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Abstract— For certain classes of linear, time-invariant, multi-
input multi-output plants, a systematic synthesis is developed
for stabilization using Proportional+Integral+Derivative (PID)
controllers, where the closed-loop poles can be assigned to the
left of an axis shifted away from the origin. The real-parts of
the closed-loop poles can be smaller than the real-part of the
largest transmission-zero of the plant. Plant classes that admit
PID controllers with this property include stable and unstable
multi-input multi-input plants with transmission-zeros in the
left-half complex-plane.

I. INTRODUCTION

Proportional+Integral+Derivative (PID) controllers are

preferred in many control designs since they are simple,

have low-order, provide integral-action and hence, achieve

asymptotic tracking of step-input references (e.g., [1]). Al-

though the simplicity of PID controllers is desirable due

to easy implementation and tuning, the order constraint

presents a major restriction that only certain classes of plants

can be controlled by using PID controllers. Rigorous PID

synthesis methods based on modern control theory are ex-

plored recently in e.g., [7], [10], [6]. Sufficient conditions for

PID stabilizability of linear, time-invariant (LTI), multi-input

multi-output (MIMO) plants were given in [6] and several

plant classes that admit PID controllers were identified.

An important criterion for control design is to assign the

closed-loop poles sufficiently far from the imaginary-axis of

the complex-plane in order for the system to have small time-

constants and sufficient damping. Therefore, it is desirable

for the closed-loop poles to have real-parts less than −h for

a pre-specified positive constant h. This design objective is

achievable for certain LTI, MIMO plant classes as identified

here. Assignment of the imaginary part of the closed-loop

poles is not within the objectives or the scope of this work.

All plant classes that admit PID controllers are necessarily

strongly stabilizable, although strong stabilizability is not

sufficient for existence of PID controllers [6]. The integral-

constant of the PID controller can be non-zero only if the

plant has no zeros at the origin. Stable plants are obviously

strongly stabilizable and they admit PID controllers. The

additional objective of assigning values less than −h to the

real-part of the closed-loop poles can be achieved only for

certain values of h [3]. The restriction on h is removed for

stable plants that have no finite zeros with real-parts larger

than the given −h; the closed-loop poles can be assigned

to the left of this −h for any chosen value of h as shown
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in [3]. The unstable plant classes investigated here have no

finite zeros with real-parts larger than the given −h. For these

plant classes, Propositions 1, 2 and 3 present systematic PID

controller synthesis methods for closed-loop pole assignment

to the left of the finite zero with the largest negative real-part.

The main results presented in Section II start with the

problem statement and basic definitions. The three plant

classes under consideration are studied under three sub-

sections. An illustrative MIMO example is also given in

Section II for the case of one plant zero at infinity based

on the linearized model of a batch process [8]. The only

goals of the design in this example are closed-loop stability

with closed-loop poles to the left of a line at −h; due to

the integral-action in the controller, the steady-state error

due to step input references is zero and hence, asymptotic

tracking is also achieved. The choice of the free parameters

can be optimized with a chosen cost function. Section III

gives concluding remarks.

Although we discuss continuous-time systems here, all

results also apply to discrete-time systems with appropriate

modifications.

Notation:

Let C , R, R+ denote complex, real, positive real numbers.

For h ∈ R+∪{0}, let Uh := {s ∈ C | Re(s) ≥ −h}∪{∞}.

If h = 0, Uh = U0 := {s ∈ C | Re(s) ≥ 0} ∪ {∞} is the

extended closed right-half complex plane. Let Rp denote

real proper rational functions of s. For h ≥ 0, Sh ⊂ Rp

is the subset with no poles in Uh. The set of matrices

with entries in Sh is denoted by M(Sh) ; Sh
m×m is used

instead of M(Sh) to indicate the matrix size explicitly. A

matrix M ∈ M(Sh) is called Sh-stable; M ∈ M(Sh) is

called Sh-unimodular iff M−1 ∈ M(Sh). The H∞-norm of

M(s) ∈ M(Sh) is ‖M‖ := sups∈∂Uh
σ̄(M(s)), where σ̄

is the maximum singular value and ∂Uh is the boundary of

Uh . We drop (s) in transfer-matrices such as G(s) where

this causes no confusion. We use coprime factorizations

over Sh ; i.e., for G ∈ Rp

m×m, G = Y −1X denotes a

left-coprime-factorization (LCF) and G = NgD
−1
g denotes

a right-coprime-factorization (RCF) where X, Y, Ng ,Dg ∈
M(Sh) , detY (∞) 6= 0, detDg(∞) 6= 0. For MIMO

transfer-functions, we refer to transmission-zeros simply as

zeros; blocking-zeros are a subset of transmission-zeros. If

G ∈ Rp

m×m is full (normal) rank, then zo ∈ Uh is called

a transmission-zero of G = Y −1X if rankX(zo) < m;

zb ∈ Uh is called a blocking-zero of G = Y −1X if

X(zb) = 0 and equivalenty, G(zb) = 0.
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II. MAIN RESULTS

Consider the LTI, MIMO unity-feedback system

Sys(G,C) shown in Fig. 1, where G ∈ Rp

m×m and

C ∈ Rp

m×m are the plant and controller transfer-functions.

Assume that Sys(G,C) is well-posed, G and C have no

unstable hidden-modes, and G ∈ Rp

m×m is full rank.
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Fig. 1. Unity-Feedback System Sys(G, C).

We consider the realizable form of proper PID controllers

given by (1), where Kp, Ki, Kd ∈ R
m×m are the propor-

tional, integral, derivative constants, respectively, and τ ∈
R+ (see [4]):

Cpid(s) = Kp +
1

s
Ki +

s

τs + 1
Kd . (1)

For implementation, a (typically fast) pole is added to

the derivative term so that Cpid in (1) is proper. The

integral-action in Cpid is present when Ki 6= 0. Subsets

of PID controllers are obtained by setting one or two

of the three constants equal to zero: (1) becomes a

PI-controller Cpi when Kd = 0, an ID-controller Cid

when Kp = 0, a PD-controller Cpd when Ki = 0, a

P-controller Cp when Kd = Ki = 0, an I-controller Ci

when Kp = Kd = 0, a D-controller Cd when Kp = Ki = 0.

Definition 1: a) Sys(G,C) is said to be Sh-stable if

the closed-loop transfer-function from (r, v) to (y, w) is in

M(Sh) . b) C is said to Sh-stabilize G if C is proper

and Sys(G,C) is Sh-stable. c) G ∈ Rp

m×m is said to

admit a PID controller such that the closed-loop poles of

Sys(G,C ) are in C \ Uh if there exists C = Cpid as

in (1) such that Sys(G,Cpid ) is Sh-stable. We say that

G is Sh-stabilizable by a PID controller, and Cpid is an

Sh-stabilizing PID controller. ¤

Let G = Y −1X be any LCF of G, C = NcD
−1
c be any

RCF of C; for G ∈ Rp

m×m, X,Y ∈ M(Sh), detY (∞) 6=
0, and for C ∈ Rp

nu×ny , Nc,Dc ∈ M(Sh) , detDc(∞) 6=
0. Then C is a Sh-stabilizing controller for G if and only if

M := Y Dc + XNc (2)

is Sh-unimodular [11], [5].

The problem addressed here is the following: Suppose that

h ∈ R+ is a given constant. Is there a PID controller Cpid

that stabilizes the system Sys(G,Cpid) with a guaranteed

stability margin, i.e., with real-parts of the closed-loop poles

of the system Sys(G, Cpid) less than −h? It is clear that

this goal is not achievable for some plants. Even when it is

achievable, those h ∈ R+ for which the closed-loop poles

can be placed to the left of a shifted-axis that goes through

−h may be restricted.

Let ŝ and Ĝ , Ĉpid be defined as

ŝ := s + h, equivalently, s =: ŝ − h ; (3)

Ĝ(ŝ) := G(ŝ − h) ; (4)

Ĉpid(ŝ) := Cpid(ŝ − h)

:= Kp +
1

ŝ − h
Ki +

(ŝ − h)

τ(ŝ − h) + 1
Kd . (5)

Then Cpid(s) Sh-stabilizes G(s) if and only if Ĉpid(ŝ) S0-

stabilizes Ĝ(ŝ). For any ρ ∈ R+ , an RCF of Ĉpid(ŝ) is

given by

Ĉpid = (
(ŝ − h)

ŝ + ρ
Ĉpid ) (

(ŝ − h)

ŝ + ρ
I )−1 . (6)

We consider plant classes that admit PID controllers and

identify values of h ∈ R such that the closed-loop poles

lie to the left of −h. A necessary condition for existence

of PID controllers with nonzero integral-constant Ki is that

the plant G(s) has no zeros (transmission-zeros or blocking-

zeros) at s = 0 [6]. Therefore, all plants under consideration

are assumed to be free of zeros at the origin (of the s-plane).

Let Gph be the set of Sh-stable m × m plants that have

no (transmission or blocking) zeros at s = 0; i.e., for a given

h ∈ R+ ∪ {0}, let Gph ⊂ Sh
m×m be defined as

Gph := { G(s) ∈ Sh
m×m | det G(0) 6= 0}. (7)

For G(s) ∈ Gph , with Ĝ(ŝ) := G(ŝ − h), det G(0) 6= 0 is

equivalent to det Ĝ(h) 6= 0. The plants G ∈ Gph may have

transmission-zeros or blocking-zeros anywhere in C other

than s = 0. There exist Sh-stabilizing PID controllers for

this classes of plants for certain values of h ∈ R+ [3].

In this paper we focus on plants that may have poles

in the region Uh. We consider the following three plant

classes, which have no restrictions in the poles anywhere

in the complex-plane C and no restrictions on the zeros in

the region C \ Uh:

1) The first class of plants Gzh is the set of m×m plants

that have no (transmission or blocking) zeros in Uh ; i.e., for

a given h ∈ R+ ∪ {0}, let Gzh ⊂ Rp

m×m be defined as

Gzh := { G(s) ∈ Rp

m×m | G−1(s) ∈ Sh
m×m }. (8)

In the single-input single-output (SISO) case, this class

represents plants without zeros in Uh that have relative

degree zero. Some plants in the set Gzh are not Sh-stable;

therefore, these plants either have poles in U0, or they are

S0-stable but some poles have negative real-parts larger than

the specified −h. Obviously, the plants in Gzh satisfy the

necessary condition for existence of PID controllers with

nonzero integral-constant Ki since the fact that they have

no zeros in Uh implies that they have no zeros at s = 0.

2) The second class of plants G1∞ is the set of m × m
strictly-proper plants that have no (transmission or blocking)

zeros in Uh except at infinity with multiplicity one, as
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defined below: For a given h ∈ R+ ∪ {0}, let G1∞ ⊂
Rp

m×m be defined as

G1∞ := {G(s) ∈ Rp

m×m |
1

s + a
G−1(s) ∈ Sh

m×m, a > h}.

(9)

In the SISO case, this class represents plants without zeros in

Uh that have relative degree one. Some plants in the set G1∞

are not Sh-stable; these plants either have poles in U0, or they

are S0-stable but some poles have negative real-parts larger

than the specified −h. Obviously, the plants in G1∞ satisfy

the necessary condition for existence of PID controllers with

nonzero integral-constant Ki since the fact that they have no

zeros in Uh (other than at infinity) implies that they have no

zeros at s = 0.

3) The third class of plants G2∞ is the set of m × m
strictly-proper plants that have no (transmission or blocking)

zeros in Uh except at infinity with multiplicity two, as

defined below: For a given h ∈ R+ ∪ {0}, let G2∞ ⊂
Rp

m×m be defined as

G2∞ := {G(s) ∈ Rp

m×m |
1

(s + a)2
G−1(s) ∈ Sh

m×m

for any a > h}. (10)

In the SISO case, this class represents plants without zeros in

Uh that have relative degree two. Some plants in the set G2∞

are not Sh-stable; these plants either have poles in U0, or they

are S0-stable but some poles have negative real-parts larger

than the specified −h. Obviously, the plants in G2∞ satisfy

the necessary condition for existence of PID controllers with

nonzero integral-constant Ki since the fact that they have no

zeros in Uh (other than at infinity) implies that they have no

zeros at s = 0.

The set Gph ∩ G1∞ and the set Gph ∩ G2∞ correspond to

Sh-stable plants with no poles in Uh, and no zeros in Uh

other than (one or two, respectively) zeros at infinity.

A. Plants with no zeros in Uh

Consider the class Gzh of m × m plants with no (trans-

mission or blocking) zeros in Uh as described in (8). The

plants G ∈ Gzh may not be Sh-stable but G−1 ∈ M(Sh);
an LCF of G(s) is

G = Y −1X = (G−1)−1I . (11)

The plants in Gzh are strongly stabilizable, and they admit

S0-stabilizing PID controllers [6]. Proposition 1 shows that

these plants also admit Sh-stabilizing PID controllers for

any pre-specified h ∈ R+ , and proposes a systematic PID

controller synthesis.

Proposition 1: (PID for plants with no Uh-zeros):

Let G ∈ Gzh . Then there exists an Sh-stabilizing PID

controller Cpid . Furthermore, Cpid can be designed as

follows: Choose any nonsingular K̂p ∈ R
m×m . Choose any

Kd ∈ R
m×m, and τ ∈ R+ satisfying τ < 1/h. Choose any

α ∈ R+ satisfying α > 2h . Define Φ(ŝ) as

Φ(ŝ) := K̂−1
p [ Ĝ

−1
(ŝ) +

(ŝ − h)

τ(ŝ − h) + 1
Kd ] . (12)

Let Kp = βK̂p , Ki = α βK̂p , where β ∈ R+ satisfies

β > ‖ Φ(ŝ) ‖ . (13)

Then an Sh-stabilizing PID controller Cpid is given by

Cpid = βK̂p +
α β

s
K̂p +

s

τs + 1
Kd . (14)

For Kd = 0, (14) is a PI-controller. ¤

Proof of Proposition 1: Substitute ŝ = s + h as in (3)-(5).

Then an LCF of Ĝ(ŝ) is Ĝ(ŝ) = Ŷ −1X̂ := ( Ĝ
−1

(ŝ) )−1I .

Write the controller Cpid(s) given in (14) as

Cpid(s) = (
s

s + α
Cpid)(

s I

s + α
)−1

= (βK̂p +
s

(s + α)

s

(τ s + 1)
Kd)(

s I

s + α
)−1. (15)

Substitute ŝ = s + h into (15) to obtain an RCF of Ĉpid(ŝ)
as in (6), with ρ = α − h. Then

Ĉpid(ŝ) = ( βK̂p

+
(ŝ − h)

(ŝ − h + α)

(ŝ − h)

(τ(ŝ − h) + 1)
Kd)(

(ŝ − h)

ŝ − h + α
I)−1, (16)

where (1 − τh) ∈ R+ and (α − h) ∈ R+ by assumption.

By (2), Ĉpid(ŝ) in (16) stabilizes Ĝ(ŝ) if and only if Mβ(ŝ)
is S0-unimodular:

Mβ(ŝ) = Ŷ (ŝ)
(ŝ − h)

ŝ − h + α
I + X̂(ŝ)

(ŝ − h)

ŝ − h + α
Ĉpid(ŝ)

= Ĝ
−1

(ŝ)
(ŝ − h)

ŝ − h + α
I +

(ŝ − h)

ŝ − h + α
Ĉpid(ŝ)

= β K̂p +
(ŝ − h)

(ŝ − h + α)
[ Ĝ

−1
(ŝ) +

(ŝ − h)

τ(ŝ − h) + 1
Kd ]

= βK̂p(I+
1

β
K̂

−1

p

(ŝ − h)

(ŝ − h + α)
[Ĝ

−1
(ŝ)+

(ŝ − h)

τ(ŝ − h) + 1
Kd])

= β K̂p ( I +
1

β
Φ(ŝ)

(ŝ − h)

(ŝ − h + α)
) , (17)

where K̂p is unimodular and G−1(s) ∈ M(Sh) by assump-

tion. If α > 2h as assumed, then β > ‖Φ(ŝ)‖ implies

‖
1

β
Φ(ŝ)

(ŝ − h)

(ŝ − h + α)
‖ ≤

1

β
‖Φ(ŝ) ‖ ‖

(ŝ − h)

(ŝ − h + α)
‖

=
1

β
‖Φ(ŝ) ‖ < 1; (18)

hence, Mβ(ŝ) in (17) is S0-unimodular. Therefore, Ĉpid(ŝ)
an S0-stabilizing controller for Ĝ(ŝ); hence, Cpid is an Sh-

stabilizing controller for G. ¤

B. Strictly-proper plants with no other zeros in Uh

Consider the class G1∞ of m × m strictly-proper plants

that have no other (transmission or blocking) zeros in Uh as

described in (9). The plants G ∈ G1∞ are not all Sh-stable

but 1
s+a

G−1 ∈ M(Sh) for any a > h. An LCF of G(s) is

G = Y −1X = (
1

s + a
G−1)−1(

1

s + a
I ) ; (19)
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in (19), G(∞) = 0, and Y (∞)−1 = (s + a)G(s)|s→∞ =
s G(s)|s→∞ . The plants in G1∞ are strongly stabilizable,

and they admit S0-stabilizing PID controllers [6]. Proposi-

tion 2 shows that these plants also admit Sh-stabilizing PID

controllers for any pre-specified h ∈ R+ , and proposes a

systematic PID controller synthesis procedure.

Proposition 2: (PID for plants with one zero at infinity):

Let G ∈ G1∞ . Then there exists an Sh-stabilizing PID con-

troller, and Cpid can be designed as follows: Let Y (∞)−1 :=
s G(s)|s→∞ . Choose any Kd ∈ R

m×m, and τ ∈ R+

satisfying τ < 1/h. Choose any α ∈ R+ satisfying α > h .

Define Ψ(ŝ) as

Ψ(ŝ) := [Ĝ
−1

(ŝ)+
(ŝ − h)

τ(ŝ − h) + 1
Kd]

(ŝ − h)

(ŝ − h + α)
Y (∞)−1

− (ŝ − h)I. (20)

Let Kp = δY (∞) , Ki = α δY (∞) , where δ ∈ R+ satisfies

δ > ‖ Ψ(ŝ) ‖ + h . (21)

Then an Sh-stabilizing PID controller Cpid is given by

Cpid = δ Y (∞) +
α δ

s
Y (∞) +

s

τs + 1
Kd . (22)

For Kd = 0, (22) is a PI-controller. ¤

Proof of Proposition 2: Substitute ŝ = s + h as in

(3)-(5). Then an LCF of Ĝ(ŝ) is Ĝ(ŝ) = Ŷ −1X̂ :=

( 1

ŝ−h+a
Ĝ

−1
(ŝ) )−1( 1

ŝ−h+a
I ). Write the controller Cpid(s)

given in (22) as

Cpid(s) = (
s

s + δ
Cpid)(

s I

s + δ
)−1 =

(
(s + α)

s + δ
δY (∞) +

s

(s + δ)

s

(τ s + 1)
Kd)(

s I

s + δ
)−1. (23)

Substitute ŝ = s + h into (23) to obtain an RCF of Ĉpid(ŝ)
as in (6), with ρ = δ − h. Then

Ĉpid(ŝ) = (
(ŝ − h + α)

ŝ − h + δ
δ Y (∞)

+
(ŝ − h)

(ŝ − h + δ)

(ŝ − h)

(τ(ŝ − h) + 1)
Kd )(

(ŝ − h)

ŝ − h + δ
I)−1, (24)

where (1− τh) ∈ R+ and (δ−h) ∈ R+ by assumption. By

(2), Ĉpid(ŝ) in (24) stabilizes Ĝ(ŝ) if and only if Mδ(ŝ) is

S0-unimodular:

Mδ(ŝ) = Ŷ (ŝ)
(ŝ − h)

(ŝ − h + δ)
I + X̂(ŝ)

(ŝ − h)

(ŝ − h + δ)
Ĉpid(ŝ)

= Ŷ (ŝ)
(ŝ − h)

(ŝ − h + δ)
I +

1

(ŝ − h + a)
I

(ŝ − h)

(ŝ − h + δ)
Ĉpid(ŝ)

= [
δ

ŝ − h + δ
I +

(ŝ − h)

(ŝ − h + δ)(ŝ − h + α)
[Ŷ (ŝ)(ŝ − h + a)

(ŝ − h)

(τ(ŝ − h) + 1)
Kd]Y (∞)−1]

(ŝ − h + α)

(ŝ − h + a)
Y (∞)

= [I +
(ŝ − h)

(ŝ − h + δ)
[( Ŷ (ŝ)Y (∞)−1 (ŝ − h + a)

(ŝ − h + α)
− I) +

(ŝ − h)

(τ(ŝ − h) + 1)(ŝ − h + α)
KdY (∞)−1] ]

(ŝ − h + α)

(ŝ − h + a)
Y (∞)

= [I +
1

(ŝ − h + δ)
Ψ(ŝ)]

(ŝ − h + α)

(ŝ − h + a)
Y (∞). (25)

Then Mδ(ŝ) in (25) is S0-unimodular for δ ∈ R+ satisfying

(21) since δ > ‖Ψ(ŝ)‖ + h implies

‖
1

(ŝ − h + δ)
Ψ(ŝ) ‖ ≤ ‖

1

(ŝ − h + δ)
‖ ‖Ψ(ŝ) ‖

=
1

δ − h
‖Ψ(ŝ) ‖ < 1.

Therefore, Ĉpid(ŝ) an S0-stabilizing controller for Ĝ(ŝ);
hence, Cpid is an Sh-stabilizing controller for G. ¤

In Example 1, we consider the two-input two-output

linearized process model of an unstable batch reactor (also

considered in e.g., [8], [9]):

Example 1: Consider the linearized model of an unstable

batch reactor as ẋ = Ax + Bu, y = Cx + Du, where

A =









1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104









,

B =









0 0
5.679 0
1.136 −3.146
1.136 0









, C =

[

1 0 1 −1
0 1 0 0

]

, D = 0 .

The transfer-function G is given by:

G =
1

d

[

g11 + h11 g12 + h12

g21 g22

]

,

where d = s4 + 11.6680s3 + 15.7538s2 − 88.2911s +
5.5406, g11 = 0.0008s2 + 29.2256s + 233.6673,

g12 = −(21.1254s2 + 111.0942s + 26.2766), g21 =
5.6790s3 + 42.6665s2 − 68.8304s − 106.8024, g22 =
9.4304s + 15.1503, h11 = 0.0008s + 29.7745, h12 =
−3.1460s3 − 11.5490s2 + 21.2688s − 5.5279. The poles

of G are at {1.9910, 0.0635,−5.0566,−8.6659}. The finite

transmission-zeros are at {−1.1916,−5.0362,−5.5098} and

G has a blocking-zero at infinity. Therefore, we can design

PID controllers such that the closed-loop poles have real-

parts less than −h for any h < 1.1916 following the proce-

dure in Proposition 2. Suppose h = 1. Since the transmission
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zero −5.0598 and the pole −5.0566 are close to each other,

G−1(s) can be approximated by a one order lower transfer

matrix. By substituting s = ŝ − h, Ĝ−1(ŝ) = G−1(ŝ − h)
becomes

Ĝ−1(ŝ) =
1

∆

[

G11 G12

G21 G22

]

,

where G11 = 9.4304ŝ + 5.7199, G12 = 3.1460ŝ3 +
23.2364ŝ2 + 33.9146ŝ − 28.4925, G21 = −5.6790ŝ3 −
25.6295ŝ2 + 137.1264ŝ + 0.9845, G22 = 0.0008ŝ2 +
29.2248ŝ+234.2162, ∆ = 17.8661ŝ2+75.5340ŝ+13.8160.

For simplicity, we choose Kd = 0 and design a PI-

controller; the term Kd can be varied depending on other

design specifications that are to be satisfied. Choosing

α = 11 > h satisfying α > h, with Y (∞)−1 =
[

0 −3.146
5.679 0

]

, we compute ‖Ψ(ŝ) ‖ = 9.9385. There-

fore, (21) is satisfied for δ > 10.9385. We choose δ = 12
and obtain the PI-controller from (22) as

Cpi = δ Y (∞)+
αδ

s
Y (∞) = (1+

11

s
)

[

0 2.1130
−3.8144 0

]

.

The corresponding closed-loop poles with this

controller are at {−8.0772 ± j7.9389,−5.5164 ±
j7.8895,−7.2698,−5.0565,−1.2107}, and all have

negative real-parts less than −h = −1. Due to the integral-

action in the designed controller, the constant reference

inputs applied at r are tracked asymptotically at the

output y with zero steady-state error. Other values can be

chosen for the various parameters if additional performance

specifications are to be satisfied in addition to closed-loop

stability with sufficient damping and asymptotic tracking of

constant reference inputs. ¤

Example 2: The systematic design procedure in Proposi-

tion 2 has some free parameters that may be possible to

choose in order to fulfill additional performance criteria. In

this example, we will show a preliminary result regarding

using these free parameters along the same line as in [2].

Consider the same system as in Example 1. In Fig. 2, the

step response of the closed loop system is shown by the

dotted line.

Suppose that we want to get less overshoot with a slower

rising time. We can choose a model system Tm(s) such that

Tm12(s) = Tm21(s) = 0 and Tm11(s) = Tm22(s) equals the

same prototype second order model plant, with ζ = 0.7 and

ωn = 10.56; i.e., Tm =
ω2

n

s2 + 2ζωs + ω2
n

. The step response

for Tm(s) is shown in Fig. 2 as the dashed lines.

To make a comparison, we use the same h = 1 as in

Example 1. To maintain the PID controller structure, we

choose a small τ = 0.05. Denote the step response of the

model plant Tm as sm(t). The goal is to make the actual

closed-loop step response as close as possible to sm(t). That

is, we consider the cost function

error =
1

2.5

2
∑

i=1

2
∑

j=1

∫ 2.5

0

(soij(t) − smij(t))
2dt, (26)
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Fig. 2. Step responses for three transfer matrices in Example 2

where so(t) denotes the step response for a choice of (α, δ,

Kd). The goal is to minimize error by choosing the best

(α, δ, Kd), subject the simple linear constraint (α > h
and the complex nonlinear constraint (21). The MATLAB

function ”fmincon” is used to solve the problem by using

the controller in Example 1 as the initial point. The optimal

controller has the following coefficients in (22), and shows

the derivative part does help to improve the performance:

α = 10.3368, δ = 11.6285, Kd =

[

−0.0280 −0.0169
−0.0848 −0.0597

]

.

The step response of the optimal design corresponds to the

given model plant is shown in Fig. 2 by the solid lines. We

can see that it is closer to the given model plant than the

original design. ¤

C. Strictly-proper plants with two zeros at infinity

Consider the class G2∞ of m × m strictly-proper plants

that have no other (transmission or blocking) zeros in Uh as

described in (10). The plants G ∈ G2∞ are not all Sh-stable

but 1
(s+a)2 G−1 ∈ M(Sh) for any a > h. An LCF of G(s)

is

G = Y −1X = (
1

(s + a)2
G−1)−1(

1

(s + a)2
I ) ; (27)

in (27), G(∞) = 0, and Y (∞)−1 = (s + a)2G(s)|s→∞ =
s2G(s)|s→∞ . The plants in G2∞ are strongly stabilizable,

and they admit S0-stabilizing PID controllers [6]. Proposi-

tion 3 shows that these plants also admit Sh-stabilizing PID

controllers for any pre-specified h ∈ R+ , and proposes a

systematic PID controller synthesis procedure.

Proposition 3: (PID for plants with two zeros at infinity):

Let G ∈ G2∞ . Then there exists an Sh-stabilizing PID con-

troller, and Cpid can be designed as follows: Let Y (∞)−1 :=
s2 G(s)|s→∞ . Choose any α ∈ R+ satisfying α > h .

Define Γ(ŝ) as

Γ(ŝ) :=
(ŝ − h)

(ŝ − h + α)2
Ĝ

−1
(ŝ)Y (∞)−1 − ŝ I . (28)

1853

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20, 2009 at 05:47 from IEEE Xplore.  Restrictions apply.



Let µ ∈ R+ satisfy

µ > 2 ‖ Γ(ŝ) ‖ + h . (29)

Then an Sh-stabilizing PID controller Cpid is given by

Cpid =
(µ − h)2 (s + α)2

s (s + 2µ − h)
Y (∞) . (30)

¤

Proof of Proposition 3: Substitute ŝ = s + h as in

(3)-(5). Then an LCF of Ĝ(ŝ) is Ĝ(ŝ) = Ŷ −1X̂ :=

( 1

(ŝ−h+a)2
Ĝ

−1
(ŝ))−1( 1

(ŝ−h+a)2
I). Write the controller

Cpid(s) given in (30) as

Cpid(s) = (
s(s + 2µ − h)

(s + µ)2
Cpid)(

s(s + 2µ − h)

(s + µ)2
I)−1

= ((µ − h)2
(s + α)2

(s + µ)2
Y (∞))(

s(s + 2µ − h)

(s + µ)2
I)−1. (31)

Substitute ŝ = s + h into (31) to obtain an RCF of Ĉpid(ŝ)
as

Ĉpid(ŝ) =

(
(µ − h)2(ŝ − h + α)2

(ŝ − h + µ)2
Y (∞))(

(ŝ − h)(ŝ + 2µ − 2h)

(ŝ − h + µ)2
I)−1,

(32)

where (µ − h) ∈ R+ by (29). By (2), Ĉpid(ŝ) in (32)

stabilizes Ĝ(ŝ) if and only if Mµ(ŝ) is S0-unimodular:

Mµ(ŝ) = (Ŷ (ŝ) + X̂(ŝ)Ĉpid(ŝ) )
(ŝ − h)(ŝ + 2µ − 2h)

(ŝ − h + µ)2

= Ŷ (ŝ)
(ŝ − h)(ŝ + 2µ − 2h)

(ŝ − h + µ)2
I

+
1

(ŝ − h + a)2
I
(µ − h)2(ŝ − h + α)2

(ŝ − h + µ)2
Y (∞)

=
(ŝ − h + α)2

(ŝ − h + a)2
[

(µ − h)2

(ŝ − h + µ)2
I +

(ŝ + 2(µ − h))

(ŝ − h + µ)2
Ŷ (ŝ)

(ŝ − h + a)2

(ŝ − h + α)2
(ŝ − h)Y (∞)−1]Y (∞)

=
(ŝ − h + α)2

(ŝ − h + a)2
[I +

(ŝ + 2(µ − h))

(ŝ − h + µ)2
Γ(ŝ) ]Y (∞). (33)

Then Mµ(ŝ) in (33) is S0-unimodular for µ ∈ R+ satisfying

(29) since µ > 2 ‖Γ(ŝ)‖ + h implies

‖
(ŝ + 2(µ − h))

(ŝ − h + µ)2
Γ(ŝ) ‖ ≤ ‖

(ŝ + 2(µ − h))

(ŝ − h + µ)2
‖ ‖Γ(ŝ) ‖

=
2

µ − h
‖Γ(ŝ) ‖ < 1.

Therefore, Ĉpid(ŝ) is an S0-stabilizing controller for Ĝ(ŝ);
hence, Cpid is an Sh-stabilizing controller for G. ¤

Example 3: Consider the MIMO system

G =

[

2(s+3)
(s+2)(s−4)(s−8)

1
(s+5)(s+20)

(s+5)
10(s+3)(s+6)(s+7)

(s+4)
(s+9)(s2−6s+12)

]

, (34)

which has no finite zeros with real-parts larger than −2.3064.

Thus we can choose h = 1. By choosing α = 2, we can

compute ‖Γ(ŝ) ‖ = 79.1849 from (28). Choose µ = 162
to satisfy the inequality in (29). The maximum of the real-

parts of the closed-loop poles is less than −1.1319. Thus the

requirement is fulfilled. ¤

III. CONCLUSIONS

Systematic PID controller designs were proposed for LTI,

MIMO plants, where closed-loop poles are placed in the

left-half complex-plane to the left of the plant zero with

the largest negative real-part. The plants under consideration

may be stable or unstable; there are no restrictions on the

plant poles and no restrictions on the zeros in the region of

stability with real-parts less than −h. However, the zeros

in the unstable region are restricted. We showed that for

plants that have no zeros in the unstable region and either

one or two zeros at infinity (as described in (19) and

(27), respectively) it is possible to design PID controllers

such that the closed-loop poles have negative real-part less

than any prescribed −h. The synthesis method focuses on

the objective of shifting the real-part of the closed-loop

poles away from the origin, which ensures stability margins;

assignment of the imaginary-part is not within the design

objectives and scope.

Due to using PID controllers with non-zero integral-terms,

the closed-loop systems are guaranteed to achieve asymptotic

tracking of constant reference inputs with zero steady-state

error. The proposed synthesis method allows freedom in the

choice of parameters, which may be used to satisfy additional

performance specifications.
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