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Abstract
A two-channel muldinput-multioutput linear me-

invariant decentalized control system is analyzed in a gen-
eral algebraic framework. Necessary and sufficient condi-
dons for decentralized stabilizability are obtained in an
algebraic setting and interpreted in terms of fixed-
eigenvalues in the case of rational transfer functions. The
class of all decentalized stabilizing compensators is given;
this class is parametrized by two parameter matrices, which
are not completely free. The results apply to distributed or
lumped, discrete-time or continuous-time systems.

L Introduction
In large scale systems, we often encounter restrictions

on the feedback controller structure. These systems have
several local control stations; each local controller observes
only the corresponding outputs. Such decentralized control
results in a block-diagonal controller-matrix structure.

A multi-channel plant P with rational function entries
can be stabilized by a decentalized dynamic output-
feedback compensator if and only if P has no unstable
decentalized fzxed-eigenvalues (misleadingly called fixed-
modes in the literature) with respect to block-d`gonal real
constant output-feedback [Wan.l]. Decentalized fixed-
eigenvalues can be characterized in various ways and inter-
preted in terms of transmission-zeros [And.1, Cor.1, Dav.1,
2]. An algebraic characterization of fixed-eigenvalues
using left-factorizations of the plant is given in [And.l].

Decentalized compensator synthesis methods for
linear dme-invariant systems are available in the literature;
these procedures do not result in an explicit expression for
the class of all stabilizing compensators. The original
method in [Wan.l] uses state-space techniques to move all
unstable controllable and observable modes to the left-half
complex plane by applying feedback to each channel
sequentally; an algorithm that includes improper plants is
given in [Dav.2]. In [Cor.1], if the plant is strongly-
codnnected, the system is made stabilizable and detectable
through one channel by applying appropriate feedback to all
other channels (see also [Vid.2]). An N x N plant, which
has no unstable fixed-eigenvalues with respect to diagonal
constant feedback, is considered in [GU9.1]; using polyno-
mial algebra, an N-step algorithm is given to determine a
compensator which moves the poles of this square plant to a
symmetric region of stability.

In this paper, we obtain necessary and sufficient condi-
tions on P for stabilizability by a decentalized dynamic
compensator in a completely general algebraic framework;
hence the results are applicable to distributed and lumped,
contnuous-time and discrete-time systems. Decentralized
stabilizability conditions turn out to be certain Smith-form-
like structures that must be satisfied by coprime factoriza-
tions of the plant P. When the compensator structure is
required to be block-diagonal as in decentralized output-
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feedback, finding the class of all stabilizing decentaized
compensators is complicated; the task is to find a structured
Bezout identity where the coprime factorizations of P
satisfy decentralized stabilizability conditions. For plants
that satisfy these conditions, we parametize the class of all
stabilizing decentaized compensators; this class has two
parameter matrices (the parameter matrices satisfy a unimo-
dularity condition).

The paper is organized as follows: The algebraic set-
ting is explained in Section IL Section m gives the system
description; to simplify derivations, we consider a two-
channel muldinput-multioutput system in detail (see Figure
1). All results can be extended to m-channels [Des.l].
Conditions on coprim factorizations ofP for decentralized
stabilizability and the set of all stabilizing decentalized
compensators Cd are given in Section IV. In Section V, the
main results of Section IV are interpreted when the plant
can be represented by a transfer matrix with rational func-
don enties; it is shown that the decentralized stabilizability
conditions of Section IV in fact generalize the requirement
that the system has no fixed-eigenvalues [And.1, Wan.l].
An algorithm is given for designing stabilizing decentral-
ized compensators for a given strictly proper P based on
any of its right-coprime factorizations.

II. Algebraic framework
2.1. Notation [Lan.1, Vidl]: H is a principal ring (i.e., an
entire commutative ring in which every ideal is principal).
m (H) is the set of matrices with elements in H. J c H
is the group of units ofH. I c H is a multplicative sub-
set,0 I, eI. G=HII :=f nfd:n e H,
d E I) is the ring of fractions ofH associated with I
Gs is the Jacobson radical of G;
Gs(3:=(x e G :(l+xy)-1e G, forally E GC .
2.2. Example (Rational functions in s): Let U v' C. be
a closed subset of C, symmetric about the real axis, and let
C\ U be nonempty; let Ue := U u o . The ring of
proper scalar rational functions (with real coefficients)
which are analytic in U , denoted by Ru (s), is a principal
ring. LetH be Ru (s); by definition of J, f e J implies
that f is a proper rational function, which has neither poles
nor zeros in Ue X We choose I to be the multiplicative sub-
set of Ru(s) such that f e I implies that f(o) is a
nonzero constant in R; equivalently, I C Ru (s) is the set
of proper, but not strictly proper, real rational functions
which are analytic in U. Then Ru(s)/I is the ring of
proper rational functions 1Rp (s ). The Jacobson radical of
Rp (s ) is the set of strictly proper rational functions RP (s).
2.3. Definitions (Coprime factorizations in H):
(i) The pair (Np, Dp ), where Np, Dp E m (H), is called
right-coprime (r.c.) iff there exist Up , Vp e m (H) such
that V.pDp + UpNp = I ; 00s the pair (Np , Dp ) is called a
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right-fracton represention (r1r.) of P e m (G) if
Dp is square, detDp e I and P = NpDr-; (iii) the pair
(Np,Dp) is called a right-coprime-fracdon representation
(r.cf.r.) of P e m (G) iff (Np,DP) is an rtfr of
P and (Np,Dp) is r.c. (iv) The pair (D.,Np), where
D,Ihe m (H), isc ed left-coprime Lc.) iffthere
exist Up, Vp e m (H) such that pVup + = I;
(v) the pair (D9 , Np ) is called a lft-fraction representation
(Lf.r.) of P e m(G) iffD is square, detD9 e I and
P =D-N ; (vi) the pair (Dp,Np) is caled a left-
coprime-fracion representation (Lcf.r.) of P E m (G)
iff (Dp, Np ) is an lf. of P and (Dp, Np ) is Lc. (vii)
Thetriple(Np,D,Np,),whereNpr D , Np m (H),is
called a bicoprine-fraction represenution (bcf.r.) of
P e m(G)iff the pair ( D) isrght-coprime, the
pair (D , Np9) is left-coprime,
detDe I and P =NpD-1Np, . Note that
P e m(G) issorrrs givenasP=Ngrw-N+S,S
where Sp e m(H) and (N7w,D,N1,) is a bicoprir
(b.c) triple. In this case, the b.cfr is given by
(Np,, pl, Sp) [Vid.1J.

lL System description
Cosde the decentrlized control system S (P, Cd)

shown in Fgr 1.

I-~~~
:Cd U~~2 pCd

U2 2 Ya
C2 '7

L ------__

FIgu 1:' Th two-channel decalized control system
S (P, C4).

3*LA
(A) Le P e G "'x be a two-channel pan where na
=:nOl +n2,nL=:n,+n,2 Lt (N Dp) be an r.cf. of

n, I+fle.̂2= [N r I, NJi2E HM 1Xf

Nt2 e H O2",D9 e H1n, Dp2 H
(Dp,N ) be ankctr. ofP, whereDp= : Dp2J,P ;UPitN2] . 5pil z H"" °, Dpr a
HN L Npl 6HN,NI 2 eH %Xri 2 Let

(Np,D,Np9) be a b.cfr. of P [ N

H1noxn, 11 e H""', Np NN2p e
H , N,71 6 HInolx, N72 H e N, 6
H iI,Nx'2 eIN, Hnxni2
(B) Let C, e Gnxn* be decentralized canenosatcw
where Cd=diia4C C2j C1 c G'^""', C2
e G Let (De N) be an Lcfr. of CI and let
(DC2,Nc2) be an Lc.fr. of C2, where DC1 eH lxl

DC2 e H" IN"2,NC Hrn1 I NC2HII
[DrH r

c I ;Let D3.D1= 0 IN- -o -. notO0Dc2j N 0[ Nc2j'

(C INC) isan'Lcif. of Cd ifandonly if (D 1,N ) isan
Lc.f.. of C1 and (Dz2,N,2) is an Lcfr of C2- Let
(NYc1,Dc1) be an r.cfx. of C1 and let (Nc2,Dc2)be an
r.c.f.r of C2,whereNc1 e HnlxnIOi,N2 e H o

Dc1I H""ln"l, Dc2 E Hno2x""2. Let
rDci 0] [N 1 01

ntDr. Dc2j1Nc := Nc2] that (Nc,Dc) is
an r.c.f.r. of Cd if and only if (NcIt Dc 1) is an r.c.f.r. of C
and (NC2, DC2) is an r.c.fr of C2. 0

If P satisfies Assumption 3.1 (A) we have the geanal-
ized Beznt identity in (3.1) below: Let (Np,Dp) be an r.c.
p and let (5Dp,Np) be an Lc. pair, and let ND
DpNp; then the aremtrices Vp, Up9up, vp E mU)
suh ta[ Vp

-NP
Up ] Dp -Up [0r
1DP Np Vp 0 .4

For the bcfx.c Vpr,D1, Np,) ofP we have twno alized
Bezout identities: For the rc. pair (N D) , there are

atesVpr, U,,,X,Y,U,V e M(H)suchtbat
Vpr U.1r D -F _l

L-x Y jNpr VJ

[ -x Yj NPI
N

-YfViI
'2]

Jin
0 0j ;(32)

fort Lc. pair(D ,Np), th arenicesVP, U,X,Y,
U, V e m(H)suchthat

[ D -NlrVplx
LU VI1lUpYV

[ U] r °a ol

DScn }-Npi -Npt2 VP ad }Sgin 0s

D I .Nu - y4UPI y I 0 JAr]3 )

Letj= ' 72]lt+Cdpt2 +

32. D)efinition (Hstbility): The system S (P, C4 ) is said
eobell-sableiffllF-e m(eH).
fl*AnalytLetP =NW'-1 let C-=Dc1N¢ where
(Np,,DS) is an r. -ai as in Assumption 3.1 (A), and
(D eN) s anl.c.pairasinAssuipton 3.1 B) (se Fig-
ure2) denotes IpseudosteofP. S(P,C,)isgen
described by (35)-(3.6) below:

I DcPp2+Nc2Np2J'9 1 O DC2O°Nc2jiUi'' (35)

L 12J
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NpI Yi ° ° ° ° ul
Np2 Y + 0 "U]
Dpl4p .Y 0 01 Ui'J*

I 0 n1i20 0J["2j

(3.6)

Ui

cgr2S(,d tl =NpI cl' = D 3
I II

-1=Y -SHu he-Nl l is an pai and

DL 1 + -
I - - I ' pU2 ,-~~~ ---Y--z - Y-

Fige
C 2: SS(P,Cd)with

P
n Dt1C=DN

Equations (.5)-(3.6) are in the form DHiL,p =NLlu
NR1 =Iy -SH11u , where (NR1,DHl1) is an r.c. pair and
(DH1,NLI1) isanLc. pair. IfdetDH1 Ier I, then

H4 =NRlDfri,NLl+SH I EM(G).
S(P,Cd ) is H-stable if and only if D1l1 e= M(H)

(equivalently, detDH1I e J and hence, DH11 iS
H-unimodular). DH1I can be expressed several ways:

' DCIDpl+Nc,Np
DH1 = DCDP fNCNP = D:2Dp2 +;:fiN;p =

cilVco p Dp1rDci ONC, O Dp] Dc, NC ° ° i NpiI
L ° cD2 o NVC2 LNpJ l 0° c2 NcJ2 Dp21'

LNP2j
and detDW 1 can also be written as detDHW =

detDYcdet(I + CdP)detDp,. By nomalization and due to the
block-diagonal compensator struct, DH1 e m (H) is
H-unirodular ff and only if there are block-diagonal
matric eV := DC , UP := NC e m (H) such that
VpDp + UpNp =In.

IV. Main results
In this section the plant P sadsfies Assumption 3.1 (A).
4.1. Definition (H-stabig decentralized compensa-
tor): Cd is called an H-stabilizing decentralized compen-
satorfor P Oate abbreviated as Cd H-stabilizes P) iff
Cd e G s"'dsfies Assumption 3.1 (B) and the sys-
tem S (P, Cd ) is H-stable.
4.2. Definition (Class of all H-stabilizing decentralized
compensators): The set
Sd (P) -= ( Cd : Cd H-stabilizes P 1 is called the set of all
H-stabilizing decentralized comnpensatorsforP .
43. Comment: The set S(P) of all centralized (full-
feedback) compensators that H-stabilize P is given by
S (P)={C = (Vp --Np )-I(UP+QDp ):Q c- m (H },
S(P)= C = (Up,+Dp Q)(Vp -Np Q)-: Q cm (H) },
where V.,UIVptP U. ar as in (3.1). IfP e m(G)
instead ofm (Gs ,then Q e m (H ) should be such that
det(Vp - NpQ) r I (equivalently, det(Vp - QNp,) e I).
44R. Theorem (Conditions on P - NpDp1 for decentral-
ized H-stabilizability): Let P e M (Gs) satisfy
Assumption 3.1 (A); then there exists an H-stabilizing
decentralized compensator Cd for P if and only if P has an
r.c.f.r. (Np, Dp,) such that

N[D:N:L] =E[ O W] (4.1)

where El 6 H1(n;i+nol)x(nii+nol) is H-unirodular and
WI 6 HnO1xni2 and

Np;] [ N21 N22 =E2[ 0
]
J (4.2)

where E2 e H(njrno2)x(nitno2) is H iXmdlar and
W2H%Ho2xnl. o

Equation (4.1) imples that the pair (NI1,D 1) is r.c.
and similarly, (4.2) implies that (N22, D22) is r.c.
4.5L. Theorem (Conditions on P = Dp 1N for decentral-p p
ized H-stabilizability): Let P e m(Gs) satisfy
Assumption 3.1 (A); then there exists an H-stabilizing
decentralized compensator Cd for P if and only ifP has an
l.c.f.r. (Dp, Nip) such that

[-N I E] [ , and

[-&P,2 DP,,2] =[-wO jno2

(4.3)

(4.4)

where the H-unimodular matrices El, E2 and the matrices
WI e m (H),W2c m (H)ar definedin(4.1)-(4.2).
4.6. Comnmnts: (i) Let (NVp,Dp) be an r.c.f.r. of P; then
(Xp, Y.) is anoderr.c.f.r of P if and only if (Xp, Yp) =

(NpR,D R) for some H-unimodula matrix
R e H xn'. By Theorem 4AR, P can be H-sblized
by a decentralized compensator if and only if any r.c.fs.

(Xp Yp Xp = [Xp2J * YP [ yp] , ofP is of the form

tYr = |D El[ 0 IW ni2lK,, I NpiR= .. IRN,4IR45)
Yp2j - 2~J L~ ~ J[L Ij R

for some H-unimodular matrixR 6 H ni xfI where E
E2 e m(H)areH-unimodularandwl,w2 e- m(H).

Similarly, let (Dp,Np) be an LIc.f.r. of P; then
(Yp, Xp )is another Lc.fx. of P if and only if (Y , Xp) =
(LDp,L ) for some H-unimoduiar matrix
L e HHxn . By Theorem 4.5L, P can be H-stabiized
by C,tif and only if any l.c.f.r. (Yip, Xp)
FP Ypl Yp2 xp = [xp> iXp] of P is of the
form

[-Xp bYpi .-Xp2 Yp2

[0 1,:-W1 0 ]Eri ol
-W2 oio I

[ L- °2 0 Ei'j (4.6)
for some H-unimodular maix L e H xn. (ii) Sup-
pose that P is given by a bc.fx (Npr,D, NP) and Cd is
given by an l.c.f.r. (D ,Ne); apply Theorem 4.4R to the
r.c.f.r. (Np,Dd) := (NprX,Y) of P ; P =NprD-NNp,
e m (Gs) can be H-stabilized by a decentalized com-
pensator Cd if and only if there exists an H-unimodular
matrix R e Hi i such that
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1-E [nl 0]$IR ,and

N,2iX J=E0 R,

(4.7)

(4.8)

whe E1 e m(H) and E2 e m(H) are
H-unimod, and W1 e HHlh1x1u2, W2 e H"02X^'.
Similarly if Cd is given by an r.-fr. (INc,DC) then we
apply Theorem 4.5L to the Lc.fx. (Dp, Np ) -(Y, X Np,)
of P and conlude ca P can be H-stblized by a decen-

lized compensator Cd if and only if tdhe exists an
H-un dulr matrix L e H"Ox such that

[x pll *Y,] = -L E-wo1 and

[-XN,2 . Y2] =L [ 0 I 21,

(4.9)

(4,10)

where Ej4 6 m(H) and E 1 e m(H) are
H-unimoulrandw m (H),w2 e m (H).
4.7. Theorem (Set of all H-stabilizing decentrlized
compensators): Let P e m (Gs) safy Assumption 3.1
(A); let im addition an r.c.f. (Np, Dp.) of P sadsfy condi-
tons (4.1) and (4.2) of Theorem 4.4R; equivalently, lt an
l.cJ.r (D,Np ) of P stsfy conditions (4.3) an (4.4) of
Theorem 4.SL Under dhse conditions dte set Sd (P) ofaU
H-stlizing decentralized coip for P is given by

Sd (P):={fC= diag[C C23 4f[;O'ci0sgj:

[D1 C = [nit QlEr1,,{Da: Net] =
JIf Q2] E-1, for some Q1e H 4 Q2 e

Hrni2 chth,det(I2 Q2W2QIWI) ei J}; (4.12)
equivalently,

Sd (P) { Cd =agC1 C]C [ N NcDo]

[t,'=EjlInoj. E4 iV]. for some

Q,6 H'fIJI1bt¾Q2 r= such ta
det(lni2-Q2W2QIWI) 6 J}I (4.13)

The Map-(Q1,Q2) Cd4, Q1, Q2 6 m(H), SUCh ta

det(IM2-Q2W2QiWi) 6 J, Cd 6 Sd(P). is a bijec-
tion; for the sae pair (Q1, Q2), (4.12) and (4.13) give the
same H-stabiling Cd.
4.8 Comments: (i) In (4.1)-(4.2) (equivalently, (4.3)-(4.4))
if either WI or W2 is zero (Le., if both ofD 1 = 0 and N12 =

0 in (4.1) or both ofD21 = 0 and N21 = 0 in (4.2) ), then for
all Q1, Q2 m (H), det(I,i +QW)

[ini Q1W1]
det[Q2W2 In.2 - det(Ini2-Q2W2QiWi) = I and

hence, the set Sd 4') in (4.12) (or (4.13)) is paametized
by two free paamets QI and Q2 6 m (H). (i) In
Theorem 4.7,ifP e m (G) ins d ofm (GS), then Q
e m(H)andQ2 e m(H)shouldbechosensothat

ci:= ( E1[ e I andde[ )2

det([Jni2:Q2]EiI[ ] ) e I in adduton to

det(,,'+ QW) e J.
V. App:ication to stable rational functions
Now we consider the case when H = Ru (s) as in

Example 2.2. This principal ring allows us to show the con-
nection between our results and xse of [Wan.1, And.l]. In
[And 1], a ran test for fixed-eigenvalues was given in
terms of a left-fraton epresentaion of P. A similar zest Is
useful in our approach; we give rank conditions in terms of
an r.cfL, an L.cfx. and a b.c.fr. of P. We-srt by consid-
ering ral const decentralized compensaton.

CoidrL the system S (P, Kd ), which is pe sam
S(P, Cd ) ShOwn in gure 1, whereCd = diag CI C2]
is rpplaced by the real constant mari dK =
diag K1 K2] K1e R ,"""l , K2 e R"2x'2. The
plant P still sfies Assumption 3.1 (A), where H is
rplaced by RU (s). Equations (3.5(3.6) are mw replaced
by (5.1)-(5.2) descibing the system S (P,Kd with onstant
decentraized output-feedback control:

DpI+KINpI I 0 K1 U

[Dp2+K9Jp2 ;[I 1N2 0 K211> (5.1)

N[ 2 Y2 00[ 00 ]
Dp1. Yi' I ,in0 0 0if (5.2)
Dp 2 Y' 0"4z 00 "2j

Te closed-loop system S(P ) described by (5.1)-(5.2),

isH-stbleifandonly if detfDpl UKZp'] e J. Furth-DpD2+K2Np2
ermore, s, 6 Ue is an eigenvalue ofthe closed-loop sys-
tem if and only if

D[ D (s0) +K1Np (so)
det Dp2(sO) + 2Np2(So) . (5.3)

5.1 Definition (Decentralized fixed-egenvalue): The
plant P is said to have a decentralizqd efed- nvalue at

s. e U. (with respect oKd = diag[ R ) iff(5.3)
holds for all 1,K2 e m (R).

If so e Ue is a fixed-eigenvalue, then obviously
s , e 1e is an egeniue of the open-lop sytem (ie.,

withK1= 0,K2=0,det[Dp1(s~)] -o0andiec,s sa1 2 DLp2(so)j c

eigenvalue of P); this eigenvalue se,, 6 Ue remains as an
eigenvalue of the closed-loop system for all real coant
decentralized fedbk compensas. We prefer to call
such s. r Ue ajixed-eigenvaerat than afixed-mod,
although the eigenvalue at s, 6 Ue remns fixed
irrespective of the constant decentralized compensator, the
eigenvector v0 associated with the fixed-eigenvalue
so 6 Ue depends on Ki and K2-
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Fixed-eigenvalues are those eigenvalues of the plant which
cannot be moved by any real constant decentalized feed-
back These flxed-eigenvalues remain fixed even under
dynamic decentalized output-feedback, in pardcular, under
complex constant decentralized output-feedback
5-2R. Theorem (Rank test on (Np, Dp) for fixed-
egenvahes and H-stabilizability): Let
P e mRf(s)),P =NpDp7 sats Assum o3.1(A)
where H is R.(s); then statements (i)-Cv) below are
equivalent
(i P has no decentalized fixed-eigenvalues in Ue;
(ii) for any r.cf.r. (Np, DP) ofP as in Assumption 3.1 (A),

rD,i(s)]
rank Np(s) 2niI foralls eU , and (5.4)

rDpI(s)
rank Np2(s)J >i2, foraUl e 14 ; (5.5)

(ri) conditions (4.1)(4.2) of Theorm 4.4R hold; ie., an
r.cf. (N.,Dp) ofP canbechosen sothat

Dpil(s)j Es(s) oin (S] (5.6
IpNi(s)j d) 0 Wi(s)]
[Dp2jS) E2.ES 0 IM 57Np2(S)j 2(5j) W2(S) 0 j ' (5'7)
where El(s), E2(s) e m(RU(s)) are R,-unimodular
and Wj(s), W2(s) m (Ru(s));
Civ) dte exists a compensator Cd diagC1 C2]
(satisfying Assumption 3.1 (B) ) whichH ilzs P.
5.3L Theorem (Rank test on (1p4 Np) for fixed-
eigenvalues and H-stabilizability): Let
P e m(4R,p(s)),P =D rNp sai*sAsswnption3.1(A)
where H is Ru (s); then sttertsL D-(iv) below are
equivalent:
(i) P has no decentrazed fixed-eigenvalues in Ue;
fii) for any l.c.fr. (Dp, Np ) ofP as in Assumpto 3.1 (A),

rank4-Np i(s) Dp s1(s)] .n01, for alls 6 Ue and (5.8)

ran4-Np2(S) Dp2(S)] .n02,foralIs 6 Ue; (5.9)

(iii) conditions (4.3)-(4.4) of Theorem 4.5L hold; ie., an
Lcis. (Dp,Np)ofP canbechosensothat

PI(s) . Dpl(s)] = [W2(s) o, E(s)- ,

-Np2(S) :
Dp2(s)] = [0 I n°] E2(S)-l,

(5.10)

(5.11)

wher E1(s), E2(s) 6 m(R.(s)) are R.-unimodular
and W1(s), W2(s) 6 m(R(s));
(iv) there eist a copensar Cd = diag" C1 C2]

(satisfying Assumption 3.1 (B) ) which H ilizes P.
54B. Theorem (Rank test on (Npr, D, Np1) for fixed
eigenvahues and H-stabiizability): Let P 6
MO(s)), P =NprD-1Npi satisfy Assumption 3.1 (A)
where H = Ru (s)X ffien statements (W-(lii) below are
equivalent
(i) P has no decentalized fixed-eigenvalues in Ue; (ii) for
any b.cfr. (Np,, D, Np1) ofP as in Assumption 3.1 (A),

rankJ D(s) NP92(S)1 n,foralls e Ue,and (5.12)
~NprI(s) 0

rank D(s) -Npil(s)O n , forauls Ue; (5.13)~Npr2#) 0

(iii) ere exists a compensator Cd = duag[ C1 C2]

(satisfying Assumtfion 3.1 (B) ) which H- lizes P.
555 Remark (State-space dcrptio, of P): Cosder

P = C(sJ, -Af)-1B , wherc (C, A, B)) is Ue- ilizble

and Ue-dezectable. Let Npr:= --= I ,Danducx:e. LetNt = s +a =s +a [C2
SIR~-A
*+g Np, B=8 B wB2wher-a C\Ue,

-a R;then(Npr,D,Np) isabc.fr ofP.ByTh em

5.4B, the plant has no fixed-eigenvalues in U iff condi-

tions (5.14)-(5.15) below hold [And.1]:

ran[k A -82] 2n ,foraus e Ue ,and (5.14)

rank[ C2 oJ n j,faras e U; (5.15)

we omitted the factor m (5.14) and (5.15) for simpli-
s +a

city. Note that condions (5.14)(5.15) need to be che
onlyforthoses Ue suchthatdeJ(sI-A)=0. The
derivation of conditons (5.14)-(5.15) is very smple due to

Theorm 5.4B.
5.6. Commentw (i) Theorm 5.2R stats tso U is a

fixed-eigenvalue if and only if either rank D.(s) <

or rankNp2()<ni2. Note that cnditions (5.4) and

(5.5) cannot both fail at the sa time since this wou]d

contradict that (Np,Dp) is a r.c. pair. Threfoe, if

rank[ x(o ] ac ni 1.then rank[P2;t] ni2 + aso

that SO e 'is a fixed-eigenvalue but not an eigenvalue
associated with a hidden-mode. Similarly, (5.8) and (5.9),
(5.12)-(5.13) or (5.14)-(5.15) cannot fail at the sam time.

(u) Theorem 5.2R tates that if the system has no fixed-

eigenvalues in Ue , then the Smith form of [ N] is

ow1] (we assume that W1 is also put inthe Smith

form), and at the same ime the Smith form of Np2 is

tW2 0 (W2 iS also put in the Smith form and aIpp -

ate column permutations are made). Hence, s* e Ue is a

fixed-eigenvalue ofP iff either the ni I th invariant factor of
LP iszD] o atS s Ue orthe njh invariant factorof

Dp̂2 is z at s. e U. (iii) Let P M(R,B,(s D,
en m (5.6)-(5.7), since Np1 . Np2 e m(R(S)), W

and W2 e m(iR(s)); hence, for k = 1,2,
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ra N gj(Sn) Hence if (5A)-(5.5) hod then

Dk1 has nt invariant factors that are equal to 1.

t) conditions (5.12)-(5.13) of Theom 5.4B, we

obtain the following conditions on fixed-eigenvalues:
Pll P1l

Rewrite P as P21 Pnj

Nprl]3-tNp1~~P2PplZ
LNpr ID

-

Nw I NprjD1INpi2~
Np, 2DtI,1i N1jr'D Np2 . (a) (A sw2icient cod-

for nofixed-eigenvaluesd U ): If (Vp 1,D *Npg 1) is a

b.c.f.r. ofP1, then the plant P has no filxed-eigenvalues in
Ue ; (the sa holds if (Npr2, D, Np12) is a b.c.fr. of P22).
We can state this same conditi in the st-space seting
of Remark 5.5S where P1 Ci(sln-Ar1BFI if
(Ci,(sIn-A),B0) is Ue-s;ablizable and
Ue -detecable, then P has no fixed-eigenvalues in Ue (b)

(Some necessary condiidons on the tranmission-zeros ofthe
partl maps Pij Vs, e Ue is afixed-eigenvalue): (1) Let

sr Ue be a fixed-egenvalue; then either (5.12) fails
(and hence s. e Ut is a transmisn-mo (a.) Of P12)
or (5.13) fails (and hence so Ue is Of P21 (2)

Le n,I=niI and n,2=ni2 ; if SO Ut is a fixed-

eigenvlue,thens, atz. ofP11 ,P and ofthe plantP.
Si- Algorithm (Decentraled ator dig):

Given: P m(RM,(s)) stsfying Assmion 3.1 (A)
and conditios (5.4)-(5.5) in Theorem 52R. Step 1: Find

R ular matrices L1, R1 such that

LI DNp I
= [ni l S P 2: anda

Ru -unm uar' matrix L2 e m(R (s)) such tha

[Dp2 D2ZL2([Np2JRI)=[a2] ,where ee R (s)&2X2AIt
and (D2 , D21) is an Lc. Step 3: Fmd a Bezout iden-

tity for the l.c. p- (D22 D21):

[?2 U2 ][Y2 4'U [1I[ D2 i|2 v2 ] =[ o J *Fld a Bezout
dtity the r.c. pair (N12, D22)

[V2% U24 [D22 tU2lfInii 1° Step 4 Let

[-X2 f22j Na1 V2J[0 ia
V2 + U2V2rD21 U2U2r

-X2D2 2 2

I12 0

U;:u ;t/ k,2jL2, and

let W1 := X2, W2 :=
.21Y2 Step 5: Cd = diag CI C2

[L°5AN -2½% H-sabfizes the given

p e M(Rs ,(s)), where [D N* =]

[inQlJEQ1 [5c2 NC2] = [1n2 * Q2IEi29
fo some Ql, Q e m(Ru(s)) such that
det(IJ2-Q2W&i1W) e J-

VL Concusions
In this paper we c der the l ime-invriant

multiinput-mulioutput detalized contrl system shown
in Figure 1. We stae necessary and sufiient condiions on
P for decentralized stalizability im a completely gneal
algebraic settng (see Theorems 4.4R and 43L) and inter-
pret these conditions in terms of the fixed-eigenvalues of
the system in the case of stable rational functios (see
Theorems 5.2R and 5.3L). I Theorem 4.7 we give a com-
plete description of the.set of al H-stbzing compensa-
ros; this class is p t by two paramet maic;
these matrices annot be chosen comletely i endtly
of each other. The class of all H-st ng
is easily extnded to m-channel decentalizd control s
tems [Des.1]. For the stable rational functions case Algo-
rithm 5.8 shows how-to find all H g cesa
starting with any right-coprime fiza ion ofP.
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