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Abstract

A two-channel multiinput-multioutput linear time-
invariant decentralized control system is analyzed in a gen-
eral algebraic framework. Necessary and sufficient condi-
tions for decentralized stabilizability are obtained in an
algebraic setting and interpreted in terms of fixed-
eigenvalues in the case of rational transfer functions. The
class of all decentralized stabilizing compensators is given;
this class is parametrized by two parameter matrices, which
are not completely free. The results apply to distributed or
lumped, discrete-time or continuous-time systems.

L Introduction

In large scale systems, we often encounter restrictions
on the feedback controller structure. These systems have
several local control stations; each local controller observes
only the corresponding outputs. Such decentralized control
results in a block-diagonal controller-matrix structure.

A multi-channel plant P with rational function entries
can be stabilized by a decentralized dynamic output-
feedback compensator if and only if P has no unstable
decentralized fixed-eigenvalues (misleadingly called fixed-
modes in the literature) with respect to block-diagonal real
constant output-feedback [Wan.1]. Decentralized fixed-
eigenvalues can be characterized in various ways and inter-
preted in terms of transmission-zeros [And.1, Cor.1, Dav.1,
2]. An algebraic characterization of fixed-eigenvalues
using left-factorizations of the plant is given in [And.1].

Decentralized compensator synthesis methods for
linear time-invariant systems are available in the literature;
these procedures do not result in an explicit expression for
the class of all stabilizing compensators. The original
method in [Wan.1] uses state-space techniques to move all
unstable controllable and observable modes to the lefi-half
complex plane by applying feedback to each channel
sequentially; an algorithm that includes improper plants is
given in [Dav.2]. In [Cor.1], if the plant is strongly-
connected, the system is made stabilizable and detectable
through one channel by applying appropriate feedback to all
other channels (see also [Vid.2]). An N x N plant, which
has no unstable fixed-eigenvalues with respect to diagonal
constant feedback, is considered in [Giig .1]; using polyno-
mial algebra, an N-step algorithm is given to determine a
compensator which moves the poles of this square plantto a
symmetric region of stability.

In this paper, we obtain necessary and sufficient condi-
tions on P for stabilizability by a decentralized dynamic
compensator in a completely general algebraic framework;
hence the results are applicable to distributed and Iumped,
continuous-time and discrete-time systems. Decentralized
stabilizability conditions turn out to be certain Smith-form-
like structures that must be satisfied by coprime factoriza-
tions of the plant P. When the compensator structure is
required to be block-diagonal as in decentralized output-
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feedback, finding the class of all stabilizing decentralized
compensators is complicated; the task is to find a strucrured
Bezout identity where the coprime factorizations of P
satisfy decentralized stabilizability conditions. For plants
that satisfy these conditions, we parametrize the class of all
stabilizing decentralized compensators; this class has two
parameter matrices (the parameter matrices satisfy a unimo-
dularity condition).

The paper is organized as follows: The algebraic set-
ting is explained in Section II. Section III gives the system
description; to simplify derivations, we consider a two-
channel multiinput-multioutput system in detail (see Figure
1). All results can be extended to m—channels [Des.1].
Conditions on coprime factorizations of P for decentralized
stabilizability and the set of all stabilizing decentralized
compensators Cy; are given in Section IV. In Section V, the
main results of Section IV are interpreted when the plant
can be represented by a transfer matrix with rational func-
tion entries; it is shown that the decentralized stabilizability
conditions of Section IV in fact generalize the requirement
that the system has no fixed-eigenvalues [And.l, Wan.1].
An algorithm is given for designing stabilizing decentral-
ized compensators for a given strictly proper P based on
any of its right-coprime factorizations.

II. Algebraic framework

2.1. Notation [Lan.1, Vid.1]: H is a principal ring (i.e., an
entire commutative ring in which every ideal is principal).
m (H ) is the set of matrices with elementsin H.J < H
is the group of units of H. I < H is a multiplicative sub-
set, 0¢el ,1el.G=H/I ={nid:n € H,
d e I} is the ring of fractions of H associated with [ .
Gy is the Jacobson radical of G ;

Gi={x e G:(+xy)' e G, forally e G }.
2.2. Example (Rational functionsins): Leti4 > C, be
a closed subset of C, symmetric about the real axis, and let
C\U be nonempty; let U, :=U U { e }. The ring of
proper scalar rational functions (with real coefficients)
which are analytic in U , denoted by R, (s), is a principal
ring. Let H be Ry (s); by definition of J, f e J implies
that f is a proper rational function, which has neither poles
nor zeros in U, . We choose / to be the multiplicative sub-
set of R, (s) such that f e [ implies that f () is a
nonzero constant in R; equivalently, ] < R, (s) is the set
of proper, but not strictly proper, real rational functions
which are analytic in 4. Then R, (s)/] is the ring of
proper rational functions R, (s5). The Jacobson radical of
R, (s) is the set of strictly proper rational functions Ry, (s).
2.3. Definitions (Coprime factorizations in H ):

(i) The pair (V,,D,) , where N, ,D, € m (H), is called
right-coprime (r.c.) iff there exist U, ,V, € M (H ) such
that V, D, + U,N, = I; (ii) the pair (N, D,) is called a
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right-fraction represemsation (rf.r.) of P ¢ m(G) iff
D, is square, detD, € I and P =N,D,"; (iii) the pair
Ny, Dp) is called a right-coprime-; fracaon representation
(rc..r) of P e m(G) iff (N,,D,) is an rfr. of
P and (N D)1src (lv)'l‘hepau(D N) where
D N € M(H), is called Iq’t-copmne (l.c.) iff there
exzstU V em(H)suchthatNU +D =1;
(v)thepmr(Dp,N ) is called a left fracnon representanon
QAfr)of P € m(G)xffD is square, detD, e I and
P= D;lN,, (vi) the pair (DP,N ) is called a left-
coprime-fraction representation (Lefx.) of P € m(G)
iff (D N )is an Lfr. of P and (D N ) is Le. (vii)
Thcmple( »D,Ny), where N, , D, N, e m®H),is
called a btcopnme -fraction representation (b.c.f.r.) of
P e m(G)xffthcpmr(Np,,D)xsnght-copnme the
pair D ,Ny) is left-coprime,
detD € I and P = ND“N,, Note  that
Pe m(G)xssomeumugwenasP N,.D7'N, +8,,
where S, € m(H) and (N,,.D,N,) is a bicoprime
(b.c.) tnple In this case, the bcfr. is given by
(Nprs D, Npi, S,) [Vid.11.
1. System description

Consider the decentralized control system S(P,Cy)

shown in Figure 1.
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Figure 1: The two-channel decentralized control system

SP,Cp).
3.1. Assumptions: )
(A) Let P € G™™ be a two-channel plant, where n,
= n,y+ Ry, M =t R+ . Let (Np,Dp) be anrcfr. of
.| Mo . | Pp no 1XN
P, where N, sz . D, = Dpz N,y e H .
Np2 € HMe?N p =~ e HM1 HMXR
D, N, )bea.nlc.f.r of P, wheteD = E;,l ! Dpal,
. no Ll
NP _.‘LNPI : sz , Dpl e H s Dp2 €
HoXho2 N, e H™™i2 1
N,

H’lox"il’ ﬁpz
(NVprs D, Ny) be a bofr. of P where N, N"‘] e

1 €

2
Hnom, D € Hm, Nﬂr[Npﬂ Z Nplz]z €
H"xx: N, pri € }{'nolxn N, pr2 € H N’“ €
Hn lel EH

B) Let C; € G¥*™ be a decemralized compensator,
where C‘ —dx'ag Cl Cz N Cl Gmlm‘ Cz
e GPi?XPo2 1 (D.,,N.;) be an Lofr. of C, and let
°t ni1xnL

(D,,z, N_,) be an Lc.fr. of C,, where D,, e H

D 2 € Hﬂ«zxmz N., e H’th’:l N e H’h2x'lo2
= 10 G . |Ner1 0},
Let Dc::.- 65«:.2’ N, = (;ch, note that
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O, N, )isanlcfr., . of Cy 1fandonly1f(Dcl,NC,)1san
Lefr. of C; and (D4 N,.,) is an lcfr. of C, Let
(N.y,D.y) be an refr. of C,; and let V.5, D ;) be an

rcfr. of Cp, where N, € H™1XMol iy , ¢ HMi2XM02
D,, HMeXnol p . o Hnozxnoz‘ Let

—|Pe1 0 —|Nero |, ,
D= g'p,,|* Ne={ o n_,|+ note that OV, D) is

an r.c.f1. of Cy4 if and only if (N4, D.,) is an r.c.fir. of C,
and (N9, Dy isanrcfr.of Cy. 0O

If P satisfies Assumption 3.1 (A) we have the general-
mdBemutxdcnntym(Sl)beloww( »Dp) be anr.c.
pan'andlct(D,,,N)bcanl.cpan'andletND
D,N,; then there are matrices V,, U,, Up, ,em(H)

D, __(_]P
P N, VY,

suchthat
Ve In g
[—ﬁp D, ]=[01~]- 3.1

For the bcfrr. GVP,,D Np,)ofP we have two generalized
Bezout identities: Eor_the rc. pair (N, ,D) , there are
matrices V,,, Up,, X ,Y , U, V e M(H)suchthat

7 ¥][27)-
X Y ||IN, V|~

vV, U, U D -U In
pr Yprl Vpr2 =
[—x ¥, Y,] Nper vy -[o 1 ] G2)
2

U,

prl
I/

for the Lc. pair (D N,,) tbereammalrmV,,,U,,,X Y,
U,V € mH ) soch that

s % -

Vv
D Ny Npuaj| [ H 0
v vy vy||Um Y=g | G
pi2 T2
bg| u,y
Let§ ;'12 , @= uz;,themapH— TR
y2 “2
is called the /O map. In terms of P and Gy, Hg is given by
PUn +CyPY! P, +CiPYC,
H_ = . (34

T T CyP U +C4P)!

3.2, Definition (F-stability): The system S (P, C,) is said
to be H-stable iffHg € mH).

33. Analysis: Let P =N,D,; %, let C =D;'N,, where
(N D)manr.c pauasmAssmnpuonSl(A),
(D,,,Nc) is an l.c. pair as in Assumption 3.1 (B) (see Fig-

Un; +CaP)YCy

ure 2); &, denotes the pseudo-state of P. S(P,C ) is then
described by (3.5)-(3.6) below:
~ - ~ - Uy
L:tlel"'ﬁclel gp Dcl__o NCI_O g 3.5)
Dc2Dp2+Nc2Np2 0 D,y 0 Ne2 “l' ’ )
.uz'



pr Y1 0 00 o0|%
P2 _17Y2 0 0 0 QU2
.00

Figure2: S(P,C,)withP =N,D,* ,C; =D;'N..
Equations (3.5)-(3.6) arc in the form Dy &, = N“u .
Ng1&, =y =Sy u , where (Ngy, Dyy) is an r.c. pair and
(D41, Np1) is an Lc. pair. If detDy; € 1, then

Hg = Np\DiNL1 + Sy € M(@G).
S(P,Cy) is H-stable if and only if Dg] € mH)
(equivalently, detDy, € J and hence, Dy, s
H-unimodular). Dy can be expressed several ways:
DDy +N.1Np, ]

Dy, = D eDp +N N,
H1 Dc p2+Nc2Np2

— ~ o~ - Dpl
cl 0 Ncl 0 Dp Dcl cl 0 Npl
0 Dy O N[N, | 0 0 Dy Neg||Dpa

N,y

and detDy, can also be written as detDy, =
deth cdet( + C4P )detD,. By normalization and due to the
block-dlagonal compensator structure, Dy, € M (H) is
H-unimodular if and only if there are block-diagonal
matrices V, = D, » U, == N. € M(H) such that
V,D, +UN, = I

IV. Main results
In this section the plant P satisfies Assumption 3.1 (A).
4.1. Definition (H-stabilizing decentralized compensa-
tor): C, is called an H-stabilizing decentralized compen-
sator for P (later abbreviated as C, H-stabilizes P) iff
C; € G™*% saisfies Assumption 3.1 (B) and the sys-
tem S (P, Cy ) is H-stable.
4.2. Definition (Class of all H-stabilizing decentralized
compensators): The set
S4®)={C, :C,; H-stabilizes P} is called the set of all
H-stabilizing decentralized compensators for P .
4.3. Comment: The set S(P) of all centralized (full-
feedback) compensators that F/-stabilize P is given by

S®P)={C =(V,-ON,y'(U,+QD,):Q € mH)},
S®)={C =(T,+D,0)V,-N,0)": Q0 e mH) },

where V,, U, V,, U, are as in 3.1). f P ¢ m(G)
instead of M (Gs) then Q e m (H ) should be such that
det(V, ~N,Q) € 1 (equivalently, det(V, — QN,) € I).

44R. Theorem (Conditionson P = N, D ! for decentral-
jzed H-stabilizability): Let P e M(GS) satisfy
Assumption 3.1 (A); then there exists an F-stabilizing
decentralized compensator C, for P if and only if P has an

rc.fr. (Np Dp) such that
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Dy, Dy Dy,
Nyy| 7| Nu Ny

where E, € H (rivtno)x(rivtnot) i H_inimodular and
W, e H™1*M2 ang

Dy, _ Dy Dy _g] o Ip,

where E; € H (miztnoDX(iztno2) 1o H_unimodular and
W2 € H nozx'lil. D

Equation (4.1) implies that the pair (N, D
and similarly, (4.2) implies that (N 5, ng isr.c.
4.5L. Theorem (Conditions on P = D, 'N,, for decentral-
ized H-stabilizability): Let P p m (Gg)  satisfy
Assumption 3.1 (A); then there exists an F-stabilizing
decentralized compensator C,; for P if and only if P has an
Lefr. (D,,N,) such that

7 5 0 Ino -
[-NP1 D,l] =[-w2 0’]51‘,and

- -w
BEAEn S
where the H-unimodular matrices E,, E, and the matrices
W, e m@H», W, e m (H ) are defined in (4.1)-(4.2).
4.6. Comments: (i) Let W,,D,) be an rcfr. of P; then
( Y)xsanotherrcf.r of P 1fandonly1f(Xp,Y)—
(N R, D%.R) for some H-unimodular  matrix
R € H™*" By Theorem 44R, P can be H-stabilized

4.1)

InnO
AR

4.2)

11) is rc.

4.3)

4.4)

by a decentralized compensator if and only if any r.c.fir.
X Y,
o)Xy =] P Y, = | P Lof P
X, 1) X X, A Y, of P is of the form
;Pl gPl El 0 In,-l “(,)
Pl 1P p|... ...|| 0 1 R, 4.5)
Y,a| = |Dp2 , 0 I,
X,2 N,z 0 : Ey||W, 0

for some H-unimodular matrix R € H™*™ where E,
E, € m (H) are H-unimodular and W, W, € m (H ).

Sxmﬂarly, let (D N ) be an lcfr. of P; then
( X )1sanothcrlcf.r ofP 1fandon1y1f( X )=
(LD n}, for some  H-unimodular mamx
L e H™%% . By Theorem 4.5L, P can be H-stabilized

by C 1fandon1y1fanylcfr( P),
Y, = rY sz] . X, -—[xp1 )?,,2] of P is of the
form
EARARE A M
0 I,,:-W; 0 |[E[": o
=Ll W a a7 M- , 4.6
W, 0 0 In,i| g ot (4.6)

for some H-unimodular matrix L € H™*" (i) Sup-
pose that P 1sg1venbyabcf.r Ny D N,)andC,, is
given by an lcfr (DC,N ); apply Theorem 4.4R to the
refr. N,,D,) = (N, X,Y) of P ; P =N,D7'N,
em (Gs) can be H—stablhzed by a decentrahzed com-
pensator C, if and only if there exists an H—-unimodular
matrix R € H ™™ guch that



Y 1
[N,,iX] _E,[ o ‘31]12 , and @7
Ya | _p]0 "mfp 4.8)
Nox | “Edw, o|R: @
where E; e mM@EH) and Eze m@ ) are

H-unimodular, and W, € H"™2 W, ¢ HMo2XM1
Similarly if C4 is given by an rcf.r (N,_.,D ) then we
apply Theorem 4.5L to the Lefr. (DP,N y=F.XN, Nyp)
of P andooncludethaxPcanbcH—stabmzedbyadccen
tralized compensator C; if and only if there exists an
H-unimodular matrix L e H ™™ sych that

o 1
[ X Ny Yl] =L [_3,2 '{;‘]E;l ,and 49)
-w,
[ K Ny y,] =L[ o ,O}E 4.10)
where Ei' e m@H) and E;' e MH) are

H-unimodular and W, € m (H),w, e mH).

4.7. Theorem (Set of all H-stabilizing decentralized
compensators): Let P € M (Gy) satisfy Assumption 3.1
(A); let in addition an r.c.fr. (Np.Dp) of P satisfy condi-
tions (4.1) and (4.2) of Theorem 4.4R; equivalently, let an
Lefr. (D N ) of P satisfy conditions (4.3) and (4.4) of
Theorem 4.5L. Under these conditions the set Sg (P) of all
H-stabilizing decentralized compensators for P is given by

: DN,
Saer={c, =d‘¢8[cx Cz] =1 ch ON

= [111.-1591]51'1."'[1):25”:2] =

5:1 ﬁcl]
lx"ol’ QZ €

In, Q,/E;', for some Q,eH
H™ 20T quh that dex(l ., - Q W20, W) € J }; 4.12)
equivalently,

N..D3}
S, (P):= C=dia[C c]= ctéel 0
Py ={ c, gl Cy C2 0 N.D3

—N;1 -0, ~Ne2 -0,
=E =E Y f some
[Dcl] NW1p, 1" | Dea H Ip, or
0, € HM ol g, ¢ H™%"M02 gych that

det(l ., - QW0 \Wy) € J }. @4.13)

The Imp(Ql,Qz)  =d Cd’ Ql’ Qz € M(H), such that
det( p,, ~ QW20 W)) € J, C; € S4(P), is a bijec-
tion; for the same pair (@, @), (4.12) and (4.13) give the
same H-stabilizing C,.

4.8. Comments: (i) In (4.1)-(4.2) (equivalently, (4.3)-(4.4))
if either W, or W, is zero (i.e.,if bothof Dy, =0 and Ny =
01in (4.1) or both of D5; = 0 and Ny; =0 in (4.2) ), then for
al Q. Q; € MEH) , del, +OW) =

Iny QW
dc[Q:“}z Iln.’zl] = detl p,, - Q2W201W)) = 1 and

hence, the set S (P) in (4.12) (or (4.13)) is parametrized
by two free parameters Q, and Q, € M (H). (i) In
Theorem 4.7, if P € M (G ) instead of M (G ) , then Q,
e MH)and Q, € M (H ) should be chosen so that
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deth; = det([lmfgl]Efl I'(;"‘J ) € I and detD,,
= de:([lmigz]az-
det(1,, +QW) € J.

V. Application to stable rational functions

Now we consider the case when H =Ry (s) as in
Example 2.2. This principal ring allows us to show the con-
nection between our results and those of (Wan.1, And.1]. In
[And.1], a rank test for fixed-eigenvalues was given in
terms of a left-fraction representation of P. A similar test is
useful in our approach; we give rank conditions in terms of
anr.cfr., anlcfr and a befr. of P. We start by consid-
ering real constant decentralized compensators.

Consider the system S (P, K, ), which is the same
S(P,Cy) shown in Figure 1, where C, =diag[b21 CzT
is laced by the real constant mawix K; =
diag| K, K,] LKy e R¥WIMel g, e RVFM2 T
plant P still satisfies Assumption 3.1 (A), where H is
replaced by Ry (s). Equations (3.5)-(3.6) are now replaced
by (5.1)-(5.2) describing the system S (P, K, ) with constant

1[18"’}) e I in addition to

decentralized output-feedback control:
_ Uy
D, +KN,, Iny 0 Ky O]) 0 1
Dya+KNyy | % =| 0 I, 0 Ky||uy|® ©D
u2'
'zﬂ il 0 0 o0
p2 _{72 0 0 00 2
oot | =|ye| *| 1m0 00 us (5.2)
| Dp2 73 0 Tmz 00 uy
The closed-loop system S (P, K, ), described by (5.1)-(5.2),
Dy +K Ny,
Pl 1
st—stablelfandonlylfdct[ 2+K2Np e J. Furth-

ermore, s, € U, is an eigenvalue of the closed-loop sys-
tem if and only if

Dp 105,) +Kl~p 1(55)
Dp2(so) +K2Np2(sa) =0.

5.1. Definition (Decentralized fixed-eigenvalue): The
plant P is said to have a decentralized fixed-e{genvalue at
s, € U (with respect to Ky = diag| K, K, | )iff (5.3)
bolds for all K, K, € M (R).
If s, € U, is a fixed-cigenvalue, then obviously
s, € U, is an cigenvalue of the open-loop system (i.e.,
. Dp l(so)
with Kl —0, Kz—o,(kt DpZ(so)
eigenvalue of P); this eigenvalue 5, € U, remains as an
eigenvalue of the closed-loop system for all real constant
decentralized feedback compensators. We prefer to call
suchs, € U, a fixed-eigenvalue rather than a fixed-mode;
although the ecigenvalue at 5, € U, remains fixed
irrespective of the constant decentralized compensator, the
eigenvector v, associated with the fixed-eigenvalue
S, € U, dependsonKand K,.

(5.3)

=0 and hence, s, is an



Fixed-eigenvalues are those eigenvalues of the plant which
cannot be moved by any real constant decentralized feed-
back. These fixed-cigenvalues remain fixed even under
dynamic decentralized output-feedback, in particular, under
complex constant decentralized output-feedback.

S2R. Theorem (Rank test on (N,,D,) for fixed-
cigenvalues and H-stabilizability): Let
P € M®,(s)), P =N,D," satisfy Assumption 3.1 (A)
where H is Ry (s); then statements (i)-(iv) below are
equivalent:

(i) P has no decentralized fixed-cigenvalues in U, ;

(ii) for any r.c.for. (Np , Dp) of P as in Assumption 3.1 (A),

Dpl(s)

rank N,1(5) 2n;;, foralls € U, , and 5.4)
D, 4(s)
pz (.5)

rank N,2(s) 2n;,, foralls € U, ;

(iii) conditions (4.1)-(4.2) of Theorem 4.4R hold; i.e., an
rc.fr. (N,,D,,)ofP can be chosen so that

D,y(s)| _ Imy 0

[N:l(-")] ‘E‘(’)[ 0 Wl(s)] ' ©8
D, As) 0 Ina

[sz(s)] =EZ(S)[W2(S) ] ’ (6 X))

where E(s), Exs) € MRy (s)) are Ry—unimodular
and W,(s), Wo(s) € M R, ()
(iv) there exists a compensator C; = diag| C, Cz]
(satisfying Assumption 3.1 (B) ) which H-stabilizes P .
S§.3L. Theorem (Rank test on (DP,N‘,) for fixed-
eigenvalues and _ _H-stabilizability): Let
P € MMy(s),P =D,'N, satisfy Assumption 3.1 (A)
where H is R, (s); then statements (i)-(iv) below are
equivalent:

(i) P has no decentralized fixed-cigenvalues in U, ;

(ii) for any Le.fx. (B, N, ) of P as in Assumption 3.1 (A),

ra’;k[—ﬁpl(s) ED-pl(s)] leol,fmans € ue and (5'8)
rank[—ﬁpz(s) ED—Pz(s)] 2n,,,foralls € Up; (59

(iii) conditions (4.3)-(4.4) of Theorem 4.5L hold; i.e., an
lcfr. (Dp,Np)ofP can be chosen so that

T i 1
[—Npl(s) : D,,(s)] = [_W‘;(s) '6”]1:‘1(:)’1, (5.10)

. -w
[—sz(s):Dpz(s)] ={ 6(’)1202]52@)-‘, (5.11)

where E (s), Ex(s) € MR, (s)) are Ry~unimodular
and W,(s), Wy(s) € M R, ()

(iv) there exists a compensator C; = diag| C, Cz]
(satisfying Assumption 3.1 (B) ) which H-stabilizes P.
5.4B. Theorem (Rank test on (N, ,D,Ny,) for fixed-
eigenvalues and [-stabilizability): Let P €
M R, (s)), P =N, D7'N,, satisfy Assumption 3.1 (A)
where H = Ry (s); then statements (i)-(iii) below are
equivalent:

(i) P has no decentralized fixed-eigenvalues in U, ; (ii) for
any b.cfur. (Npr ,D, Npl) of P as in Assumption 3.1 (A),
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-N,
’“""[Nﬁi& ’62(5)] 2n foralls € U, ,and (5.12)
'“”"[Nfr(zﬁ) _N’f)l(s)] 2n, foralls € Ue;  (5.13)

(iil) there exists a compensator C; = diag[ C, Cz]
(satisfying Assumption 3.1 (B) ) which H—stabilizes P.

5.5S. Remark (State-space description of P): Consider
P =C(sl,-A)"'B , where (C,A, B) is U, —stabilizable

__Cc 11
and U, —detectable. Let N, := v+a _s+alCal’
sly-A

porpmdtl” :=B=[31532] ,where—a € C\U,,
—-a € R;then (Npy» D, Np;) is a befr. of P. By Theorem
5.4B, the plant has no fixed-eigenvalues in U, iff condi-
tions (5.14)-(5.15) below hold [And.1]:

sly,-A -B
rank[ gl oz]zn,forans € U, ,and  (5.14)

D

sl

~-A B
rank[ C, ol] 2n,foralls € U, ; (5.15)

we omitted the factor # in (5.14) and (5.15) for simpli-

city. Note that conditions (5.14)-(5.15) need to be checked
only for those s € U, such that det(s/, —A)=0. The
derivation of conditions (5.14)-(5.15) is very simple due to
Theorem 5.4B.

5.6. Comments: (i) Theorem 5.2R states thats, € U, isa

fixed-eigenvalue if and only if either rank Dp1(s,) <ny
N, P l(so )
Dpofs,) .
or rank <n;5. Note that conditions (5.4) and
N, P 2(so )

(5.5) cannot both fail at the same time since this would
contradict that (Np'Dp) is a r.c, pair. Therefore, if
Dpi(s,) Dy os,)
rank N:l(so) =a < n;y, then rank N:Z(sa)
s, € U is a fixed-cigenvalue but not an eigenvalue
associated with a hidden-mode. Similarly, (5.8) and (5.9),
(5.12)+(5.13) or (5.14)-(5.15) cannot fail at the same time.
(ii) Theorem 52R states that if the system has no fixed-

2n,-2+aso

D
cigenvalues in U, , then the Smith form of | 7 :] is
) . P
Inyo W i . .
0w, (we assume that W, is also put in the Smith

J
D
form),andatthesameﬁmetheSmithfoxmof[N’:] is
P

01n2
W, 0
ate column permutations are made). Hence,s, € U, isa
fixed-eigenvalue of P iff either the n;th invariant factor of

D,y

pl

(W, is also put in the Smith form and appropri-

is zero at s, € U, or the n;oth invariant factor of

2| .
N:z is zero at 5, € U,. (ii) Let P € M R, ()

then in (5.6)-(5.7), since N,; , Npz € M Ry, (s)) , W
and W3 € MM,(s)); hence, for k=12




raukz E ;] <ny . Hence if (54)45.5) bold, then

D
N:: has exactly n;; invariant factors that are equal to 1.

iv) conditions (5.12)-(5.13) of Theorem 5.4B, we
obtain the following conditions on fixed-cigenvalues:

] Py Py
Rewrite P as Py Py =
N, DN, N,.D7N
prl Pl prl pi2
- - . (@) (A sufficient condi-
Np2D 'Nyy  Np 2D Ny

n for no fixed-eigenvalues in U, ): If (N,,,.D,Np,l) isa
b.c.fx. of Py , then the plant P has no fixed-cigenvalues in
U, ; (the same holds if (N2, D, Nppp) is a befir. of Poy).
chanstamethxssamecondmonmthesmc-spaoesemng
of Remark 5.58 where P,; = C,(sI, -A)'B, : if
(Cp(sly-A)B,) is = U, —stabilizable and
U, —detectable, then P has no fixed-cigenvalues in i, . (b)
(Some necessary conditions on the transmission-zeros of the
partial maps P;; if s, € U, is a fixed-eigenvalue): (1) Let
s, € U, be a fixed-cigenvalue; then either (5.12) fails
(and hence 5, € U, is a transmission-zero (t.2.) of Pyy)
or (5.13) fails (and heace 5, € U, is a t.z of Py ). (2)
Let Ry = Ry and Ryo = Rio M if S, € ue is a fixed-
cigenvalue, then s, isatz of Py, Py and of the plant P.
5.8. Algorithm (Decentralized compensator design):
Given: P € M (R,,(s)) satisfying Assumption 3.1 (A)
and conditions (5.4)-(5.5) in Theorem 5.2R. Step 1: Find
R“[—ummodular matrices L,, R, such that

D L
= 5 A 2: Find
Ll pl]Rl [ 0 N tep an
R,—unimodular  matrix' L, € M Ry (s)) such that
Lz([ ] = Ptloon ,where Dy, € R, (s) W2,
and(Dn,Dzl)lsanl.cpau- Step 3: Find a Bezout iden-

tity for the l.c. pair Dy, Dy):
[ Vo Ugl[ Y2 Uz In, 0 Find a Besont
5 B = a Bezo
| Dn Dpf| X2 Vu 0 1ny" ™ 7
identity for _ the _ rc. pair (N, Dp)
Ty Dol [Pm T w0 e Le
s v lle. w.l= ep 4:
| X2 || N W) 7] 01y, P
V2+U2V2,D UzUz, .
Ef! = &0, 7, |Lv E2' =
I, 0 )

o ~ = L,, and let W, = X,, W, =
NpUyUXy g, |2 ! » 72
AleYz. Step 5: Cd = diag[ Cl CZ] =
DNy 0 H-stabilizes the given

0 D Ncl
P e MR,(),  where [5c1 Ve1
It @B, [ Bai Fun) = [ I 03] 5"
for some Q;, 0, € M@®R,() such that

det(] , ~ QoW W) € J.
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VL Conclusions

In this paper we consider the linear, time-invariant
multiinput-multioutput decentralized control system shown
in Figure 1. We state necessary and sufficient conditions on
P for decentralized stabilizability in a completely general
algebraic setting (see Theorems 4.4R and 4.5L) and inter-
pret these conditions in terms of the fixed-cigenvalues of
the system in the case of stable rational functions (see
Theorems 5.2R and 5.3L). In Theorem 4.7 we give a com-
plete description of the set of all F—stabilizing compensa-
tors; this class is parametrized by two parameter matrices;
these matrices cannot be chosen completely independently
of each other. The class of all H-stabilizing compensators
is easily extended to m-channel decentralized control sys-
tems [Des.1]. For the stable rational functions case Algo-
rithm 5.8 shows how to find all Fi-stabilizing compensators
starting with any right-coprime factorization of P.
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