) that computes all carry signals, aniil)(an XOR word gate that computes
the sum outputs. The CLG modul&. s(n) contains the adder’s hard-to-detect faults, and
so is the focus of the test-generation process. Its testing requirements can be satisfied by
generating tests for the SSL faults on the input linedlgfs(n) that propagate the fault
effects along the path tG,, which is the longest and “hardest” fault-detection path. The
resulting test sef, g(n) contains2n + 2 tests and detects all faults in the CLG logic. For

example, whem = 2, T, 5(2) ={10101, 10110, 11000, 10100, 10001, 00111}, where the

Mpax(N) . McLa(n)
A n_,L» A P l—#/>|P

B »|B G |- |G (g Luis” ! CarryC,
X Co
1 n
Co—# |_>n D—n/—> SumZ

/.

Figure 4.6 High-level model of the  n-bit CLA.



94

test patterns are in the formG;P,G,C,. Hansen and Hayes [52] have proven that such a
test set detects all SSL faults in typical implementation®lgfs(n). Their method induces
high-level functional faults from the SSL faults, and generdigg(n) for a small set of
functional faults that cover all SSL faults. Because the carry functions are unate, it follows
thatT g(n) is a “universal” test set in the sense of [8], hence it covers all SSL faults in any

inverter-free AND/OR implementation & g(n).

Once the tests fa¥l (n) are known, they are traced back to the primary inputs of the
Mca(n) through the modul&pcx(n); the resulting test sets for= 2, are shown in Table
4.1a. The table gives a condensed representatidfip£(2)’s test requirements within
Mca(2), and specifies implicitly all possible sets of 6 tests (the minimum number) that
cover all SSL faults ifM¢ g(2). For example, the first row in Table 4.1a defines the tests
for the fault “C, fails to propagate 0 t€,”, which requiresC, = 1 andA,B; = 10 or 01 fori
= 0 and 1. Hence the potential tests for this fault are {10101, 10011, 01101, 01011}. The
second row specifies the test for the fauleg or B, fails to propagate 1 t&,", which
requiresA,B, = 00, butAB, = 10 or 01 as before to ensure error propagatio@.,toro test
for all SSL faults in moduleMpgy(n), each pair of bitsA;B; must be exhaustively tested.
The tests foM¢ ¢(n) guarantee the application of 00 and 11 on ed@) of Mpgy(n), as
we can see from Table 4.1a for the casenot 2 . Therefore, the remaining requirement
for testingMpgx(N) is to apply 01 and 10 to ea@qyB;, as shown in Table 4.1b. TieEXOR
gates that feed the sum outpiare automatically covered by the tests kg, (n) and

Mpgx(n), and also provide non-blocking error propagation paths for these modules.

Once we know the possible test sets kg, (n), our next goal is to obtain a specific

Table 4.1 Condensed representation of complete test sets in (a) Mcc(2) and (b)
Mpgx(2). (c) Specific test sequence for the CLA that follow the SC style.

Al Bl AO BO CO Al Bl AO BO CO Test # A; Bl AO BO CO
{10,01} | {10,01}| 1 0L | xX | X 1 10 | 10 | 1
{10,01} 00 1 10 XX X 2 10 00 1

00 11 1 + XX 01 X > 3 00 11 1

{10,01} [{10,01}| O xx | 10 | x 4 01 01 O

{10,01} 11 0 5 01 11 | O
11 00 0 6 11 00 | O

(a) (b) (c)
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Table 4.2 Complete and minimal SC-style test sequence for the 74283 4-bit
CLA and the corresponding responses.

Test # Input pattern Response
1 1 0 1 0 1 0 1 0111 00O0O
2 1 0 1 0 1 0 0O 0 |(1]0 1111
3 1 0 1 0f{0 0|21 1|11]0 1111
4 1 00 0|1 1 1 1110 1111
5 0 0|1 1 11 1 1110 1111
6 0 1 0 1 0 1 0O 110710 1111
7 0 1 0 1 0 1 1 1 |0]1 0 00O
8 0 1 0 1 1 1 0O 0)J0O0]12 00O00O
9 0 1 1 1 0 O 0O 0)JO0]12 00O00O
10 11 0 0 0 O 0O 0jJO]12 00O00O

test sequence that follows the SC style. Such a test sequence of size 6 is extracted in Table
4.1c. This sequence is minimal and complete for SSL faults in the CLA [51], as can be
verified by simulation. Tests 1, 2, and 3 are selected to make the 00 pattern appiiBd to

shift from right to left, as the shading in the table shows. Tests 4, 5, and 6 are selected to be
the complements of tests 1, 2, and 3 respectively. Hence these tests shift the pattern 11 on
AB; from right to left. The specific test sequengg A(2) in Table 4.1c can be easily
extended to a complete test sequefge (n) of size2n+ 2 for anyn>2 . For example,

Table 4.2 shows how- 4(2) is scaled up td; A(4) to obtain a complete SC-style test
sequence for the 74283 CLA.

The functional tests ik A(4) give complete coverage of SSL faults and high coverage
of several design errors. Error simulation via ESIM shows &at(4) detects more than
90% of the detectable gate-level design errors in the 74283 CLA.

A test generatol G 4(n) for M 4(n) can now be synthesized fro&, ,(n) following
the general structure in Figure 4.5. As in the incrementer example, the sequence generator
is an f + 1)-bit TR counter. Note, however, that the number of input lines has almost dou-
bled fromN =n+ 1toN=2n+ 1. The size o A(n) is 2n + 2, which is the number of
states of the TR counter, so no mode-control FSM is needed. Table 4.3 lists the CLA test
sequence side by side with the TR counter’s output sequence for the 4-bit case; the truth

table of a decoder cedC, can be extracted directly, as shown in Figure 4.7. The combina-
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Table 4.3 Mapping of the CLA test sequence to the TR counter’s output

sequence.
Test # TR counter outputs IFG outputs (CLA test sequence)

H | Q4Q3 | Q3Qp | Q0 | Q1Q0 | A3Bs| A2 By | A1 B1| AgBg | Co
1 0 00 00 00 00 10 10 10 10 1
2 0 00 00 00 01 10 10 10 00 1
3 0 00 00 01 11 10 10 00 11 1
4 0 00 01 11 11 10 00 11 11 1
5 0 01 11 11 11 00 11 11 11 1
6 1 11 11 11 11 01 01 01 01 0
7 1 11 11 11 10 01 01 01 11 0
8 1 11 11 10 00 01 01 11 00 0
9 1 11 10 00 00 01 11 00 00 0
10 1 10 00 00 00 11 00 00 00 0

tions HQ,;,Q;) ={010, 101} never appear at the inputs of the decoder cells, hence the out-
puts of DC; are considered don’t care for these combinations. Furthermore, the patterns
(HQ.,1Q) = {011, 100} never appear at the inputs of the high-order decodeDsg]l ;,
however, we choose not to take advantage of this, since our goal is to keep the decoder
logic DC simple and regular. The carry-in sigrn@| can be seen from Table 4.3 to be

C, = H. The resulting design for T&a(n) shown in Figure 4.7 requires+ 1 flip-flops
andn small logic cells that form DC. The hardware overhead of TG, as measured by tran-
sistor count in a standard CMOS implementation, amounts to 35.8% for a 32-bit CLA.

This overhead decreases as the size of the CLA increases, a characteristic of all our TGs.

Our TGs, like the underlying TR counters, produce two sets of complementary test pat-
terns. Such tests naturally tend to detect many faults because they toggle all primary inputs
and outputs, as well as many internal signals.nAnit adder also has the interesting prop-
erty thatA plus B plus C,, = C,,Simplies A plus B plus C,, = C,,S, whereplus denotes
addition modulo 2 Hence the adder’s outputs are complemented whenever a test is com-
plemented, implying that there are only two distinct responses, 100...0 and 011...1, to all
the tests in TG 5(n), as can be seen from Table 4.2. Consequently, a simple, low-cost and
scalable RM can be designed for the CLA adder as depicted in Figure 4.7. This example

shows that some of the benefits of scalable, regular tests carry over to RM design.
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Figure 4.7 Scalable test generator and response monitor for an n-bit CLA.

Arithmetic Logic Unit. We first consider an-bit ALU M, ,(n) that employs the standard
design represented by the 4-bit 74181 [107]. This ALU is basically a CLA with additional
circuits that implement all 16 possible logic functions of the fdi@,B). A high-level
model for the 74181 is shown in Figure 4.8 [51], and consists of a CLG madljle func-

tion select moduléV;, and several word gates. Following the approach of the previous
section, the tests needed for the CLG modJlgare traced back to the ALU’s primary
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Figure 4.8 High-level model for the 74181 4-bit ALU.

inputs. During this process, the signal values applied to the function-select cont&dimis
chosen to satisfy the testing needsNbras well. An obvious choice is to malsselect the

add §S,5,S = 1001) and subtract(S,S;S, = 0110) modes of the ALU. However, we
found by trial and error that the assignme8{S,5,S, = 1010 and 0101 lead to a TG design
with less overhead. The testing needs of the word gates in the high-level model of the ALU
must be also considered. The final test sequéigcg(n) has an SC structure that closely
resembles that of the CLA. Table 4.4 sho%g,(4); note how the tests exhibit the same
shifting property as before for the patterAsB;, = 11 ahd, = 00 . Moreover, tests
1:20 are the complements of tests 21:40. The test sequi&ne@) is not minimal, how-

ever, since 12 tests are sufficient to detect all SSL faults in the 74181 [51]. The tests in
Sy u(4) are functional, so they have high coverage of several design errors. Error simula-
tion via ESIM shows tha®, ,(4) detects more than 95% of the detectable gate-level design
errors in the 74181 ALUS, (4) can be easily extended 8, ,(n) with a near-minimal

size of8n+8 .

A test generator T, (n) for My, (n) is shown in Figure 4.9, which again follows the
general test generator model of Figure 4.5. Since the test sequence &ize & and the
general test generator hk&n + 2) states, the mode-select FSM,of,(IBhask = 4
states. The state table of the mode-select FSM and the truth table of the decoder cell are
shown in Figure 4.9. The decoder cBIC, turns to be extremely simple in this case—a
single inverter. The overall test generator ,f(n) requiresn + 3 flip-flops,n inverters,

and a small amount of combinational logic whose size is independenfldfe hardware
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Table 4.4 Complete and near-minimal SC-style test

sequence for the 74181 ALU.

T 010

1010
1010
1010

1010

1010

1010
1010
1010

1010

1010

1010
1010
1010

1010

1010

1010
1010
1010

1010
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

M 535,55,

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1

Co

Ag By

Ay By

Ay B

Test # A3 83

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32

33

34

35

36
37
38

39

40

overhead decreases as the number of inputé the ALU increases, and it amounts to

11.4% for a 32-bit ALU.
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Figure 4.9 Test generator for an  n-bit 74181-style ALU.

Multiply-Add Unit . Our next example introduces another important arithmetic operation,
multiplication. The high-level model and some implementation details of the tanget -
bit multiply-add unit (MAU) My, (n) are shown in Figure 4.10. The MAU composed of a
cascaded sequence of carry-save adders followed by a CLA in the last stage. This design is

faster than a normal multiply-add unit where the last stage is a ripple-carry adder [16] [69].

Following our general methodology, we first analyze a small version of MAU, in this
instance, the 4-bit case. Again the tests for the CLA (Table 4.2) are traced back to the pri-
mary inputs through the cell array. The primary input signals are selected to preserve the
shifting structure of the CLA tests. The resulting MAU tests do not test the cell array com-
pletely—two SSL faults per cell remain undetected. These undetected faults require two
extra tests, leading to a complete test set of size 12. Once the possible test sets are deter-

mined, a sequence that has the desired SC structure is constructed. Table 4.5 shows a pos-
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Figure 4.10 High-level model for the multiply-add unit.

sible test sequenc8,,,(4) of size 20 forMy,,(4). This test sequence can be easily

extended tdMy,ay(n), resulting in a test of sizén + 4

A test generator Tz (n) for Myay(n) in the target style is shown in Figure 4.11.
Since the test sequence sizelis+ 4 and the general test generat)higSk(2n + 2)
states, the mode-select FSM Has 2 states (one flip-flop). The state table of the mode-
select FSM and the truth table fBiC; are shown in Figure 4.11. The hardware overhead
of TGyau(n) is estimated to be only 0.8% foB2 x 32  -bit multiply-add unit.

Booth multiplier . Our technique can also be applied with some minor modifications to a
fast Booth multiplier that is composed of a cascaded sequence of carry-save adders fol-
lowed by a final stage consisting of a-bit CLA [16]. This design is faster than the usual

Booth multiplier where the last stage is a ripple-carry adder; test generation has been stud-
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Table 4.5 Complete and near-minimal SC-style test sequence for
the multiply-add unit.

Test # A3B3C3S7S3 A252C23652 A181C13581 A080COS4SO Cm
i 11100 T11100 11100 11100 i
2 11100 11100 11100 11000 1
3 11100 11100 11000 11101 1
4 11100 11000 11101 11101 1
5 11000 11101 11101 11101 1
6 00011 00011 00011 00011 0
7 00011 00011 00011 00111 0
8 00011 00011 00111 00010 0
9 00011 00111 00010 00010 0

10 00111 00010 00010 00010 0
11 10100 10100 10100 10100 1
12 10100 10100 10100 10000 1
13 10100 10100 10000 10101 1
14 10100 10000 10101 10101 1
15 10000 10101 10101 10101 1
16 01011 01011 01011 01011 0
17 01011 01011 01011 01111 0
18 01011 01011 01111 01010 0
19 01011 01111 01010 01010 0
20 01111 01010 01010 01010 0

ied before only for the slower, ripple-carry design [50]. We have been able to derive a
complete scalable test sequence of gine+ 14 for the CLA-based Booth multiplier. The
corresponding test generator Tp€ontains a TR counter with+ 1  flip-flops and a 10-

state mode-control FSM with 5 flip-flops. The hardware overhead is estimated to be 5.3%

for a 32 x 32-bit multiplier.

4.5 Discussion

Built-in testing and validation are potentially important features of digital systems, not
only for critical applications, but also to satisfy the high-availability requirements of com-
mon consumer products as well. To achieve the twin goals of high fault/error coverage and
low error latency, hardware features for testing and monitoring must be included. One
such hardware feature is BIST, a technique occasionally used in manufacture testing and
widely promoted for on-line testing. We have described how BIST can be employed to

detect design errors and physical faults. Further research is needed to determine how best



103

On > 22”_”11 E | H|Qi+1Qi|AiBiCiSniSi
FF, DC, 4 >l Cht 0]0] 00 | 11100
- Bn-1 0[0] 01 | 11000
# 1 00| 11 | 11101
0|1]| 11 00011
0O|1] 10 00111
0O(1] 00 00010
n x rebit 1/0] 00 | 10100
- ) ) 1({0f 01 10000
- multiply-add unit 110l 11 10101
. Mmau (n) T[1] 11 | 01011
Q Ad 11| 10 01111
P T[1] 00 | 01010
FF, DC, : gl
» 1
Y A Truth table of DG
Ql :%
FFy DCy P Co H+ A E
- - 28 CuT ¢ - S
A Cin Qi+1
P —» > S
Qo 4 'T N
0 E Qi J 7.
H Present | Next | Present > jj)o'_» By
State state |output E ;: DO L A
Ro Ry 0
Q H+ *E
T Ry Ry 1
TGpau (M) State table of the DG circuit
mode-select FSM

Figure 4.11 Test generator for an n x n-bit multiply-add unit.

to systematically integrate hardware features for built-in testing and validation with soft-

ware to enhance safety and reliability in digital systems.

We have also presented a new approach to the design of scalable hardware test genera-
tors for BIST, and illustrated it for several practical datapath circuits. The resulting test
generators produce extremely small test sets that have complete coverage of SSL faults
and high coverage of design errors; they are of minimal or near-minimal size for all exam-
ples covered. Small test sets of this kind are essential for the on-line use of BIST, espe-
cially in applications requiring fast arithmetic techniques like carry-lookahead, for which

previously proposed BIST schemes are not well suited. The TGs proposed here also have
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Table 4.6 Summary of the scalable test generator examples.

SSL Regular Hardware overhead %

Circuit(s) fault testset — — ~
coverage size n=4\n=8|n=16|n=32

Carry-lookahead adder (CLA) 100% 2n+2 [455|40.1| 36.9 | 35.8

Avrithmetic-logic unit (ALU) 100% 8n+8 [232]16.1| 129 | 114

Multiply-add unit (MAU) 100% | 4n+4 | 78 | 35| 16 | 0.8

Booth multiplier 100% |4n+14|329(18.0| 9.9 5.3

A combination of ALU, Separate TGs 9.8 | 5.7 3.3 1.8
MAU, and registers : 100% 8n+8

' 9 Combined TG 6.2 | 36 | 21 | 1.1

low hardware overhead, and are easily expandable to test much larger versions of the same
target CUT.

Table 4.6 summarizes the results obtained for the scalable TGs we have designed so far.
The first part of the table contains the results for the circuits discussed in Section 4.4. The
average hardware overhead for the ALU, MAU, and Booth multiplier with 32 is
around 6%. The table also indicates how the overhead decreasescasases from 4 to
32. The overhead for the MAU shrinks by 90%, and the average decrease for all the cir-
cuits is 61%.

When applying BIST in a system, designers usually try to take advantage of existing
flip-flops and logic already present in or around the CUT. For a typical datapath in, say, a
digital signal processing circuit, all the data inputs to ALUs or multipliers come from a
small register file. These registers can be designed to be reconfigured into TR counters
like that in Figure 4.5, thus eliminating the need for special flip-flops in SG. Similar
schemes have been proposed in prior techniques such as BILBO [19]. Moreover, it may be
possible to share the resulting SGs among several CUTs. Multiplexing logic will then be
needed to select the DCs for individual CUTs during test mode but circumvent them dur-
ing normal operation. For a small additional increase in circuit complexity, time-multi-
plexing can be used to select the DCs in test mode, while avoiding the performance

penalty associated with multiplexers.

In some cases, it may be feasible to share the entire TG. To illustrate this possibility,
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consider am-bit ALU, an n x n-bit MAU, and a register file connected to a common bus.

A single, reconfigurable TG attached to the bus can test both arithmetic units. The results
of this approach are summarized in Table 4.6 for various values ahd suggest that
replacing separate TGs for the ALU and MAU by a single combined TG reduces overhead

by about a third.

Our TG designs shed some light on the following interesting, but difficult question:
How much overhead is necessary for built-in test generation? As we noted in the incre-
menter case, the size of the j&4) must be close to minimal for any TG that is required
to produce a complete test sequence of near-minimal length. The same argument applies to
TG a(4), since it has 5 flip-flops in SG and a small amount of combinational logic in
DC; any test generator G(4) producing the same number of tests (12) must contain at least
4 flip-flops in its SG. In general, the overhead of a TR-counter-based design) 3€a(es
up linearly and slowly witm. The number of flip-flops in some other test generatar) G(
may increase logarithmically with, but the combinational part of @) is likely to scale
up at a faster rate than that of Tigy( This suggest that even if the overhead of mdg
considered high, it may not be possible to do better using other BIST techniques under
similar overall assumptions. If the constraints on test sequence length are relaxed, simpler

TGs for datapath circuits may be possible, but such designs have yet to be demonstrated.



CHAPTER 5
CONCLUSIONS

This chapter reviews the major contributions of this thesis and discusses some direc-

tions for further research.

5.1 Thesis Contributions

Due to increases in design complexity and shorter design cycles, design errors are more
likely to escape detection and hence lead to high-cost field failure. Moreover, operational
faults, which occur during normal operation, can also lead to high-cost field failure espe-
cially in high-availability and safety-critical applications. To increase the reliability of dig-
ital systems and to reduce the cost of failure, we have developed a lifetime validation
methodology that targets the detection of design errors, fabrication faults, and operational
faults throughout the lifetime of a digital system. The major contributions of this thesis are

summarized below.

A simulation-based gate-level design validation method that uses conventional

ATPG techniques for SSL faults to generate the verification tests.

» Arigorous analysis of the gate-level design error models and a systematic method
to map them into SSL faults.

» A fault/error simulator ESIM that can handle several gate-level design error
models and physical fault types.

» A design validation method for high-level designs that is based on modeling

design errors and generating simulation vectors for them. The basic and condi-

tional design error models are derived from actual error data.

* The concept of mutation control errors and a validation algorithm based on the
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detection of these errors.
* A design method for built-in functional test generation aimed at high-perfor-

mance, scalable datapath circuits.

The proposed lifetime validation methodology for digital systems is based on the fol-
lowing steps: (1) modeling the faults in the system at each stage in its lifetime, (2) generat-
ing tests to detect the modeled faults, and (3) applying the generated tests to the circuit
under test and monitoring the responses to detect any deviations from the specifications.
This methodology has often been used in manufacture testing; this thesis shows how to

apply it to both design verification and on-line testing.

For design verification, we have shown how to model gate-level design errors and gen-
erate tests for them. Our results suggest that most gate-level errors are detected by tests
aimed at a small number of synthetic and relatively simple error models. We have also
shown how to model some basic types of high-level design errors and how to generate
tests for them. Our experimental results also indicate that very high coverage of actual
design errors can be obtained with test sets that are complete for a few types of error mod-
els. We have also developed a systematic validation algorithm for the detection of control

errors in microprocessor-like circuits and applied it to a small microprocessor, the LC-2.

We have shown that on-line BIST is an attractive option for detecting residual design
errors and physical faults. On-line BIST can achieve full error coverage, bounded error
latency, low hardware and time redundancy. We have introduced a method for the design
of efficient test sets and test-pattern generators for BIST, where the target applications are
high-performance, scalable datapath circuits. Our hardware test generators meet the fol-
lowing desirable goals: scalability, small test set size, full fault coverage, and very low

hardware overhead.

5.2 Future Research

In this final section, we discuss several possible extensions of the results presented in

the thesis.

Design Error Diagnosis and Correction In a typical design process, many iterations are
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performed before the final design is manufactured on an IC. Since a design error causes all
manufactured ICs to be faulty, design error diagnosis is more important than error detec-
tion. Each time a design error is detected, the design is inspected to determine the location
of the error and correct it. Normally, the correction process is carried out manually by
human designers. Once the IC is manufactured, it is also tested to determine if it behaves
incorrectly due to fabrication faults. If the production yield is high then detecting fabrica-
tion faults is more important than fault diagnosis. However, if the yield is low, then the IC
is diagnosed to determine the source of the fault and consequently improve the yield of

future manufacturing.

The problem of gate-level design error diagnosis is similar to SSL fault location. Test-
ing is the basic method used for fault diagnosis, where we need tests that distinguish non-
equivalent faults from one another [4]. A complete diagnosis test set distinguishes
between every pair of (distinguishable) faults in the circuit. The result of the fault diagno-
sis process is usually a fault dictionary that allow us to identify the fault from observing

the output of the faulty circuit in response to the complete diagnostic test set.

Several researchers have addressed the problem of automatic location of gate-level
design errors. However, the methods previously suggested are either computationally
expensive [79] or do not guarantee finding the location of every error [48][109]. More-
over, all of the proposed design error location methods are only suitable for gate-level

combinational circuits.

Chapters 2 and 3 identify several classes of gate- and high-level design errors such as
those shown in Table 3.1 and analyze their detection requirements. By combining this
analysis with the identification of the sensitized paths in the circuit, using methods such as
critical path tracing [5], it is possible to determine the location of the error and correct it.
Several questions need to be answered such as: How useful are verification tests in diag-
nosis? How do we generate efficient diagnostic tests especially for sequential circuits?

What are necessary and sufficient conditions for a test set to locate errors of a given type?

Automated Test Generation for Design Error Models In Chapter 3, we manually gen-

erated tests for several basic error models in high-level combinational benchmarks.
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Developing a high-level test generation algorithm, similar to D-Algorithm or PODEM, to
detect the basic and conditional error models is of great importance. Such an algorithm

allows us to automatically generate test sequences for high-level design errors.

We introduced the MCE model in Chapter 3 and validated it experimentally for a small
microprocessor; we also presented a general validation algorithm using this model. The
MCE error model and validation approach are, at least in principle, expandable to micro-
processors with instruction pipelines, multiple instruction issue, etc. Automating our vali-
dation algorithm and extending it to more complex microprocessor types is another

interesting direction for future research.

High-level symbolic simulation is a basic part of test generation and test evaluation. In
Chapter 3, we have manually simulated all the instruction set of the LC-2 microprocessor.
Efficient tools to automate and speed up this fault simulation process are needed. Such
tools are useful in ISA-based simulation and test generation for MCEs, as well as the basic

and conditional error models.

Built-In Validation : Chapter 4 presents a method to design scalable hardware test gener-
ators for detecting residual design errors and physical faults in scalable datapath circuits. It
also describes a scalable compactor circuit for the case of an adder. Additional research is
needed to develop an automated and complete scalable BIST methodology for regular cir-
cuits, especially since it is difficult to simultaneously control the hardware complexity of
TG and RM while satisfying the requirement of complete fault coverage. Another impor-
tant task for future research is to develop a complete built-in validation method for

microprocessors, especially for those used in safety-critical embedded systems.

In summary, the lifetime validation approach we have developed in this thesis has
proven to be very useful in detecting a wide range of physical faults and design errors as
early as possible in the lifetime of a digital system. We believe that lifetime validation via
testing and simulation will increase in importance in the future, especially for safety-criti-

cal applications.
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APPENDIX A
ERROR/FAULT SIMULATOR ESIM

This appendix describes the error/fault simulator ESIM that we developed and used in
Chapters 2 and 4 to determine the ability of test sets to detect gate-level design errors.
Moreover, several experiments are described to illustrate ESIM’s capabilities. Unlike pre-
vious simulation programs [65], ESIM is designed to efficiently fault simulate several dif-
ferent types of error/fault models. ESIM is based on parallel-pattern single fault
propagation with critical path tracing [5] for combinational circuits and standard parallel
fault simulation, with 32 faults at a time, for sequential circuits [4]. The main goal of
ESIM is to evaluate the coverage of specified design errors and logical faults by using var-

ious test sets that are determined by the following automatic test pattern generation tools:

» ATALANTA [75]: This is a combinational test pattern generator for SSL faults
that is characterized by short test generation time as well as small test set size. It
is based on the FAN algorithm for test generation.

e ATTEST [17]: This is a powerful sequential test sequence generator for SSL faults
that can be used for full-scan, partial-scan, or non-scan circuits. It can generate
vectors for synchronous and asynchronous circuits, and for circuits with embed-
ded RAM, bidirectional ports, and complex bus structures. It can operate in either
of the classic PODEM or D-Algorithm modes.

 RTESTS and ETESTS: These test pattern generators were developed by us to pro-

duce random and exhaustive tests, respectively.

The following error and fault models are handled by ESIM: gate substitution errors
(GSEs), gate count errors (GCESs), input count errors (ICEs), wrong input errors (WIES),

SSL faults, and input pattern (IP) faults [22]. Since the sequential part of ESIM is similar
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procedure Group2-Simulatior@,T);
. — begin
[* Cis the circuit*/ Form gate lisGL;
/* T is the simulation test set */ repeat
. . Select a gat& from GL;
procedure Groupl-Simulatior,T); GL:=GL-{G};
begin CT:=T;
Form the fault/error list; repeat
Form stem lis§ Select a packd? of 32 tests fronCT,
repeat CT:=CT-P;
Select a packe® of 32 tests fronT; Perform fault free simulation usirg)
T=T-P; . - Determine criticality ofG’s output;
Set all signals i€ as noncritical; NC:= {gates ofC not in the cone of influence @};
S:=S- {stems with no faults in their fanout if (G's output is criticalthen
free regions;} repeat
Perform fault free simulation usirigy Select a gat&' from NC;
Determine criticality of stems i via simulation; NC:=NC-{G'};
TraverseC backwards and determine criticality 0f Mark all detected MIEs and WIEs that have the
all signals; output of G’ as the wrong source;
Identify detected faults/errofs; until NCis empty;
|_.;: |_ -D; . until CTis empty;
until Tis empty oL is empty; Update the results;
Print the results; until GL is empty;
end; Print the final results;
end;

Figure A.1 Error simulation algorithms for GROUP1 and GROUP?2 errors.

to any standard parallel fault simulator, we only discuss the combinational part of ESIM in

the rest of this appendix.

The detection of an error/fault in a target circuit is determined by ESIM using the infor-
mation about the criticality of the lines as well as the activation conditions for the faults/
errors. Simulation of GROUPL1 errors (GSEs, GCEs, and EIESs) is performed in a similar
manner to SSL fault simulation by using parallel-pattern evaluation and critical path trac-
ing. Error simulation for GROUP2 errors (MIEs and WIES) cannot be done this way
because the large number of possible errors prevent the use of complete error lists. In fact,
we performed error simulation for GROUP2 errors using a mixture of parallel-pattern
evaluation, multiple error activation, and single fault propagation. ESIM is written in C++
and its simulation algorithms for GROUP1 and GROUP2 errors are shown in Figure A.1.

The simulation algorithm for IP faults is similar to that of GROUPL1.

The benchmark circuits used in the experiments of this appendix and Chapter 2 are
described at the end of the appendix. Table A.1 shows the number of design errors and

logical faults in these circuits. We now describe several experiments that illustrate the



Table A.1 Numbers of faults and design errors in the circuits used in the
experiments.
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circuit| .S P GSEs GCEs ICEs WIES
faults | faults [S|IGSEs [ MIGSEs | EGEs | MGEs |EIEs | MIEs

cl7 | 22 24 11 30 2 0 12 40 92

c432 | 524 | 2508 | 312 600 67 9460 | 296 | 18482 | 52063
c499 | 758 | 1072 | 337 810 104 | 1500 | 368 | 31452 | 81576
c880 | 942 | 1614 | 586 1470 199 | 1040 | 640 | 120779 | 299868
c1355| 1574 | 2384 | 881 2370 216 | 1500 | 992 | 208476 | 480408
c1908 | 1879 | 5374 | 1467 2205 252 | 12775 | 1059 | 358816 | 1217410
c2670 | 2747 | 4842 | 1994 3380 476 | 4485 | 1559 | 940307 | 2881417
c3540 | 3428 | 10258 | 2584 | 4780 634 | 23470 | 2226 | 1513437 | 4658069
c5315| 5350 | 11728 | 3902 7065 986 | 18110 | 3492 | 3454806 |10738696
c6288| 7744 | 9600 | 3904 | 11920 | 944 0 4768 | 4999155 |10055805
c7552 | 7550 | 14636 | 5450 | 10510 | 1408 | 14390 | 4734 | 7707830 |22536439
7485 | 137 | 472 86 155 20 1565 | 97 974 3456
74181 | 237 | 454 146 265 36 855 | 143 | 3750 | 11621
74283 | 128 | 240 74 150 17 460 76 985 3285

Table A.2 The percentages of SSL faults and design errors detected using
exhaustive test sets.

. . Test Detected Detected Detected GSEs DthgCEtgd Detected ICEs Detected
Circuit| set SSL
. IP faults WIEs
size | faults SIGSES|MIGSEs | EGEs [MGEs |EIEs | MIEs
cl7 32 100 100 100 100 100 N/A | 100 | 95.00 100
7485 | 2048 100 66.53 100 88.39 100 |94.38| 100 | 91.17 | 97.45
74181|16384| 100 96.48 100 98.49 |88.89|99.53| 100 | 96.61 | 99.07
74283| 512 100 96.67 100 94.67 100 100 100 | 90.03 | 96.93

capabilities of ESIM.

» Experiment 1 (Exhaustive simulatign The first experiment was conducted to

investigate exhaustive simulation. The tests are generated using ETESTS. This
experiment gives us the percentage of redundant design errors and logical faults
in the simulated circuits. The results of the experiment are shown in Table A.2,

from which we see that the redundancy of some types of design errors can be as
large as 11.61%, and that of IP faults can be as large as 33.47%. This experiment

is performed only for those benchmarks where simulation with exhaustive tests is

feasible—circuits with approximately 16 or fewer inputs.
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Table A.3 The percentages of SSL faults and design errors detected in the 4-bit

74283 adder circuit using random test sets.

Test
set size

SSL | SIGSE | MIGSE EGE MGE EIE MIE WIE

1 28.52 | 47.68 48.08 60.94 23.14 17.26 17.66 23.04
4488 | 61.14 65.17 76.71 35.58 30.21 29.54 37.95
54,12 | 68.32 72.45 86.35 45.72 39.26 36.33 47.18
63.77 | 75.62 80.56 93.41 54.13 48.47 45.28 57.07
67.69 | 78.11 81.87 92.71 56.16 53.11 49.42 60.49
72.13 | 81.03 86.51 96.71 61.34 57.74 54.47 65.65
73.62 | 81.78 87.52 96.47 62.52 59.89 57.09 67.86
78.12 | 86.86 89.25 99.06 70.23 66.89 60.18 72.75
76.94 | 84.54 88.91 97.88 69.66 66.63 60.23 72.18
10 80.87 | 87.57 90.72 99.76 72.14 70.37 65.82 75.79
11 81.10 | 87.41 91.39 99.76 73.99 73.21 65.47 76.48
12 83.19 | 89.62 91.33 99.76 76.03 74.89 68.17 78.56
13 84.04 | 90.65 92.53 100.00 78.68 75.16 70.35 79.53
14 82.63 | 90.16 92.13 100.00 79.78 76.58 68.43 78.88
15 85.08 | 92.00 92.48 100.00 80.70 78.05 71.31 80.99
16 85.54 | 92.38 93.01 100.00 82.18 78.05 71.78 81.52
17 85.21| 91.62 92.67 100.00 80.88 79.26 71.71 81.27
18 87.88 | 94.38 93.20 100.00 84.68 81.16 74.78 83.89
19 87.35| 93.14 93.01 100.00 83.90 81.74 74.81 83.30
20 87.85| 93.35 93.28 100.00 84.62 82.16 74.79 83.89

© 00 ~NOO UL WN

Experiment 2 (Random simulation The second experiment evaluates the ran-
dom simulation approach. Random test sets of sizes 1 through 20 were generated
by RTESTS for the c74283 carry-lookahead adder circuit and the coverage of
design errors was determined using ESIM. The process was repeated 50 times and
the average coverage obtained is shown in Table A.3. The table shows that a small
number of vectors provide good (but not full) coverage of design errors. The main
problem with random simulation of this type is that it cannot guarantee high cov-
erage with a relatively small number of vectors.

Experiment 3 (Simulation using SSL te¥t#\ third experiment was conducted to
determine the coverage of design errors and logical faults using tests for SSL
faults. The effectiveness of a complete test set for SSL faults (determined by
ATALANTA) in detecting design errors is shown in Tables A.4 and A.5. As dis-
cussed earlier, most of the simulation time is spent in the simulation of GROUP2,
especially as the circuits become larger. The effectiveness of the complete test sets

for SSL faults in detecting IP faults is shown in Table A.6. The results show that
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Table A.4 The percentages of SSL faults and design errors detected using

complete SSL tests generated by ATALANTA.

Cireut Tseestt SDSeﬁCted Detected GSEs Petected GCEs PDetected ICEs Detected
size aults| SIGSEs | MIGSEs | EGEs |MGEs | EIEs | MIEs WIEs
cl7 5 100 100 80.0 100 N/A 100 57.5 88.04
c432 46 99.24 100 89.33 100 95,51 [ 98.65 | 71.33 96.36
c499 52 98.94 100 97.78 46.15 | 89.60 | 97.83 | 88.77 98.55
€880 47 100 100 90.34 100 94.62 | 100 84.92 98.55
c1355 85 99.49 100 82.03 100 89.60 | 99.19 | 82.18 98.55
c1908 115 99.52 100 84.72 97.62 | 88.69 | 99.15 | 85.80 96.95
c2670 106 95.74 99.70 86.51 87.61 | 88.92 | 93.20 | 85.94 97.44
c3540 152 96.00 99.34 89.52 90.54 | 81.21 | 94.20 | 82.73 97.52
c5315 106 98.90 99.97 89.46 98.88 | 91.67 | 98.34 | 94.45 98.93
c6288 35 99.56 99.59 85.57 100 N/A | 99.29 | 89.28 99.63
c7552 199 98.25 99.98 86.62 97.37 | 90.29 | 97.21 | 93.15 98.68
7485 25 100 100 88.39 100 89.78 | 100 83.37 92.68
74181 18 100 100 96.23 88.89 | 90.64 100 81.76 94.02
74283 12 100 100 91.33 100 84.13 100 74.54 92.21

Table A.5 The CPU times in seconds spent on a SUN SPARC 20 by
ESIM using complete SSL tests generated by ATALANTA.
Time % Time % Time % time
cl7 0.04 50 0.02 25 0.02 25 0.08

c432 0.26 111 15.81 67.62 7.31 31.27 23.38
c499 0.34 2.28 3.70 24.92 10.81 72.80 14.85
€880 0.55 1.55 1.88 5.28 33.14 93.17 35.57

c3540 2.96 0.22 | 218.99 16.07 |[1140.77| 83.71 | 1362.7
c5315 6.38 0.28 89.50 3.90 2199.19| 95.82 | 2295.0
6288 5.25 0.28 73.76 3.87 1824.62| 95.85 | 1903.6
c7552 8.35 0.12 | 179.70 2.47 7079.72 | 97.41 | 7267.7

€1355 0.86 0.71 7.33 6.06 112.84 | 93.23 121.03
c1908 1.36 0.49 2541 9.15 250.91 | 90.36 277.68
€2670 1.99 0.39 18.13 3.53 493.21 | 96.08 513.33

1
7
3
7

7485 0.08 3.56 1.85 82.22 0.32 14.22 2.25
74181 0.12 7.69 0.51 32.69 0.93 59.62 1.56
74283 0.07 11.67 0.29 48.33 0.24 40 0.60

complete test sets for SSL faults do a very poor job in detecting IP faults.
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Table A.6 The percentage of IP faults detected using
complete SSL tests generated by ATALANTA.

Circuit Test Detected Simulation time on a
set size IP faults SUN SPARC 20 (sec)
cl7 5 75.00 0.01
c432 46 25.68 1.00
c499 52 80.78 1.12
€880 47 85.32 3.84
c1355 85 75.25 6.19
c1908 115 61.85 17.30
c2670 106 76.46 21.35
c3540 152 50.25 79.05
c5315 106 74.25 183.11
c6288 35 81.73 219.12
c7552 199 78.46 391.84
7485 25 40.68 0.09
74181 18 70.70 0.12
74283 12 56.67 0.04

Although ESIM was designed to handle the simulation of design errors and logical

faults, it has capabilities that can be used in other applications.

» Test grading The error simulator can determine the number of faults detected by
a given test. This information is useful in applications such as hardware test gen-
eration and test set compaction.

» Fault grading This refers to classifying the faults as hard-to-detect (also called
random pattern resistant) or easy-to-detect. Fault grading has many applications
such as test generation and test point selection.

» Fault table generationThe simulator can generate a complete fault table for cir-
cuits with 16 or fewer inputs; for larger circuits, partial fault tables can also be
generated. This feature of the simulator is used to analyze the faults of a given cir-
cuit. Note that ESIM performs simple SSL fault collapsing to reduce the size of
the fault table.

» Test generationThe simulator also supports a fast, greedy test generation algo-
rithm based on covering the fault table. Experimental results show that the

algorithm often produces near-minimal test sets in circuits with small number of
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inputs.

» Dependency evaluatioihis refers to the structural dependency between any two
circuit outputs. The idea is to determine the common lines in the cones of influ-
ence of two outputs. This is useful in concurrent monitoring, where circuit outputs
are compacted to decrease the hardware overhead of the hardware test/signature
generator.

* Netlist translationMost CAD tools accept various netlist formats, such as ISCAS
85 and BLIF. ESIM can translate any ISCAS 85 description to ISCAS 89, BLIF,
and Verilog. A major use of the translator is in the synthesis of logic circuits using
SIS [105], whose input format is BLIF.

ESIM also report some statistics about the circuit being simulated. This can be seen by
the sample run shown in Figure A.2, where ESIM determines the coverage of an exhaus-

tive test set for the 74283, a 4-bit carry-lookahead adder circuit.

Circuit description: Table A.7 describes the input-output characteristics of the circuits
used in the experiments discussed in this thesis. The circuits c17, c432, c499, ¢880, c1355,
€1908, c2670, c3540, 5315, c6288, and c7552 form the ISCAS 85 benchmark set [25]. The

esim c74283.isc c74283.xhv Stems =22
Tests =512
ESIM Copyright 1995
Programmer: Hussain Al-Asaad SSL 128 128 100.00 0.09
Gates = 104 SIGSE 74 74 100.00
MIGSE 150 142 94.67
Gtype Ngates Mxfin Mxfout EGE 17 17 100.00
MGE 460 460 100.00
nand 4 2 7 EIE 76 76 100.00
and 14 5 1 TOTAL 777 769 98.97 0.22
nor 8 5 5
or O 0 0 MIE 1143 1029 90.03
xor 4 2 0 WIE 3285 3184 96.93
xnor 0 0 0 TOTAL 4428 4213 95.14 2.86
inpt 9 0 2
from 59 1 1 IP 240 232 96.67 0.15

not 6 1 5
buff 0 0 0

Initialization Time = 0.27

Levels =6 Simulation Time =3.32
Inputs =9 Total Time =3.59
Outputs = 5

Figure A.2 Output generated by a sample run of ESIM.
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Table A.7 Characteristics of the circuits used in the experiments.

Circuit  [No. of inputs No. of outputs Np. of levels No| of stems a
cl7 5 2 6 5
c432 36 7 29 96
c499 41 32 16 91
c880 60 26 34 151

c1355 41 32 39 291

c1908 33 25 60 410

€2670 233 140 52 594

c3540 50 22 70 601

c5315 178 123 67 929

c6288 32 32 217 1488

c7552 207 108 61 1408
7485 11 3 8 20

74181 14 8 11 39

74283 9 5 6 22

a. Including the primary outputs.

Table A.8 Gate type distribution in the selected circuits.

Circuit | AND OR XOR | NAND | NOR | XNOR | NOT | BUFF | FROM?
cl7 0 0 0 6 0 0 0 0 6
c432 4 0 18 79 19 0 40 0 236
c499 56 2 104 0 0 0 40 0 256
€880 87 29 0 87 61 0 63 26 437
c1355 56 2 0 416 0 0 40 32 768
€1908 63 0 0 377 1 0 277 162 995
€2670 333 77 0 254 12 0 321 196 1244
€3540 498 92 0 298 68 0 490 223 1821
c5315 718 214 0 454 27 0 581 313 2830
c6288 256 0 0 0 2128 0 32 0 3840
c7552 776 244 0 1028 54 0 876 534 3833
7485 21 0 0 4 6 0 0 0 75
74181 29 1 8 3 12 0 7 5 115

74283 14 0 4 4 8 0 6 0 59

a. Represents a fanout branch.

7485, 74181, and 74283 are a 4-bit comparator, an arithmetic-logic unit, and a carry-
lookahead adder respectively; all are in the 74X IC series [107]. Table A.8 shows the gate

type distribution of the circuits used.



APPENDIX B
THE LC-2 MICROPROCESSOR

In this appendix, we describe the LC-2 microprocessor [99] which was used in several
experiments in Chapter 3. We also present our behavioral and RTL Verilog implementa-

tions of it.

B.1 Description of LC-2

The LC-2 microprocessor is used for educational purposes at the University of Michi-
gan. It has 8 general purpose registers, each of which is 16 bits wide. The arithmetic and
logic units operate on 16 bit words. Addresses are also 16 bits wide, so the machine has
64K words, or 128 KB of memory. The instruction set contains 16 basic instructions:
arithmetic and logic instructions (ADD, AND, NOT, and NOP), data movement instruc-
tions (LD, LDI, LDR, ST, STI, STR, LEA), flow control instructions (BR, JSR, JMP,
JSRR, JMPR, RET), and a system control instruction (TRAP). The simplest addressing
scheme, direct addressing, forms addresses by concatenating the top 7 bits of the program
counter with 9 bits of page address specified in the instruction. This means that the mem-
ory space is divided into 128 pages of 512 words each. Table B.1 summarizes the instruc-
tion formats of the LC-2. Only the following instructions modify the condition codes:
ADD, AND, NOT, LD, LDI, LDR, LEA. The fields MBZ and MB1 of the instructions

must be set to all-0 and all-1 respectively.

Addressing modes An addressing mode defines the way in which a data operand is
accessed. The LC-2 has five addressing modes: register, immediate, direct, indirect, and
base+index. With register addressing, the operand to be accessed is located in an internal

register of the LC-2. If a source operand is part of the instruction, it represents an immediate

119
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Table B.1 Summary of instruction formats and semantics of the LC-2.

Instruction fields
Mnemonic 15|14|13|12 11|10|9 8|7|6 5 4|3 2|1|o
ADD DR, SR1, SR2 0 MBZ SR2
0001 DR SR1
ADD DR, SR1, imm5 1 imm5
AND DR, SR1, SR2 0 MBZ | SR2
0101 DR SR1
AND DR, SR1, imm5 1 imm5
BR label N=0{Z=0|P=0
BRN label N=1|Z=0(P=0
BRZ label N=0{zZ=1|P=0
BRP label N=0|Z=0(P=1
1000 pgoffset9
BRNZ label N=1|Z=1(P=0
BRNP label N=1(Z=0|P=1
BRZP label N=0|Zz=1|P=1
BRNZP N=1|Z=1|P=1
JMP label L=0
0100 MBZ pgoffset9
JSR label L=1
JMPR BaseR, index6 L=0
1100 MBZ BaseR index6
JSRR BaseR, index6 L=1
LD DR, label 0010 DR pgoffset9
LDI DR, label 1010 DR pgoffset9
LDR DR, BaseR, index6 0110 DR BaseR | index6
LEA DR, label 1110 DR pgoffset9
NOP 0000 MBZ
NOT DR, SR 1001 DR SR | MB1
RET 1101 MBZ
ST SR, label 0011 SR pgoffset9
STI SR, label 1011 SR pgoffset9
STR SR, BaseR, index6 0111 SR BaseR | index6
TRAP trapvec8 1111 MBZ | trapvec8

operand and is accessed using the immediate addressing mode. With direct addressing, the
operand is at a specified address on the current page. A direct address can be placed in the
pgoffset9 field (bits 8 to 0 of the instruction, i.e. IR[8:0]) of the LD and ST instructions.

The 9 bits directly identify the memory address on the current page which is specified by
PC[15:9]. A complete 16-bit absolute address is formed by concatenating the page number
PC[15:9] and the pgoffset9, i.e. the final address is PC[15:9]@ IR[8:0]. This address is used

as access 16-bit data element. The indirect addressing mode allows the contents of a mem-
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ory location to contain the address of the data element. It is implemented with the LDI and
STl instructions. Bits IR[8:0] and the page number PC[15:9] are concatenated to form the
indirect address whose memory contents are the absolute address of the data element to be
fetched (in the case of LDI) or stored (in the case of STI). The base+index addressing mode
allows the programmer to specify the absolute address of an operand as an offset from some
particular starting address, which is contained in a base register BaseR. The offset is spec-
ified by the index IR[5:0] in the instruction. The absolute address is formed by adding the
contents of the base register to the zero-extended offset. This address is then used for the
LDR or STR operation. It is convenient to use the base+index addressing mode to process
sequential data structures such as strings, records, arrays, etc. Supposing that the base reg-
ister points to the beginning of an array of items, it must be incremented by the size of each

element to traverse through the array. The index can also specify a field in each item.

Branching modes A branching mode defines the way in which a branch or jump instruc-
tion is executed. The LC-2 has two basic branching modes, direct and indirect. Direct
branches are implemented by the BR and JSR instructions. IR[8:0] directly identifies the
target address on the current page specified by PC[15:9]. An absolute 16-bit address is
formed by concatenating the page number PC[15:9] and the pgoffset9, i.e. PC[15:9] @
IR[8:0]. This address is placed into the PC. Branches to locations not on the current page
are implemented with the JSRR instruction. The new PC contents are formed by adding the
contents of the BaseR to the 6-bit index IR[5:0]. Théink) field in the JSR instruction
distinguishes it from the BR instruction. llf= 1, the current contents of the PC are copied

to R7 before the jump takes place. This action forms a link to the calling subroutine for a

later return. IfL = 0, the contents of PC are discarded.

B.2 Behavioral Verilog Description of LC-2

We give next a complete behavioral Verilog model of the LC-2 microprocessor that we
constructed. This model was used for the design error data collection in Section 3.2 and

for the evaluation of the proposed design error models in Section 3.4.

module bcpu(clock,clear,dbus,abus,write_mem_bar,read_mem_bar);

input clock,clear;
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inout [15:0] dbus;

output [15:0] abus;

output write_mem_bar,read_mem_bar;

reg [15:0] pc,ir, R[7:0], rt, tf;

reg P,N,Z;

reg read_mem_bar_temp,write_mem_bar_temp;
reg [15:0] abus_temp,dbus_temp;

reg [3:0] opcode;

“define cpu_delay 5

assign # cpu_delay abus = abus_temp;
assign # cpu_delay dbus = dbus_temp;
assign # cpu_delay read_mem_bar = read_mem_bar_temp;
assign # cpu_delay write_mem_bar = write_mem_bar_temp;

always
begin

if (clear == 1'b0)

begin
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
pc = 16’b0;
N = 1'b0;
P =1'b0;
Z =1'b0;
rt = 16’b0000;
tf = 16’b0000;
dbus_temp = 16’bzzzz;
abus_temp = 16’bzzzz;
@(posedge clear) #1;
@ (posedge clock) #1;

end

else
begin

/I Fetch instruction
abus_temp = pc;
read_mem_bar_temp = 1'b0;
@(posedge clock) #1;

ir = dbus;
read_mem_bar_temp = 1'b1;

/I Decode
opcode =ir[15:12];

/I Execute
case (opcode)
4’b0000:; // NOP
4'b0001: // ADD
if (irf5] == 1'b0)
R[ir[11:9]] = R[ir[8:6]] + R{[ir[2:0]];
else
begin
rt = {ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],
ir[4],ir[4],ir[4],ir[4],ir[4:0]}; // Sign extend
R[ir[11:9]] = R[ir[8:6]] + rt;
tf = R[ir[11:9]];
end
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4'b0010: // LD

begin
abus_temp = {pc[15:9],ir[8:0]};
read_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
R[ir[11:9]] = dbus;
tf = R[ir[12:9]];
read_mem_bar_temp = 1'b1;

end

4'p0011: // ST

begin
abus_temp = {pc[15:9],ir[8:0]};
dbus_temp = R[ir[11:9]];
write_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
write_mem_bar_temp = 1'b1;
dbus_temp = 16’bzzzz;

end
4’p0100: // ISR
begin
if (irf11] == 1'b1)
R[7] =pc +1;
pc = {pc[15:9],ir[8:0]};
end

4'b0101: // AND
if (irf5] == 1'b0)
R[ir[11:9]] = R[ir[8:6]] & R{ir[2:0]];
else
begin
rt = {ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],ir[4],
ir[4],ir[4],ir[4],ir[4],ir[4:0]}; // Sign extend
R[ir[11:9]] = R[ir[8:6]] & rt;
tf = R[ir[11:9]];
end
4'b0110: // LDR
begin
abus_temp = R[ir[8:6]] + ir[5:0];
read_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
R[ir[11:9]] = dbus;
tf = R[ir[11:9]];
read_mem_bar_temp = 1'b1;
end
4'b0111: // STR
begin
abus_temp = R][ir[8:6]] + ir[5:0];
dbus_temp = R[ir[11:9]];
write_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
write_mem_bar_temp = 1'b1;
dbus_temp = 16’bzzzz;
end
4'p1000: // BR
if (((irf11] == 1'b1) && (N ==1'b1)) ||
((irf20] == 1'b1) && (Z == 1'b1)) ||
((ir[9] == 1'b1) && (P == 1'b1)))
pc = {pc[15:9],ir[8:0]};
else
pc=pc+1;
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4'b1001: /[ NOT
begin
R[ir[11:9]] = ~R[ir[8:6]];
tf = R[ir[11:9]];

end

4'b1010: // LDI

begin
abus_temp = {pc[15:9],ir[8:0]};
read_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
rt = dbus;
abus_temp =rt;
@ (posedge clock) #1;
R[ir[11:9]] = dbus;
tf = R[ir[11:9]];
read_mem_bar_temp = 1'b1;

end

4'b1011: // STI

begin
abus_temp = {pc[15:9],ir[8:0]};
read_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
rt = dbus;
read_mem_bar_temp = 1'b1;
abus_temp =rt;
dbus_temp = R[ir[11:9]];
write_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
write_mem_bar_temp = 1'b1;
dbus_temp = 16’bzzzz;

end
4'p1100: // ISRR
begin
if (irf11] == 1'b1)
R[7]=pc +1;
pc = R[ir[8:6]] + ir[5:0];
end
4'b1101: /I RET
pc = R[7];
4'p1110: // LEA
begin

R[ir[11:9]] = {pc[15:9],ir[8:0]};
tf = R[ir[12:9]];

end

4'b1111: // TRAP

begin
R[7]=pc+1;

abus_temp = {8'b00000000,ir[7:0]};
read_mem_bar_temp = 1'b0;
@ (posedge clock) #1;
pc = dbus;
read_mem_bar_temp = 1'b0;
end
endcase

case (opcode)

4’'h0001,4'b0010,4'b0101,4'b0110,4’b1001,

4'p1010,4’'b1110: /I ADD, LD, AND, LDR, NOT, LDI, LEA
begin
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if (tf == 16'b0)
begin
P =1'b0;
Z=1b1;
N = 1'b0;
end
else if (tf[15] == 1'b0)
begin
P =1b1;
Z=1b0;
N = 1'b0;
end
else
begin
P =1b0;
Z=1b0;
N =1'b1;
end
end
endcase

case (opcode)

4'b0000,4’'b0001,4'b0010,4'b0011, 4'b0101,4'b0110,4'b0111,4’b1001,

4'b1010,4’'b1011,4’1110:
/I NOP, ADD, LD, ST, AND, LDR, STR, NOT, LDI, STI, IEA
pc = pc + 1; // Increment pc

endcase

end
end

endmodule

B.3 Synthesizable Verilog Description of LC-2

We give next the complete synthesizable Verilog model of the LC-2 microprocessor.
The datapath unit of the LC-2 is described as an interconnection of RTL components
while the LC-2 control unit is described using a single finite-state machine. This model
was used for the design error data collection in Section 3.2, the evaluation of the proposed
design error models in Section 3.4, and the illustration of our validation approach for

microprocessors in Section 3.5.

module rtcpu(clock,clear,dbus,abus,write_mem_bar,read_mem_bar);

input clock,clear;

inout [15:0] dbus;

output [15:0] abus;

output write_mem_bar,read_mem_bar;

wire [15:0] ir_out;

wire [2:0] R1,R2,W flags_out;

wire [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;

datapath DP(clock,clear,dbus,abus,ir_out,flags_out,R1,R2,W,RE1,RE2,WE,
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S3,52,5S1,S0,M, load_pc_bar, load_ir_bar, load_mar_bar,
load_flags_bar, load_regl_bar,load_reg2_bar,sel_rf_mux, sel_pc_mux,
sel_mar_mux, sel_ab_mux,sel_alu_mux,reg2_to_dbus_bar,zero_or_sign,
trapvec_bar);

control CO(clock,clear,write_mem_bar,read_mem_bar,R1,R2,W,RE1,RE2,WE,
S3,52,51,S0,M,load_pc_bar,load_ir_bar, load_mar_bar, load_flags_bar,
load_regl_bar,load_reg2_bar, sel_rf_mux, sel_pc_mux,sel_mar_mux,
sel_ab_mux, sel_alu_mux,reg2_to_dbus_bar,zero_or_sign,trapvec_bar,
ir_out,flags_out);

endmodule

module datapath(clock,clear,dbus,abus,ir_out,flags_out,R1,R2,W,RE1,RE2,WE,
S3,52,S1,S0,M, load_pc_bar, load_ir_bar, load_mar_bar,
load_flags_bar,load_regl_bar,load_reg2_bar,sel_rf_mux,
sel_pc_mux,sel_mar_mux, sel_ab_mux,sel_alu_mux,reg2_to_dbus_bar,
zero_or_sign,trapvec_bar);

input clock,clear;
inout [15:0] dbus;
output [15:0] abus;

/Il TO CONTROL
output [15:0] ir_out;
output [2:0] flags_out;

/I REGFILE
input [2:0] R1, R2, W;
input RE1, RE2, WE;

/I ALU
input S3, S2, S1, SO, M;

/I REGISTERS
input load_pc_bar, load_ir_bar, load_mar_bar, load_flags_bar,load_regl_bar,
load_reg2_bar;

/I MUXS
input [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;
input sel_alu_mux, sel_mar_mux;

/I TRISTATE
input reg2_to_dbus_bar;

/I SPECIAL
input zero_or_sign;
input trapvec_bar;

wire [2:0] flags_in;
wire [15:0] pc_in,ir_in,read_portl,read_port2,ALU_B_port,alu_out,write_port,
rf_portl,rf_port2,mar_in,pc_out,mar_out,merge_out,inc_out,extend_out,
latch_in;
wire clock_bar;

stdinv STI(clock,clock_bar);

alu #(16) ALUO(read_port1l,ALU_B_port,1'b0,M,S0,S1,S2,S3,Dummy_COUT,alu_out);
latch #(16) LA(latch_in,clock_bar,write_port);

regfile2r #(16,8,3) RF(write_port,R1,R2,RE1,RE2,W,WE,If_portl,rf_port2);
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dffh_c #(16) REG1 (clock,clear,rf_portl,load_regl_bar,read_portl),
REG2 (clock,clear,rf_port2,load_reg2_bar,read_port2);
dffh_c #(16) PC (clock,clear,pc_in,load_pc_bar,pc_out),
IR (clock,clear,dbus,load_ir_bar,ir_out),
MAR (clock,clear,mar_in,load_mar_bar,mar_out);
dffh_c #(3) FLAGS (clock,clear,flags_in,load_flags_bar,flags_out);
mux4 #(16) RFMUX(alu_out,inc_out,merge_out,dbus,sel_rf_mux[0],sel_rf_mux[1],
latch_in),
PCMUX(inc_out,alu_out,merge_out,dbus,sel_pc_mux[0],sel_pc_mux[1],
pc_in);
mux3 #(16) ABMUX(pc_out,mar_out,merge_out,sel_ab_mux[0],sel_ab_mux[1],abus);
mux2 #(16) ALUMUX(read_port2,extend_out,sel_alu_mux,ALU_B_port),
MARMUX(alu_out,dbus,sel_mar_mux,mar_in);
tribuf #(16) TRB(reg2_to_dbus_bar,read_port2,dbus);
extend EXT(ir_out,zero_or_sign,extend_out);
detect DTC(write_port,flags_in);
inc #(16) INCO(1'b1,pc_out,Dummy_TC,Dummy_TCBAR,inc_out);
merge MRG(pc_out,ir_out,trapvec_bar,merge_out);

endmodule
module extend(IN,zero_or_sign,OUT);

input [15:0] IN;
input zero_or_sign;
output [15:0] OUT;

assign OUTI[0] = IN[0],
OUT[1] = IN[1],
OUT[2] = IN[2],
OUT[3] = IN[3],
OUT[4] = IN[4];
stdmux2 SM2(IN[5],IN[4],zero_or_sign,OUT][5]);
stdand2 SA2(IN[4],zero_or_sign, TMP);
assign OUT[6] = TMP,

OUT[7] = TMP,
OUT[8] = TMP,
OUT[9] = TMP,

OUTI[10] = TMP,
OUT[11] = TMP,
OUT[12] = TMP,
OUT[13] = TMP,
OUT[14] = TMP,
OUTI[15] = TMP;

endmodule
module detect(IN,FLAGS);

input [15:0] IN;
output [2:0] FLAGS;

stdinv SI(IN[15],IN15bar);

zero #(16) ZR(IN,FLAGS[1]);

stdnor2 SN1(IN[15],FLAGS[1],FLAGSIO]);
stdnor2 SN2(IN15bar,FLAGS[1],FLAGSI[2]);

endmodule
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module merge(PC,IR,trapvec_bar,OUT);

input [15:0] PC,IR;
input trapvec_bar;
output [15:0] OUT;

assign OUTI[0] = IR[0],
OUT[1] = IR[1],
OUT[2] = IR[2],
OUT[3] = IR[3],
OUT[4] = IR[4],
OUTI5] = IR[5],
OuUT[6] = IR[6],
OUT[7] = IR[7];

stdand2 SA8(IR[8],trapvec_bar,OUT[8]),
SA9(PCI9],trapvec_bar,0UT[9]),
SA10(PC[10],trapvec_bar,OUT[10]),
SA11(PC[11],trapvec_bar,OUT[11]),
SA12(PC[12],trapvec_bar,OUT[12]),
SA13(PC[13],trapvec_bar,OUT[13]),
SA14(PC[14],trapvec_bar,OQUT[14]),
SA15(PC[15],trapvec_bar,OQUT[15]);

endmodule

module control(clock,clear,write_mem_bar, read_mem_bar,R1,R2,W,RE1,RE2,WE,
S3,52,51,S0,M,load_pc_bar, load_ir_bar, load_mar_bar, load_flags_bar,
load_regl_bar,load_reg2_bar,sel_rf_mux,sel_pc_mux,sel_mar_mux,
sel_ab_mux, sel_alu_mux,reg2_to_bus_bar,zero_or_sign,trapvec_bar,ir_out,
flags_out);

input clock,clear;

I/l TO MEMORY
output write_mem_bar, read_mem_bar;

/I TO REGFILE
output [2:0] R1, R2, W;
output RE1, RE2, WE;

/I TO ALU
output S3, S2, S1, SO, M;

/I TO REGISTERS
output load_pc_bar, load_ir_bar, load_mar_bar, load_flags_bar,load_regl bar,
load_reg2_bar;

/I TO MUXS
output [1:0] sel_rf_mux, sel_pc_mux, sel_ab_mux;
output sel_alu_mux, sel_mar_mux;

/I TO TRISTATE
output reg2_to_bus_bar;

/I TO SPECIAL
output zero_or_sign;
output trapvec_bar;

/I FROM_temp DATAPATH
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input [15:0] ir_out;
input [2:0] flags_oult;

reg [2:0] machine_state;

reg [2:0] next_state;

reg write_mem_bar_temp, read_mem_bar_temp;

reg [2:0] R1_temp, R2_temp, W_temp;

reg RE1_temp, RE2_temp, WE_temp;

reg S3_temp, S2_temp, S1_temp, SO_temp, M_temp;

reg load_pc_bar_temp, load_ir_bar_temp, load_mar_bar_temp,
load_flags_bar_temp, load_regl_bar_temp, load_reg2_bar_temp;

reg [1:0] sel_rf_mux_temp, sel_pc_mux_temp, sel_ab_mux_temp;

reg sel_alu_mux_temp, sel_mar_mux_temp;

reg reg2_to_bus_bar_temp;

reg zero_or_sign_temp;

reg trapvec_bar_temp;

/I Machine States

“define MRESET_STATE 3'b000
“define IFETCH_STATE 3'b001

“define DECODE_STATE 3'b010
“define EX_MEM_STATE 3'b011
“define MEMORY_STATE 3'b100

/I INSTRUCTIONS

“define ADD 4'b0001
“define AND 4'b0101
“define BR 4’1000
“define JSR 4'b0100
“define JSRR 4'b1100
“define LD 4'b0010
“define LDI 4’1010
“define LDR 4'b0110
“define LEA 4'b1110
“define NOP 4’b0000
“define NOT 4'b1001
“define RET 4'b1101
“define ST 4'b0011
“define STI 4'b1011
“define STR 4'b0111
“define TRAP 4'b1111

/I DELAY
“define FSM_DELAY 6

/I STATE MACHINE
always @(posedge clock)
begin

machine_state = next_state;
end

always @(ir_out[15:5] or ir_out[2:0] or clear or machine_state or flags_out)
begin
/I Generate addresses for register file
if (ir_out[15:12] == 4’b1101)
R1_temp =3'b1ll;
else
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R1_temp = ir_out[8:6];
if (ir_out[13] == 1'b0)
R2_temp = ir_out[2:0];
else
R2_temp = ir_out[11:9];
if ((ir_out[14:12] == 3'b100) || (ir_out[15:12] == 4’b1111))
W_temp = 3'b111;
else
W_temp = ir_out[11:9];

/l Compute next state
if (clear == 1'b0)
next_state = "MRESET_STATE;
else
begin
case (machine_state)
"MRESET_STATE:next_state = IFETCH_STATE;
‘IFETCH_STATE: next_state = "-DECODE_STATE;
'DECODE_STATE:
if (ir_out[15:12] == "NOP)
next_state = 'IFETCH_STATE;
else
next_state = 'EX_MEM_STATE;
‘EX_MEM_STATE:
begin
case (ir_out[15:12])
"AND, ADD, NOT,'LEA,"RET, BR,JSR,
"JSRR, LD, ST, TRAP: next_state = 'IFETCH_STATE;
'LDI,"STI,'LDR, STR:next_state = "MEMORY_STATE;
endcase
end
"MEMORY_STATE:next_state = 'IFETCH_STATE;
endcase
end

/I Determine control signals for each state
if (clear == 1'b0)
begin
read_mem_bar_temp = 1'b1;
write_mem_bar_temp = 1'b1;
load_pc_bar_temp = 1'b1;
load_ir_bar_temp = 1'b1;
load_mar_bar_temp = 1'b1;
load_flags_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
end
else
begin
case (machine_state)
"MRESET_STATE:
begin
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
load_pc_bar_temp = 1'b1;
load_ir_bar_temp = 1'b1,;
load_mar_bar_temp = 1'b1;
load_flags_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'bl;
end
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'IFETCH_STATE:

begin
read_mem_bar_temp = 1'b0;
write_mem_bar_temp = 1'b1;
RE1_temp = 1'b0;
RE2_temp = 1'b0;
WE_temp = 1'b0;
load_ir_bar_temp = 1'b0;
load_pc_bar_temp = 1'b1;
load_flags_bar_temp = 1'b1;
load_regl_bar_temp = 1'b1;
load_reg2_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
sel_ab_mux_temp = 2’b00;
end
"DECODE_STATE:
begin
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
RE1 temp = 1'b1;
RE2_temp = 1'b1;
WE_temp = 1'b0;
load_ir_bar_temp = 1'b1;
load_flags_bar_temp = 1'b1;
load_regl_bar_temp = 1'b0;
load_reg2_bar_temp = 1'b0;
reg2_to_bus_bar_temp = 1'bl;
if (ir_out[15:12] == "NOP)
begin
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
end
else
begin
load_pc_bar_temp = 1'b1;
end
end
"EX_MEM_STATE:
begin

RE1_temp = 1'b0;

RE2_temp = 1'b0;

load_ir_bar_temp = 1'b1;

load_regl_bar_temp = 1'b1;

load_reg2_bar_temp = 1'b1;

case (ir_out[15:12])

"AND:
begin
WE_temp = 1'b1;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
zero_or_sign_temp = 1'b1;
if (ir_out[5] == 1'b0)
sel_alu_mux_temp = 1'b0;
else
sel_alu_mux_temp = 1'b1;

S3_temp = 1'bl;
S2 _temp = 1'bl;
S1_temp =1'bl;
SO0_temp = 1'b0;
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M_temp = 1'bO0;
sel_rf_mux_temp = 2’b00;
load_flags_bar_temp = 1'b0;
reg2_to_bus_bar_temp = 1'bl;
read_mem_bar_temp = 1'bl;

write_mem_bar_temp = 1'b1;

end
"ADD:

begin

WE_temp = 1'b1;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
zero_or_sign_temp = 1'b1;
if (ir_out[5] == 1'b0)
sel_alu_mux_temp = 1'b0;
else
sel_alu_mux_temp = 1'b1;
S3_temp = 1'b1;
S2_temp = 1'b0;
S1_temp = 1'b0;
S0_temp = 1'bl;
M_temp =1'b1;
sel_rf_mux_temp = 2'b00;
load_flags_bar_temp = 1'b0;
reg2_to_bus_bar_temp = 1'b1;
read_mem_bar_temp = 1'bl;

write_mem_bar_temp = 1'b1;

"NOT:

begin

WE_temp = 1'b1;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
S3_temp = 1'b0;

S2_temp = 1'b0;

S1_temp = 1'b0;

SO_temp = 1'b0;

M_temp = 1'bO0;
sel_rf_mux_temp = 2’b00;
load_flags_bar_temp = 1'b0;
reg2_to_bus_bar_temp = 1'bl;
read_mem_bar_temp = 1'bl;

write_mem_bar_temp = 1'b1;

end
"LEA:
begin

WE_temp = 1'b1;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
sel_rf_mux_temp = 2’b10;
load_flags_bar_temp = 1'b0;
trapvec_bar_temp = 1'b1;
read_mem_bar_temp = 1'bl;

write_mem_bar_temp = 1'b1;

reg2_to_bus_bar_temp = 1'b1;

end

'RET:

begin

WE_temp = 1'b0;
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load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b01;
S3_temp = 1'b1;
S2_temp = 1'bl;
S1_temp =1'bl;
SO_temp = 1'b1;
M_temp = 1'bO0;
load_flags_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
end
‘BR:
begin
WE_temp = 1'b0;
load_pc_bar_temp = 1'b0;
if ((flags_out[2] & ir_out[11]) |
(flags_out[1] & ir_out[10]) |
(flags_out[0] & ir_out[9]))
sel_pc_mux_temp = 2'b10;
else
sel_pc_mux_temp = 2'b00;
load_flags_bar_temp = 1'b1;
trapvec_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
end
“JSR:
begin
if (ir_out[11] == 1'b1)
begin
sel_rf_mux_temp = 2’b01;
WE_temp = 1'b1;
end
else
WE_temp = 1'b0;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b10;
load_flags_bar_temp = 1'b1;
trapvec_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
end
“JSRR:
begin
if (ir_out[11] == 1'b1)
begin
sel_rf_mux_temp = 2’b01;
WE_temp = 1'b1;
end
else
WE_temp = 1'b0;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b01;
sel_alu_mux_temp = 1'b1;
zero_or_sign_temp = 1'b0;
S3_temp = 1'bl;
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S2_temp = 1'b0;
S1_temp = 1'b0;
SO_temp = 1'b1;
M_temp =1'b1;
load_flags_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
end
LD:
begin
WE_temp = 1'b1;
read_mem_bar_temp = 1'b0;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
sel_rf_mux_temp = 2’b11;
sel_ab_mux_temp = 2’b10;
load_flags_bar_temp = 1'b0;
trapvec_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
write_mem_bar_temp = 1'b1;
end
ST
begin
WE_temp = 1'b0;
write_mem_bar_temp = 1'b0;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
sel_ab_mux_temp = 2'b10;
load_flags_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b0;
read_mem_bar_temp = 1'b1;
trapvec_bar_temp = 1'b1;
end
"TRAP:
begin
sel_rf_mux_temp = 2'b01;
WE_temp = 1'b1,;
read_mem_bar_temp = 1'b0;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b11;
sel_ab_mux_temp = 2’b10;
load_flags_bar_temp = 1'b1;
trapvec_bar_temp = 1'b0;
reg2_to_bus_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
end
LDI, STI:
begin
WE_temp = 1'b0;
read_mem_bar_temp = 1'b0;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
sel_ab_mux_temp = 2'b10;
load_flags_bar_temp = 1'b1;
load_mar_bar_temp = 1'b0;
sel_mar_mux_temp = 1'b1;
trapvec_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b1;
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write_mem_bar_temp = 1'b1;
end
'LDR, STR:
begin
WE_temp = 1'b0;
load_pc_bar_temp = 1'b0;
sel_pc_mux_temp = 2'b00;
sel_alu_mux_temp = 1'b1;
zero_or_sign_temp = 1'b0;
S3_temp = 1'bl;
S2_temp = 1'b0;
S1_temp = 1'b0;
SO_temp = 1'bl;
M_temp = 1'b1;
load_flags_bar_temp = 1'b1;
load_mar_bar_temp = 1'b0;
sel_mar_mux_temp = 1'b0;
reg2_to_bus_bar_temp = 1'b1;
read_mem_bar_temp = 1'bl;
write_mem_bar_temp = 1'b1;
end
endcase
end
"MEMORY_STATE:
begin
RE1_temp = 1'b0;
RE2_temp = 1'b0;
load_ir_bar_temp = 1'b1;
load_regl bar_temp = 1'b1;
load_reg2_bar_temp = 1'b1;
sel_ab_mux_temp = 2’b01;
load_pc_bar_temp = 1'b1;
trapvec_bar_temp = 1'bl;
sel_rf_mux_temp = 2'b11;
case (ir_out[15:12])
"LDI,"LDR:
begin
WE_temp = 1'b1,;
read_mem_bar_temp = 1'b0;
write_mem_bar_temp = 1'b1;
load_flags_bar_temp = 1'b0;
reg2_to_bus_bar_temp = 1'b1;
end
“STI,STR:
begin
WE_temp = 1'b0;
write_mem_bar_temp = 1'b0;
read_mem_bar_temp = 1'bl;
load_flags_bar_temp = 1'b1;
reg2_to_bus_bar_temp = 1'b0;
end
endcase
end
endcase
end
end

// TO MEMORY
assign # FSM_DELAY write_mem_bar = write_mem_bar_temp;
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assign # FSM_DELAY read_mem_bar = read_mem_bar_temp;

/I TO REGFILE

assign # FSM_DELAY R1 = R1_temp;
assign # FSM_DELAY R2 = R2_temp;
assign # FSM_DELAY W = W_temp;
assign # FSM_DELAY RE1 = RE1_temp;
assign # FSM_DELAY RE2 = RE2_temp;
assign # FSM_DELAY WE = WE_temp;

/I TO ALU

assign # FSM_DELAY S3 = S3_temp;
assign # FSM_DELAY S2 = S2_temp;
assign # FSM_DELAY S1 = S1_temp;
assign # FSM_DELAY S0 = S0_temp;
assign # FSM_DELAY M = M_temp;

/l TO REGISTERS

assign # FSM_DELAY load_pc_bar = load_pc_bar_temp;
assign # FSM_DELAY load_ir_bar = load_ir_bar_temp;
assign # FSM_DELAY load_mar_bar = load_mar_bar_temp;
assign # FSM_DELAY load_flags_bar = load_flags_bar_temp;
assign # FSM_DELAY load_regl_bar = load_regl_bar_temp;
assign # FSM_DELAY load_reg2_bar = load_reg2_bar_temp;

/I TO MUXS

assign # FSM_DELAY sel_rf_mux = sel_rf_mux_temp;
assign # FSM_DELAY sel_pc_mux = sel_pc_mux_temp;
assign # FSM_DELAY sel_mar_mux = sel_mar_mux_temp;
assign # FSM_DELAY sel_ab_mux = sel_ab_mux_temp;
assign # FSM_DELAY sel_alu_mux = sel_alu_mux_temp;

/I TO TRISTATE
assign # FSM_DELAY reg2_to_bus_bar = reg2_to_bus_bar_temp;

/I TO SPECIAL
assign # FSM_DELAY zero_or_sign = zero_or_sign_temp;
assign # FSM_DELAY trapvec_bar = trapvec_bar_temp;

endmodule
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