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Abstract

A controller synthesis method is presented for closed-loop stability and asymptotic tracking of step input references with zero steady-state
error. Integral-action is achieved in two design steps starting with any stabilizing controller and adding a PID-controller in a configuration that
guarantees robust stability and tracking. The proposed design has integral-action integrity, where closed-loop stability is maintained even when
any of the proportional, integral, or derivative terms are removed or the entire PID-controller is limited by a constant gain matrix. The integral
constant can be switched off when integral-action is not wanted.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider integral-action controller design for linear, time-
invariant (LTI) multi-input multi-output (MIMO) plants. Our
goal is to achieve closed-loop stability and robust asymptotic
tracking of step-input references with zero steady-state error.
This objective is extended to type-m integral action in each
output channel so that polynomial references up to order m−1
applied at each input would be asymptotically tracked.

The simplest controllers that achieve integral-action are in the
proportional+integral+derivative (PID) form. However, closed-
loop stability can be achieved using these low order controllers
only for certain classes of plants, and many others cannot be
stabilized using PID-controllers (Gündeş & Wai, 2005). The
standard method of achieving integral-action is the well-known
full-order observer-based integral-action controller design
based on an augmented plant model, which uses linear quadratic
regulator (LQR) or pole-placement methods to find state-
feedback gains for the states of the integrators in addition to the
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states of the plant (Goodwin, Graebe, & Salgado, 2001). Al-
though this method achieves both closed-loop stability and
steady-state accuracy, the integrators cannot be completely
switched off without affecting closed-loop stability. Further-
more, this standard method does not easily extend to higher
integral-action type (Gündeş & Kabuli, 1998). In this paper
we propose a two-step integral-action synthesis procedure
that achieves robust tracking by adding a PID-controller over
a previously designed stabilizing controller that is already
present in the feedback loop. An initial stabilizing controller,
which does not have integral-action, is designed (to be op-
timal and to satisfy given design objectives) for the original
plant using any method (LQR, H∞, etc.). Then an additional
PID-controller is designed for a stable system (the numerator-
matrix of the plant). The two controllers are then configured
to achieve closed-loop stability and integral-action together.
All integral-action controllers can be obtained by inclusion of
a free controller parameter. The main advantage of this two-
step approach is that the PID-controller block containing the
integral-action designed in the second step can be switched
off (taken out completely and the states are reset) without
affecting closed-loop stability. The PID-controller can be de-
signed with an additional property that we call integral-action
integrity, where closed-loop stability is maintained even when
any of the proportional, integral, or derivative terms are re-
moved or the entire PID block is limited by a constant gain
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matrix. If the design requires a higher or lower integral-action
type, the initial design can be easily modified by including
incrementally designed additional integrator terms in the con-
troller. High-order integral terms can be deleted to achieve
a lower type all without re-designing the entire stabilization
loop. This incremental feature of the design starting from sta-
bilizing controllers for the original plant and adding on inte-
grators as necessary makes it possible to compare the system
performance for different integral-action types since all designs
are based on the original plant instead of different augmented
systems. In contrast with the standard approach to integral-
action design for an augmented system, the design proposed
here does not use an augmented system identification and does
not need to re-identify the plant for a stabilizing controller
without that integral-action component or a lower/higher-order
integral-action component. Simulation comparisons of the pro-
posed method with the standard augmentation-based method
were given for a stable plant in Mete and Gündeş (2004). Since
the performance of integral-action control depends on the sys-
tem operating in a linear range and integral-action controllers
suffer serious loss of performance due to integral windup, which
occurs when the actuators in the control-loop saturate, it may
be desirable to switch off the integral term while maintain-
ing closed-loop stability for protection against windup (Doyle,
Smith, & Enns, 1987; Kothare, Campo, Morari, & Nett, 1994;
Kapoor, Teel, & Daoutidis, 1998). The methods proposed here
simply design controllers whose integral-action components
can be turned-off (or limited), and are not intended as alternate
anti-windup schemes. When the integral-action is turned-off,
the states in the part of the controller implementation that is
taken out of service are all set to zero and the initial conditions
and outputs are reset to zero.

Although continuous-time systems are discussed, all results
apply also to discrete-time systems with appropriate modifi-
cations. Notation: U is the extended closed right-half plane,
i.e., U = {s ∈ CI |Re(s)�0} ∪ {∞}; R, R+ denote real and
positive real numbers; Rp denotes real proper rational func-
tions of s; S ⊂ Rp is the stable subset with no poles in U ;
M(S) is the set of matrices with entries in S; In is the n × n

identity matrix; we use I when the dimension is unambigu-
ous. The H∞-norm of M(s) ∈ M(S) is denoted by ‖M(s)‖
(i.e., the norm ‖ · ‖ is defined as ‖M‖ := sups∈�U �̄(M(s)),
where �̄ is the maximum singular value and �U is the bound-
ary of U). For simplicity, we drop (s) in transfer matrices
such as G(s). We use coprime factorizations over S; i.e., for
G ∈ Rr×q

p , G = XY−1 denotes a right-coprime-factorization
(RCF), G = Ỹ−1X̃denotes a left-coprime-factorization (LCF),
where X, X̃ ∈ Sr×q , Y ∈ Sq×q , Ỹ ∈ Sr×r , det Y (∞) �= 0,
det Ỹ (∞) �= 0.

2. Problem description and preliminaries

Consider the LTI, MIMO unity-feedback system Sys(G, Ĉ)

in Fig. 1; G ∈ Rr×q
p and Ĉ ∈ Rq×r

p denote the plant’s and the
controller’s transfer-functions. It is assumed that Sys(G, Ĉ) is
well-posed, G and Ĉ have no unstable hidden-modes, and G ∈

Fig. 1. Unity-feedback system Sys(G, Ĉ).

Rr×q
p is full normal rank. Let Heu=(Ir +GĈ)−1=Ir −GĈ(Ir+

GĈ)−1= : Ir − GHwu= : Ir − Hyu denote the (input-error)
transfer-function from u to e.

Definition 1. (i) The system Sys(G, Ĉ) is called stable iff the
closed-loop transfer-function from (u, v) to (y, w) is stable. (ii)
The controller Ĉ stabilizes G iff Ĉ is proper and Sys(G, Ĉ) is
stable. (iii) The stable system Sys(G, Ĉ) has integral-action iff
Heu has blocking-zeros at s = 0; it has type-m integral action
in each output channel iff Heu has (at least) m blocking-zeros
at zero, i.e., (s−(m−1)Heu)(0) = 0. (iv) The controller Ĉ is
called a controller with integral-action iff Ĉ stabilizes G and
Dc of any RCF Ĉ = NcD

−1
c has blocking-zeros at s = 0, i.e.,

Dc(0) = 0; Ĉ is called a controller with type-m integral action
iff Ĉ stabilizes G and Dc has (at least) m blocking-zeros at
s = 0, i.e., (s−(m−1)Dc)(0) = 0.

Let G = XY−1 = Ỹ−1X̃ be any RCF, LCF of the plant,
Ĉ =NcD

−1
c =D̃−1

c Ñc be any RCF, LCF of the controller. Then
Ĉ stabilizes G if and only if ML := ỸDc +X̃Nc is unimodular,
equivalently, MR := D̃cY + ÑcX is unimodular (Gündeş &
Desoer, 1990; Vidyasagar, 1985). Suppose that Sys(G, Ĉ) is
stable. Then the error e(t) due to step inputs u(t) goes to zero as
t → ∞ if and only if Heu(0) = 0. Therefore, the stable system
Sys(G, Ĉ) achieves asymptotic tracking of constant reference
inputs with zero steady-state error if and only if it has integral-
action; it achieves asymptotic tracking of polynomial references
up to order m − 1iff it has (at least) type-m integral action
(León de la Barra, Emami-Naeini, & Chincón, 1998). Write
Heu = (I + GĈ)−1 = I − GĈ(I + GĈ)−1 = Dc M−1

L Ỹ =
I − XM−1

R Ñc. By Definition 1, Sys(G, Ĉ) has integral-action
if and only if Heu(0) = (DcM

−1
L Ỹ )(0) = 0. If Ĉ = NcD

−1
c

is an integral-action controller, then Sys(G, Ĉ) has integral-
action. For Heu(0) = (DcM

−1
L Ỹ )(0) = 0, it is sufficient but

not necessary to have Dc(0) = 0. For plants that have poles
at s = 0, rank Ỹ (0) < r and hence, the system may achieve
integral-action even if Dc(0) �= 0. For plants with no poles
at s = 0,rank Ỹ (0) = r implies Sys(G, Ĉ) has integral-action
if and only if Ĉ = NcD

−1
c is an integral-action controller, i.e.,

Dc(0) = 0.
Lemma 2.1 states two necessary conditions for integral-

action. In Lemma 2.2, stabilizing controllers are decomposed
into a sum of two components. A controller designed to stabi-
lize the stable numerator X of the plant G can be added through
a denominator factor to any controller that stabilizes G:

Lemma 2.1 (Necessary conditions for integral-action). Let
G ∈ Rr×q

p . If the system Sys(G, Ĉ) has integral-action, then
(i) (normal) rank G = r �m; (ii) G has no transmission-zeros
at s = 0.
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130 A.N. Gündeş, A.N. Mete / Automatica 44 (2008) 128 –134

Lemma 2.2 (Two-step controller synthesis). Let G ∈ Rr×q
p ;

let G = XY−1 be any RCF and G = Ỹ−1X̃ be any LCF of G.
Suppose that Cg is any controller that stabilizes G; let Cg =
D̃−1

g Ñg be an LCF of Cg such that D̃gY + ÑgX = I . Suppose
that Cx is a controller that stabilizes X ∈ M(S). Then, for any
Q ∈ M(S) such that det(D̃g − QX̃)(∞) �= 0,

ĈQ = (D̃g − QX̃)−1[ ( Ñg + QỸ) + Cx] (1)

also stabilizes G. For Q = 0, ĈQ becomes Ĉ = D̃−1
g Ñg +

D̃−1
g Cx = Cg + D̃−1

g Cx .

The controller achieved as a sum in Lemma 2.2 is particularly
useful when the controller is designed to satisfy a criterion such
as asymptotic tracking. The poles at s = 0 can be designed
into the term Cx so that the controller Ĉ ends up with integral-
action. Designing a special Cx with poles at a specific location
(e.g., s = 0) for the numerator X, which is stable, is easier than
designing one for the actual plant G, which may be unstable.

3. Main results

The simplest integral-action controllers are in PID form.
We consider the following (realizable) form of proper PID-
controllers; KP, KI, KD ∈ Rq×r are the proportional, the inte-
gral, and the derivative constant (Goodwin et al., 2001):

Cpid = KP + KI

s
+ KDs

�ds + 1
. (2)

A pole is typically added to the derivative term (with �d > 0)
so that the transfer-function Cpid in (2) is proper. The only
U− pole of the PID-controller in (2) is at zero. The integral-
action in the PID-controller is present when KI �= 0. Subsets
of the PID-controller in (2) are: proportional + integral (PI)
Cpi = KP + KI/s (when KD = 0); integral + derivative (ID)
Cid=KI/s+KDs/(�ds+1) (when KP=0); integral (I) Ci=KI/s

(when KP =KD =0); derivative (D) Cd =KDs/(�ds+1) (when
KP = KI = 0); proportional (P) Cp = KP (when KI = KD = 0).

If the design also ensures that any subsets Cpi, Cpd, Cid,
Ci, Cd, Cp of Cpid or all of the Cpid can be removed without
affecting closed-loop stability, then this property of the PID-
controller is called integral-action integrity. Integral-action is
not maintained once KI = 0,

Definition 2. The PID-controller in (2) has integral-action in-
tegrity iff C�� := [�PKP + �I

KI
s

+ �D
KDs

�ds+1 ]� also main-

tains closed-loop stability for �P ∈ {Iq, 0}, �D ∈ {Iq, 0}, �I ∈
{Iq, 0}, and for all � = diag[�1, �2, . . . , �r ], �j ∈ (0, 1], j =
1, . . . , r .

In Definition 2, � is a constant (possibly unknown) mul-
tiplicative perturbation. The channels of a PID-controller that
has integral-action integrity can be scaled individually.

3.1. Two-step integral-action controller synthesis

Although PID-controllers are simple and achieve integral-
action, some unstable plants cannot be stabilized using PID-

controllers of the form (2). Consider the following example,
where we introduce a two-step approach to design integral-
action controllers for an unstable plant that is not stabilizable
using PID-controllers. The two-step synthesis approach is for-
malized in Proposition 3 and Theorem 4 below.

Example 1. Consider the plant G = (s − 1)/(s + 1)(s − 2).
which cannot be stabilized using PID-controllers and is not
even strongly stabilizable (Vidyasagar, 1985). Consider e.g.,
Cg = 9(s + 1)/(s − 5); every controller stabilizing this plant is
unstable. The PID-controller Cpid = 0.2 + 0.08s/(0.1s + 1) +
(−0.2/s) as in (2) is designed to stabilize X = (s −1)/(s +1)2

of G=XY−1. For every PID-controller that stabilizes X, KI < 0
since X(0) < 0. By Lemma 2.2, Cx =Cpid can be used together
with Cg to introduce integral-action: The integral-action con-
troller

ĈiQ = (D̃g − QX̃)−1(Ñg + QỸ + Cpid)

=
(

(s − 5)

(s + 1)
− Q

(s − 1)

(s + 1)2

)−1 (
9 + Q

(s − 2)

(s + 1)
+ Cpid

)
also stabilizes G for all Q ∈ M(S), including Q = 0. Since
G has one zero at s = 1 between an integral-action controller’s
pole at s = 0 and the plant’s pole at s = 2, every integral-action
controller for G has an odd number of positive real-axis zeros in
the interval (0, 2). The controller Ĉi =[(s+1)(0.92s2 +9.26s−
0.2)]/s(0.1s+1)(s−5) has a zero at s=0.0216 in this interval.
The PID-controller block in ĈiQ that introduces the integral-
action is designed so that it can be partially or fully turned
off, or scaled down while maintaining closed-loop stability.
With Cp = 0.2, Cd = 0.08s/(0.1s + 1), Ci = (−0.2/s), the
system Sys(G, Ĉ��) is stable with Ĉ�� = (D̃g −QX̃)−1(Ñg +
QỸ + [�PCp + �DCd + �ICi]�), where each of �P, �D, �I
may be zero or identity, and � ∈ (0, 1]. Any or all of the
proportional, derivative, integral terms in the PID-controller
portion of ĈiQcan be removed (multiplied by zero), or the terms
that remain may be multiplied by a scaling factor 0 < ��1.
Closed-loop stability is maintained with any of the subsets of
the PID-controller, but the integral-action is present only when
the integral term is not multiplied by zero. �

Proposition 3 shows that stable systems can be stabilized
using PID-controllers, with KI �= 0 if and only if the system
has no transmission-zeros at s = 0, and proposes a method of
selecting the proportional, integral, derivative constants for a
PID-controller design with integral-action integrity.

Proposition 3 (PID-controller synthesis with integrity for sta-
ble systems). Let X ∈ Sr×q , rank X(s) = r �q. If KI is to be
nonzero, also let rank X(0)= r . Let X(0)I be a right-inverse of
X(0) (if r =q, then X(0)I =X(0)−1). Let �P, �D, �I ∈ {Iq, 0}.
Let � = diag[�1, �2, . . . , �r ], �j ∈ (0, 1], j = 1, . . . , r . Choose
any K̂P, K̂D ∈ Rq×r , �d > 0. (a) Choose any � ∈ R+ satisfying

0 < � <

∥∥∥∥∥X
(

K̂P + K̂Ds

�ds + 1

)
+ X(s)X(0)I − I

s

∥∥∥∥∥
−1

. (3)
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Let KP = �K̂P, KD = �K̂D, KI = �X(0)I; then

Cpid = �K̂P + �X(0)I

s
+ �K̂Ds

�ds + 1
(4)

is a PID-controller that stabilizes X. For K̂D = 0, (4) is a PI-
controller; for K̂P =0, (4) is an ID-controller; for K̂D =K̂P =0,
(4) is an I-controller.

(b) Choose any � ∈ R+ satisfying

� < min
�P,�D,�I

∥∥∥∥∥X
(

�PK̂P + �D
K̂Ds

�ds + 1

)

+�I(X(s)X(0)I − I )

s

∥∥∥∥∥
−1

. (5)

With � satisfying (5), Cpid in (4) is a PID-controller that sta-
bilizes X. Furthermore, Sys(X, C��) is also stable for all � =
diag[�1, �2, . . . , �r ], �j ∈ (0, 1], j = 1, . . . , r , where C�� =
[�P�K̂P + �I

�X(0)I

s
+ �D

�K̂Ds
�ds+1 ]�.

Any subset of the PID-controller designed as in Proposition
3(b) also stabilizes X; i.e., KP, KI/s, KDs/(�ds+1) each stabi-
lize X individually, or in pairs, or all together. The proportional,
integral, derivative blocks that remain in service can all be mul-
tiplied by the unknown diagonal multiplicative perturbation �
that has “small gain”.

Theorem 4 proposes a two-step approach for integral-action
controller synthesis applicable to any general plant G. The two-
step procedure starts with any stabilizing controller (without
integral-action) for G = XY−1 and then adds a PID-controller
that was designed for the stable numerator X. Although this
PID-controller for X can be designed using any method, we
use the method of Proposition 3 that designs the PID-controller
block with integral-action integrity. The closed-loop system re-
mains stable even when any or all parts of the PID-controller
is taken out of service or is perturbed by any diagonal constant
matrix � such that ‖�‖�1. Integral-action is present unless the
integral term inside the PID block is taken out of service com-
pletely (switched-off). The integral-action in each channel can
be scaled without affecting other channels since the individual
channels may be multiplied by different factors.

Theorem 4 (Two-step controller synthesis with integral-action
integrity). Let G ∈ Rr×q

p , rank G(s)= r �q, and let G have no
transmission-zeros at s = 0. Let G = XY−1 be any RCF and
G= Ỹ−1X̃ be any LCF of G. Let X(0)I be any right-inverse of
X(0). Let �P, �D, �I ∈ {Iq, 0}. Let � = diag[�1, �2, . . . , �r ],
�j ∈ (0, 1], j =1, . . . , r . Choose any controller Cg ∈ Rq×r

p that
stabilizes G; let Cg = D̃−1

g Ñg be an LCF of Cg such that

D̃gY + ÑgX = I . Let a PID-controller Cpid that stabilizes X ∈
Sr×q be designed as in Proposition 3(b), where � ∈ R+ satisfies
(5). Then for any Q ∈ Sq×r such that det(D̃g −QX̃)(∞) �= 0,
all integral-action controllers that stabilize G are given by

ĈiQ = (D̃g − QX̃)−1[(Ñg + QỸ) + Cpid]. (6)

Fig. 2. The controller Ĉ�� as in Theorem 4.

For Q=0, (6) becomes Ĉi =D̃−1
g (Ñg +Cpid)=Cg +D̃−1

g Cpid.

Furthermore, Sys(G, Ĉ��) is stable for all � where Ĉ��=
(D̃g −QX̃)−1(Ñg +QỸ +C��)= (D̃g −QX̃)−1(Ñg +QỸ +
[�P�K̂P + �I(�X(0)I/s) + �D�K̂Ds/(�ds + 1)]�).

The block-diagram of Sys(G, Ĉ��) is shown in Fig. 2. The
main advantage of the two-step design proposed in Theorem
4 is that the integral-action is added as part of a separate
module, which can be removed or limited without affecting
closed-loop stability. Even if the plant is directly stabilizable
by PID-controllers, this two-step approach may be preferred to
switch the integrators off, e.g., to prevent integrator windup.

The two-stage design in Theorem 4 is extended in Corollary
5 to type-m integral-action achieving asymptotic tracking of
polynomial references up to order m − 1. As in the type-1
case, the block Cm that provides type-m integral-action can be
turned-off completely without losing closed-loop stability:

Corollary 5 (Extension to controller synthesis with type-m
integral-action integrity). Under the assumptions of Theo-
rem 4, let Cpid be a PID-controller that stabilizes X ∈ Sr×q

designed as in Proposition 3(a). If q > 1, define G1 :=
XCpid(I + XCpid)

−1; if q > 2, for 2�v�q − 1, define Gv :=
XCpid

1
sv−1

∏v
j=2 kj (I +XCpid +XCpid

v∑
j=2

1
sj−1

∏j
�=2 k�)

−1 ∈
Sr×r . For 2�v�q, choose any kv ∈ R+ satisfying (7) and let
Cm be as in (8):

0 < kv <

∥∥∥∥ Gv−1(s) − I

s

∥∥∥∥−1

, (7)

Cm = Cpid + Cpid

m∑
j=2

1

sj−1

j∏
�=2

k�. (8)

Then with � = Iq , all type-m integral-action controllers that
stabilize G are given by

ĈiQ = (D̃g − QX̃)−1[(Ñg + QỸ) + �Cm], (9)

for any Q ∈ Sq×r such that det(D̃g − QX̃)(∞) �= 0. The
controller ĈiQ stabilizes G also when � = 0.

Remarks. ((1) All achievable closed-loop transfer-functions
using integral-action controllers): With the initial controller
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Cg , the achievable closed-loop (input–output) transfer-function
of the stable Sys(G, ĈiQ) is H

g
yu := GCg(I + GCg)

−1 =
X(Ñg + QỸ) and the corresponding input-error transfer-
function is H

g
eu := (I + GCg)

−1 = (Dg − XQ)Ỹ . With the
integral-action controller Ĉ�� = (D̃g − QX̃)−1 (Ñg + QỸ +
[�P�K̂P + �I(�X(0)I/s) + �D(�K̂Ds/�ds + 1)]�) in Theorem
4, all achievable Heu = (Ir + GĈiQ)−1 = I − Hyu = (Dg −
XQ)Ỹ − XC��(I + XC��)−1(Dg − XQ)Ỹ becomes

Heu = (I + XC��)−1H
g
eu. (10)

When �I = I , � �= 0, the integral term is present in C��
and (I + XC��)−1(0) = 0, which implies integral-action.
Achievable input-error maps with or without integral-action
can be easily compared using (10). With Ĉ��, all achiev-
able Hyu = I − Heu = (I + XC��)−1X(Ñg + QỸ) + (I +
XC��)−1XC�� = I − (I + XC��)−1H

g
eu = X(Ñg + QỸ) +

XC��(I + XC��)−1(Dg − XQ)Ỹ becomes

Hyu = H
g
yu + XC��(I + XC��)−1H

g
eu. (11)

Again, setting �I = I or �I = 0, achievable input–output
maps with or without integral-action can be easily com-
pared using (11). Similarly, with the type-m integral-action
controller ĈiQ in (9), Hyu = (I + XCm)−1H

g
yu + (I +

XCm)−1XCm = H
g
yu + XCm(I + XCm)−1H

g
eu, where Cm

can be completely removed. The achievable transfer-functions
Hyu and H

g
yu can be compared to evaluate the system per-

formance with or without the integral-action, which intro-
duces to H

g
yu the additional term XCpid(I + XCpid)

−1H
g
eu

(or XCm(I + XCm)−1H
g
eu). The following complemen-

tary sensitivity and sensitivity bound comparisons are ob-
tained for the system with and without the integral-action:
‖Hyu‖ = ‖Hg

yu + XCpid(I + XCpid)
−1H

g
eu‖�‖Hg

yu‖ +
‖XCpid(I + XCpid)

−1‖‖Hg
eu‖, ‖Heu‖ = ‖Hg

eu − XCpid(I +
XCpid)

−1H
g
eu‖�‖(I + XCpid)

−1‖‖Hg
eu‖.

(2) (Two-step integral-action synthesis with an observer-
based controller): The integral-action controllers in (6) can also
be expressed using a state-space representation (A, B, C, D) of
the plant G, where A ∈ Rn×n, (A, B) is stabilizable and (C, A)

is detectable. Let K ∈ Rq×n and L ∈ Rn×r be such that FK :=
(sI − A + BK)−1 ∈ M(S) and FL := (sI − A + LC)−1 ∈
M(S). In terms of this state-space representation, an RCF
and LCF G = XY−1 = Ỹ−1X̃ are given by Y = I − KFKB,
X=(C−DK)FKB+D, Ỹ=I−CFLL, X̃=CFL(B−LD)+D

Vidyasagar, 1985. With Dg =I +(C−DK)FKL, Ng =KFKL,

D̃g = I + KFL(B − LD), Ñg = KFLL satisfying D̃gY +
ÑgX = I , a stabilizing controller isCg = D̃−1

g Ñg = NgD
−1
g =

K(sI −A+BK +L[C −DK] )−1L. The PID-controller Cpid
is designed for the stable numerator X = (C − DK)FKB + D,
where X(0)=(C−DK)(−A+BK)−1B+D. If Cpid is designed
following Proposition 3(b), then with Ĉ�� as in Theorem 4,

Sys(G, Ĉ��) is stable. With the full-order observer-based con-
troller Cg , the expression (6) for the integral-action controllers
of Theorem 4 is obtained as ĈiQ = [ I + KFL(B − LD) −
Q(ĈFL(B − LD) + D)]−1[KFLL + Q(I − ĈFLL) + Cpid ],

Fig. 3. The controller Ĉ�� using full-order observer-based controller Cg .

where Q ∈ Sq×r is such that det(I − Q(∞)D) �= 0. With
Q=0, the integral-action controller ĈiQ becomes Ĉi=Cg+[I+
KFL(B −LD)]−1 Cpid. The block diagram of Sys(G, Ĉ��) is
shown in Fig. 3, with the full-order observer-based controller
Cg .

4. Conclusions

We proposed a systematic integral-action synthesis procedure
in Theorem 4, which achieves robust asymptotic tracking of step
references in two steps: First, an initial stabilizing controller
that does not have integral-action is designed for the original
plant using any method. Second, a PID-controller is designed
for the stable numerator-matrix of the plant using Proposition 3,
which defines the proportional, integral and derivative constants
explicitly. The two controllers acting together achieve closed-
loop stability and integral-action. The PID-controller block de-
signed in the second step can be removed and even limited by
a constant gain matrix, multiplying the channels with arbitrary
constants varying between zero and one. The design for the
PID-controller in Proposition 3 also allows any or all of the
(MIMO) terms KP, KI, KD to be zero without losing stability.
The significance of this integral-action integrity property is that
it is possible to completely remove the integral term together
with or separately from the proportional and derivative terms.
The integral-action type can be iteratively increased or higher
integral terms can be decreased by using the same stabilizing
controller designed in the first step without plant augmentation
or re-design.

Appendix

Proof of Lemma 2.1. If Sys(G, Ĉ) is stable, Heu(0) =
Ir − GHwu(0) = 0 implies GHwu(0) = Ir ; i.e., (nor-
mal) rank (GHwu) = r � min{rank G, rank Hwu} implies
r �rank G� min{r, q}. By Heu = Dc M−1

L Ỹ = I − XM−1
R Ñc,

Heu(0)=0 implies X(0)M−1
R (0)Ñc(0)=Ir ; hence, rank X(0)=

rank Ñc(0) = r .
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Proof of Lemma 2.2. The controller Cg = NgD
−1
g stabilizes

G = Ỹ−1X̃ if and only if Mg := ỸDg + X̃Ng is unimod-
ular. Now Cx stabilizes X ∈ M(S) if and only if Cx(I +
XCx)

−1 ∈ M(S), which implies (I + XCx)
−1 ∈ M(S). De-

fine Dc := (I + XCx)
−1Dg ∈ M(S), Nc := [Ng + YCx(I +

XCx)
−1Dg] ∈ M(S). Since (CgX+Y )=D̃−1

g , for Q=0, write

ĈQ = Ĉ = NcD
−1
c . Then ỸDc + X̃Nc = Ỹ (I + XCx)

−1Dg +
X̃Ng + X̃YCx(I + XCx)

−1Dg = Ỹ (I + XCx)
−1Dg + X̃Ng +

ỸXCx(I + XCx)
−1Dg = ỸDg + X̃Ng = Mg is unimodular;

hence, Ĉ=NcD
−1
c stabilizes G. Since all stabilizing controllers

for G can be expressed as (D̃g − QX̃)−1(Ñg + QỸ), (1) is
also a stabilizing controller for G for any Q ∈ M(S) such that
det(D̃g−QX̃) is biproper (Gündeş & Desoer, 1990; Vidyasagar,
1985).

Proof of Proposition 3. We prove (b); (a) is a special case
when �P = �D = �I = Iq . Write Cpid = [(s + a)−1sCpid]
[(s + a)−1sI r ]−1 for any a > 0. If �I = Iq , define M� :=
(sI +��)−1sI +(sI +��)−1sXCpid�=(sI +��)−1sI +(sI +
��)−1�sX(�PK̂P +�DK̂Ds/(�ds+1)+X(0)I/s)�=I +(sI +
��)−1�s[X(�PK̂P + �DK̂Ds/(�ds + 1)) + (XX(0)I − I )/s]�.
Since ‖�‖�1 and ‖(sI + ��)−1s ‖ = 1, M� is unimodular for
� > 0 satisfying (5); hence, Sys(X, C��)is stable for �P, �D ∈
{0, Iq}. If �I=0, then M�pd = I + �X(�PK̂P + �D

K̂Ds
�ds+1 )�

is unimodular since � < ‖(�PK̂P + �DK̂Ds/(�ds + 1))X‖−1

and ‖�‖�1. Hence, Sys(X, C��) is stable without the integral
term in Cpid for �P, �D ∈ {0, Iq}.

Proof of Theorem 4. By Lemma 2.2, with Cx=Cpid, ĈiQ in (6)
stabilizes G and has integral-action due to Cpid. By Proposition
3, the PID-controller for X has integral-action integrity, i.e.,
C�� also stabilizes X. Therefore, Sys(G, Ĉ��) is stable with
Ĉ�� as in Eq. (6).

Proof of Corollary 5. Since Cg is a stabilizing controller, (9)
stabilizes G when � = 0. When � = I , write Cpid = [(s/(s +
a))Cpid][sI/(s + a)]−1 for any a ∈ R+. Define

(s + a)

(s + �)
M1 := sI

s + �
+ s

s + �
XCpid

=I+ �s

s+�

[
X(K̂P+ K̂D s

�ds + 1
) + XX(0)I − I

s

]
.

Then M1 is unimodular for � ∈ R+ as in (3). If m > 1, G1 =
M−1

1 (s/(s + a))XCpid = (I + XCpid)
−1XCpid ∈ M(S). With

G1(0) = I , for any k2 satisfying (Eq. (7)),

M2 := sI

s + a
+ M−1

1
k2sXCpid

(s + a)2 = 1

(s + a)
[sI + k2G1]

is unimodular since

(s + a)

(s + k2)
M2 = I + k2s

(s + k2)

(XX(0)I − I )

s
.

If q > 2, for v = 2, Gv becomes

G2 = (M1M2)
−1 k2sXCpid

(s + a)2 = (I + G1
k2

s
)−1G1

k2

s

=
(

I + XCpid + XCpid
k2

s

)−1

XCpid
k2

s
∈ M(S)

since (M1M2) is unimodular. With G2(0) = I , for any k3
satisfying (7),

M3 := sI

s + a
+ (M1M2)

−1 k2k3sXCpid

(s + a)3

= 1

(s + a)
[sI + k3G2]

is unimodular. If m > 3, continue similarly; define

Gv =
⎛⎝ v∏

j=1

Mj

⎞⎠−1
sXCpid

∏v
j=1kj

(s + a)v

for v =3, . . . , m−1; Gv is stable since (
∏v

j=1 Mj) is unimod-
ular. With Gv(0) = I , for any kv satisfying (7),

Mv+1 := sI

s + a
+
⎛⎝ v∏

j=1

Mj

⎞⎠−1
sXCpid

∏v+1
j=2kj

(s + a)v+1

= 1

(s + a)
[sI + kv+1Gv]

is unimodular. Finally,⎛⎝ m∏
j=1

Mj

⎞⎠= sm

(s + a)m
I + sm

(s + a)m
XCm

is unimodular and therefore, Cm stabilizes X. By Lemma 2.2,
with Cx = Cm, ĈiQ in Eq. (9) stabilizes G and has type-m
integral-action due to Cm.
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Mete, A. N., & Gündeş, A. N. (2004). MIMO integral-action anti-windup
controller design and applications to temperature control in RTP systems.
In Proceedings of the 43rd IEEE conference on decision and control (pp.
2590–2595). Bahamas.

Vidyasagar, M. (1985). Control system synthesis: A factorization approach.
Cambridge, MA: MIT Press.

A.N. Gundes received her BS, MS, and Ph.D.
(1998) degrees in Electrical Engineering and
Computer Sciences from the University of
California, Berkeley. She has been with the
Electrical and Computer Engineering Depart-
ment at UC Davis since 1988.

A. Naci Mete received the B.S. degree from
University of Gaziantep, Turkey in 2000, the
M.S. degree from University of California Davis
in 2004. Currently, he is a doctoral candidate in
the Department of Electrical and Computer En-
gineering at the University of California Davis.
His research interests include reliable control
and decentralized control.


