
Simultaneous Strong Stabilization and Tracking Controller Design for
MIMO Systems
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Abstract— A systematic controller synthesis method is pre-
sented for simultaneous stabilization with asymptotic tracking
of step-input references for linear, time-invariant, multi-input
multi-output plants. Necessary and sufficient conditions are
derived for existence of simultaneous integral-action controllers
and in particular, simultaneous PID-controllers. Strong simul-
taneous stabilization using low order PD-controllers as well as
simultaneous stabilization with zero steady-state error using
PID-controllers can be achieved for the class of plants under
consideration.

I. INTRODUCTION

Simultaneous stabilization problems arise in many practi-
cal control problems; for example, when designing a com-
mon controller for multiple operating points of the same
system. We consider simultaneous stabilization of a finite
class of linear, time-invariant (LTI) multi-input multi-output
(MIMO) unstable or stable plants while achieving asymp-
totic tracking of step-input references with zero steady-state
error. The simplest controllers that achieve integral-action
are proportional+integral+derivative (PID) controllers, which
are widely used and preferred for their simplicity. We derive
conditions for existence of general integral-action controllers
of any order, and particularly for existence of low-order
controllers such as PID-controllers. We propose a systematic
PID synthesis method for simultaneous stabilization of a
finite number of plants.

Several rigorous PID design methods exist mostly for
single-input single-output (SISO) systems (see [9], [1] and
the references therein). Simultaneous stabilization while
achieving asymptotic tracking and PID designs that achieve
simultaneous closed-loop stability of MIMO systems have
not been explored extensively. The problem of simultane-
ously stabilizing a class of (three or more) unstable plants is
a difficult problem even without the order restriction imposed
by PID [2], [3], [10]. In fact, since strong stabilizability
is a necessary condition for existence of PID-controllers
stabilizing a single plant, simultaneous strong stabilizability
is necessary but not sufficient for simultaneous PID stabiliz-
ability of multiple plants.
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Simultaneous PID-control design for a set of stable MIMO
plants satisfying a DC-gain condition was presented in [7].
This paper considers a more general class of plants that
includes unstable as well as stable plants which may have at
most one blocking-zero at infinity; there are no restrictions on
the plant poles. It is shown that this class of (any finite num-
ber of) MIMO plants is strongly simultaneously stabilizable
using PD-controllers and also simultaneously stabilizable
with asymptotic tracking of step-input references using PID-
controllers. The main results here are: 1) necessary condi-
tions for existence of integral-action controllers (Lemma 1),
and simultaneous integral-action controllers (Lemma 2), and
2) a systematic PD-controller and PID-controller synthesis
method (Proposition 1). The systematic procedure for si-
multaneous PD/PID-controller synthesis is then applied to
a simple example. The explicit designs allow freedom of
choice of parameter values. Although the objective here is
to achieve simultaneous closed-loop stability with tracking,
the flexibility in the choice of the PID parameters offered
by the design procedure may be used to satisfy additional
performance criteria.

Although we discuss continuous-time systems here, all
results apply also to discrete-time systems with appropriate
modifications.

The following notation is used: U denotes the extended
closed right-half plane, i.e., U = { s ∈ CI | Re(s) ≥
0 } ∪ {∞}; IR , IR+ denote real and positive real numbers;
Rp denotes real proper rational functions of s; S ⊂ Rp

is the stable subset with no poles in U ; M(S) is the set
of matrices with entries in S ; Im is the m × m identity
matrix; we use I when the dimension is unambiguous. The
H∞-norm of M(s) ∈ M(S) is denoted by ‖M(s)‖ (i.e.,
the norm ‖ · ‖ is defined as ‖M‖ := sups∈∂U σ̄(M(s)),
where σ̄ is the maximum singular value and ∂U is the
boundary of U). For simplicity, we drop (s) in transfer
matrices such as G(s) where this causes no confusion. We
use coprime factorizations over S ; i.e., for C ∈ Rp

m×m,
C = ND−1 denotes a right-coprime-factorization (RCF),
where N ∈ Sm×m, D ∈ Sm×m, det D(∞) 6= 0.
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II. PRELIMINARIES

Consider the standard LTI, MIMO unity-feedback system
Sys(Gj , C) shown in Fig. 1, where Gj ∈ Rp

m×m, j ∈
{1, . . . , k}, and C ∈ Rp

m×m denote the plant’s and the
controller’s transfer-functions, respectively. It is assumed that
the feedback system is well-posed, Gj and C have no
unstable hidden-modes, and each plant Gj ∈ Rp

m×m is full
normal rank. The objective is to design a single stabilizing
controller C that achieves asymptotic tracking of step-input
references with zero steady-state error for a finite class of
plants Gj simultaneously.

Let Gj = Y −1
j Xj be a left-coprime-factorization

(LCF) and C = ND−1 be a right-coprime-factorization
(RCF), where Yj , Xj , D , N ∈ Sm×m, det Yj(∞) 6= 0,
det D(∞) 6= 0. Then C stabilizes Gj ∈ M(Rp) if and
only if

Mj := Yj D + Xj N (1)

is unimodular [10], [5]. Let the (input-error) transfer-function
from r to e be denoted by Her

j and let the (input-output)
transfer-function from r to y be denoted by Hyr

j ; then

Her
j = (I + GjC)−1 = I −GjC(I + GjC)−1

=: I −GjH
wu
j =: I −Hyr

j . (2)

Definition 1: i) The system Sys(Gj , C) is said to be
stable iff the closed-loop transfer-function from (r, v) to
(y, w) is stable.
ii) The controller C is said to simultaneously stabilize
Gj for j ∈ {1, . . . , k} iff C is proper and the systems
Sys(Gj , C) are all stable.
iii) The stable systems Sys(Gj , C) are said to have integral-
action iff Her

j has blocking-zeros at s = 0, j ∈ {1, . . . , k}.
iv) The controller C is said to be a simultaneously
stabilizing integral-action controller iff C stabilizes Gj for
j ∈ {1, . . . , k}, and the denominator-matrix D of any RCF
C = ND−1 has blocking-zeros at s = 0, i.e., D(0) = 0.

Suppose that the system Sys(Gj , C) is stable and that step
input references are applied to the system. Then the steady-
state error e(t) due to step inputs at r(t) goes to zero as
t →∞ if and only if Her

j (0) = 0. Therefore, by Definition 1,
the stable system Sys(Gj , C) achieves asymptotic tracking
of constant reference inputs with zero steady-state error if
and only if it has integral-action. Write Her

j as:

Her
j = (I + GjC)−1 = D M−1

j Yj . (3)

By (3) and Definition 1, Sys(Gj , C) has integral-action if
C = ND−1 is an integral-action controller since D(0) = 0
implies Her

j (0) = (DM−1
j Yj)(0) = 0.

The simplest integral-action controllers are in PID form.
We consider the following (realizable) form of proper PID-
controllers, where KP , KI , KD ∈ IRm×m are called the
proportional constant, the integral constant, and the derivative
constant, respectively [4], [8]:

Cpid = KP +
KI

s
+

KD s

τ s + 1
. (4)

Due to implementation issues of the derivative action, a pole
is typically added to the derivative term (with τ > 0) so
that the transfer-function Cpid in (4) is proper. The only
U -pole of the PID-controller in (4) is at zero. The constants
KP ,KD,KI may be negative; in the scalar case, this would
imply that the zeros of Cpid may be in the unstable region
U . The integral-action in the PID-controller is present when
the integral constant KI is nonzero. Subsets of the PID-
controller in (4) are: proportional+integral (PI) Cpi = KP +
KI

s (when KD = 0); proportional+derivative (PD) Cid =
KP + KD s

τ s+1 (when KI = 0); integral+derivative (ID) Cid =
KI

s + KD s
τ s+1 (when KP = 0); integral (I) Ci = KI

s (when
KP = KD = 0); derivative (D) Cd = KD s

τ s+1 (when KP =
KI = 0); proportional (P) Cp = KP (when KI = KD = 0).

III. MAIN RESULTS

In Section III-A we derive necessary conditions for ex-
istence of simultaneously stabilizing integral-action con-
trollers. In Section III-B we propose explicit PID-controller
design under a sufficient existence condition, which turns out
to be a necessary and sufficient condition for SISO systems.

A. Existence conditions for integral-action controllers

Lemma 1-(a) states the basic necessary condition on each
Gj for existence of integral-action controllers; Lemma 1-(b)
states the condition for existence of PID-controllers:

Lemma 1: (Necessary conditions for integral-action): Let
Gj ∈ Rp

m×m. Let rankG(s) = m.
a) If the system Sys(Gj , C) has integral-action, then Gj

does not have transmission-zeros at s = 0.
b) If there exists a PID-controller that stabilizes Gj , then
Gj is strongly stabilizable.

Although strong stabilizability is a necessary condition
for PID stabilizability of each Gj , it is not sufficient. We
consider a sub-class of strongly stabilizable plants, which
are in fact PID-stabilizable. The plants in this class have at
most one blocking-zero at infinity and no other transmission-
zeros in U ; they may have any number of (transmission and
blocking) zeros in the stable region CI \ U . The poles are

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThC15.4

4404



completely arbitrary; some plants in the class may be stable
while others are unstable. We denote the class of plants by

G = G∞ ∪ Ĝo ⊂ Rp
m×m

where G∞ is the subset of the class of plants with exactly
one blocking-zero at infinity and Ĝo is the subset with no
zeros in the region of instability U . More specifically, the
plants Gj , Ĝk ∈ Rp

m×m can be expressed as follows:
For Gj ∈ G∞ we have Yj := 1

s+aG−1
j stable for any

a ∈ IR+ , i.e.,

Gj = Y −1
j X = [

1
s + a

G−1
j ]−1 [

1
s + a

I ] . (5)

For Ĝk ∈ Ĝo we have Ŷk := Ĝ−1
k stable, i.e.,

Ĝk = Ŷ −1
k X̂ = [ Ĝ−1

k ]−1 [ I ] . (6)

Each individual plant Gj or Ĝk as described in (5) or
(6) is PID stabilizable [6]. However, existence of a single
integral-action controller that simultaneously stabilizes all
plants Gj ∈ G∞ requires additional necessary conditions as
stated in Lemma 2.

Lemma 2: (Necessary conditions for simultaneous
integral-action): Let Gi , Gj ∈ G∞ be as in (5). If there
exist simultaneously stabilizing integral-action controllers,
then

det [ Yj(∞) Yi(∞)−1 ] > 0 , for all Gj , Gi ∈ G∞ . (7)

The necessary condition (7) requires det Yj(∞) =
det 1

s+a G−1
j |s→∞ to have the same sign for all Gj ∈ G∞ for

existence of a common stabilizing controller with integral-
action, and in particular a simultaneous PID-controller. For
SISO plants, this condition is in fact also sufficient for
existence of PID-controllers as shown in Proposition 1 in
Section III-B below. Note that the sign condition is only
on detYj(∞) of Gj ∈ G∞ ; the sign of det Ŷk(∞) =
det Ĝ−1

k (∞) for Ĝk ∈ Ĝo need not satisfy a similar sign
condition.

B. PD/PID-controller synthesis

For Gj , Ĝk ∈ Rp
m×m as in (5)-(6), Proposition 1

presents a method for designing PID-controllers that simul-
taneously stabilize all plants in the class G = G∞ ∪ Ĝo . A
sufficient condition for existence of PD-controllers as well as
PID-controllers simultaneously stabilizing all plants in G∞
is that the eigenvalues of

Wj := Yj(∞)Y1(∞)−1 (8)

are positive real for all Gj ∈ G∞ , where G1 = Y −1
1 X ∈

G∞ . If this condition holds, then detYj(∞)Y1(∞)−1 > 0

implies the sign of detYj(∞) is the same as the sign
of detY1(∞) and hence, the necessary condition (7) in
Lemma 2 holds. Clearly, in the case of SISO systems, Wj

is a scalar and hence, the necessary and sufficient condition
for existence of PID-controllers that simultaneously stabilize
all Gj ∈ G∞ is that Wj > 0.

Note that the positive real condition on the eigenvalues
of Wj in (8) is imposed only on the matrices Gj , G1 ∈
G∞ ; however, it is sufficient for simultaneous PD or PID
stabilization of all plants Gj , Ĝk ∈ G∞ ∪ Ĝo . In fact, if
the subset G∞ is empty, then the plants Ĝk ∈ Ĝo , which
have no transmission or blocking-zeros in U as in (6), are
simultaneously PD or PID-stabilizable without any additional
assumptions.

Proposition 1 gives a systematic synthesis approach for
the cases when
(i) G∞ is non-empty (some plants are strictly-proper as in
(5) and there may be other plants Ĝk as in (6) that have no
zeros at infinity) and
(ii) G∞ is empty (none of the plants is strictly-proper and
G = Ĝo ).

Proposition 1: (PD/PID synthesis for simultaneous stabi-
lization): Let Gj ∈ G∞ and Ĝk ∈ Ĝo be as in (5)-(6).
i) If G∞ is non-empty, designate a plant G1 ∈ G∞ as
the nominal plant. Let detYj(∞) = det 1

s+a G−1
j |s→∞.

Suppose that all eigenvalues of Wj := Yj(∞)Y1(∞)−1 are
real and positive for all Gj ∈ G∞ . Then PD-controllers and
PID-controllers exist that simultaneously stabilize all plants
Gj , Ĝk ∈ G∞ ∪ Ĝo . Furthermore, they can be designed as
follows:
a) PD-controllers: Choose any KD ∈ IRm×m, τ ∈ IR+ .
Define Φj , Φ̂k ∈M(S) as

Φj = ( G−1
j +

KD s

τs + 1
)Y1(∞)−1 − s Wj , (9)

Φ̂k = ( Ĝ−1
k +

KD s

τs + 1
) Y1(∞)−1 . (10)

Let KP = α Y1(∞) and let Cpd be given by

Cpd = α Y1(∞) +
KD s

τs + 1
. (11)

Then
1) Cpd in (11) stabilizes all Gj ∈ G∞ for any α ∈ IR+

satisfying
α > max

Gj ∈ G∞
‖ Φj ‖ . (12)

2) Cpd in (11) stabilizes all Gj , Ĝk ∈ G∞ ∪ Ĝo for any
α ∈ IR+ satisfying

α > max { max
Gj ∈ G∞

‖ Φj ‖ , max
Ĝk ∈ Ĝo

‖ Φ̂k ‖ } . (13)
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For KD = 0, (11) is a P-controller.
b) PID-controllers: Choose any KD ∈ IRm×m, τ ∈ IR+ .
Choose any g ∈ IR+ . Define Ψj , Ψ̂k ∈M(S) as

Ψj =
s

s + g
( G−1

j +
KD s

τs + 1
)Y1(∞)−1 − sWj , (14)

Ψ̂k =
s

s + g
( Ĝ−1

k +
KD s

τs + 1
)Y1(∞)−1 . (15)

Let KP = β Y1(∞) , KI = β g Y1(∞) and let Cpid be
given by

Cpid = β Y1(∞) +
KD s

τs + 1
+

β g Y1(∞)
s

. (16)

Then
1) Cpid in (16) stabilizes all Gj ∈ G∞ for any β ∈ IR+

satisfying
β > max

Gj ∈ G∞
‖ Ψj ‖ . (17)

2) Cpid in (16) stabilizes all Gj , Ĝk ∈ G∞ ∪ Ĝo for any
β ∈ IR+ satisfying

β > max { max
Gj ∈ G∞

‖ Ψj ‖ , max
Ĝk ∈ Ĝo

‖ Ψ̂k ‖ } . (18)

For KD = 0, (16) is a PI-controller.
ii) If G∞ is empty, i.e., G = Ĝo , then PD-controllers
and PID-controllers exist that simultaneously stabilize all
plants Ĝk ∈ Ĝo . Furthermore, they can be designed as
follows: Choose any KD ∈ IRm×m, τ ∈ IR+ . Choose
any nonsingular K̂P ∈ IRm×m. Choose any ĝ ∈ IR+ . Let
KP = α̂ K̂P , KI = α̂ ĝ K̂P ; let Cpd be given by (19) and
Cpid be given by (20):

Cpd = α̂ K̂P +
KD s

τs + 1
, (19)

Cpid = Cpd +
KI

s
= α̂ K̂P +

KD s

τs + 1
+

α̂ ĝ K̂P

s
. (20)

Then for any α̂ ∈ IR+ satisfying

α̂ > max
Ĝk∈Ĝo

‖ ( Ĝ−1
k +

KD s

τs + 1
) K̂−1

P ‖ , (21)

the PD-controller Cpd in (19) stabilizes all Ĝk ∈ Ĝo and
the PID-controller Cpid in (20) stabilizes all Ĝk ∈ Ĝo . For
KD = 0, (19) is a P-controller and (20) is a PI-controller.

In Example 1 we apply the systematic design procedure
of Proposition 1 to a class of SISO plants with no zeros at
s = 0.

Example 1: Consider the class of strictly-proper (relative-
degree one) plants G∞ = {G1, G2, G3 }, and the class
of non-strictly-proper (relative-degree zero) plants Ĝo =
{ Ĝ1, Ĝ2 }, where

G1 =
1

4(s− 3)
, G2 =

(s + 9)
(s− 2)(s− 5)

,

G3 =
s + 17

8(s2 + 6s + 25)
,

Ĝ1 =
−(s2 + 8s + 30)
5(s + 1)(s− 9)

,

Ĝ2 =
(s + 2)2(s + 3)(s + 5)

10(s− 4)2(s− 6)2
.

Since the plants are SISO, by Lemma 2 and Proposition 1,
the necessary and sufficient condition for existence of PID-
controllers that simultaneously stabilize all plants in the
class G∞ is that Yj(∞)Yi(∞)−1 > 0, where Yj(∞) =

1
(s+a)G

−1
j (s)|s→∞. Now Y1(∞) = 4, Y2(∞) = 1, Y3(∞) =

8 are all positive, and hence the necessary and sufficient
condition holds. Note that Ŷk(∞) = Ĝ−1

k (∞) need not
have the same sign for all Ĝk ∈ Ĝo ; in this example
Ŷ1(∞) = −0.2 and Ŷ2(∞) = 10.

We follow Proposition 1-(i-a) to design PD-controllers.
Choose KD = 4, τ = 0.05. With W1 = 1, W2 = 1/4,
W3 = 2, ‖Φj ‖ in (9) are ‖Φ1 ‖ = 17, ‖Φ2 ‖ = 16, ‖Φ3 ‖ =
2.9558. Also, ‖ Φ̂k ‖ in (10) are computed as ‖ Φ̂1 ‖ = 18.75,
‖ Φ̂2 ‖ = 24.0. Let Cpd be as in (11), i.e.,

Cpd = 4 α +
4s

0.05s + 1
.

Then by (12), Cpd simultaneously stabilizes the plants
in G∞ = {G1, G2, G3 } for α > 17. By (13), Cpd

simultaneously stabilizes the plants in G∞ ∪ Ĝo =
{G1, G2, G3, Ĝ1, Ĝ2 } for α > 24.0.

Now we follow Proposition 1-(i-b) to design PID-
controllers with the same KD and τ as in the PD design and
we choose g = 30. We compute ‖Ψj ‖ in (14) and ‖ Ψ̂k ‖
in (15) as ‖Ψ1 ‖ = 15.08, ‖Ψ2 ‖ = 8.5, ‖Ψ3 ‖ = 62.0,
‖ Ψ̂1 ‖ = 18.75, ‖ Ψ̂2 ‖ = 22.5. Let Cpid be as in (16), i.e.,

Cpid = 4 β +
4s

0.05s + 1
+

120 β

s
.

Then by (17), Cpid simultaneously stabilizes the plants
in G∞ = {G1, G2, G3 } for β > 62. By (18), Cpid

simultaneously stabilizes the plants in G∞ ∪ Ĝo =
{G1, G2, G3, Ĝ1, Ĝ2 } for β > 62.

To design PD/PID-controllers that would only stabilize the
plants Ĝ1, Ĝ2 ∈ Ĝo , we could also follow Proposition 1-(ii).
Choosing KD = 4, τ = 0.05, K̂P = 20, the controllers Cpd

and Cpid as in (19)-(20) are

Cpd = 20 α̂ +
4s

0.05s + 1
,

Cpid = 20 α̂ +
4s

0.05s + 1
+

20 α̂ ĝ

s
,

where ĝ > 0 can be chosen arbitrarily. Then by (21),
for α̂ > max{ 3.75, 4.8 } = 4.8, Cpd and Cpid are both
stabilizing controllers for Ĝo = { Ĝ1, Ĝ2 }.
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IV. CONCLUSIONS

We showed that a class of stable or unstable plants
{G1, . . . , Gj , Ĝ1, . . . , Ĝk} which do not have more than
one blocking-zero at infinity can be simultaneously stabi-
lized using low-order PD-controllers or integral-action PID-
controllers under the sufficient condition that the eigenvalues
of Wj = Yj(∞)Y1(∞)−1 are all positive real for the plants
Gj . The sufficient positivity condition is also necessary for
SISO systems. We presented a systematic method to design
PD-controllers as well as PID-controllers for the plant class
under consideration. This synthesis method allows a wide
range of choices for the PID parameters.

The restriction in the plant class we considered is that the
plants may only have blocking or transmission zeros in the
region of stability and they may have up to one blocking-zero
at infinity; in the SISO case this means they may have relative
degree ≤ 1. Since PID-controllers do not necessarily exist for
unstable plants and since simultaneous stabilization of three
or more unstable plants is an extremely difficult problem
even without restrictions on the controller order, expanding
the plant classes is a challenge. Future studies will include
plants with higher order blocking-zeros at infinity and those
with other right-half-plane transmission-zeros.

APPENDIX (PROOFS)

Proof of Lemma 1:
a) Let Gj = X̃j Ỹ

−1
j be an RCF of Gj . If Sys(Gj , C) is

stable, then by (2), Hwu
j ∈ M(S) and Hyr

j = GjH
wu
j =

X̃j Ỹ
−1
j Hwu

j ∈ M(S) implies Ỹ −1
j Hwu

j =: Rj ∈ M(S).
If Sys(Gj , C) has integral-action, then Her

j (0) = 0 implies
Hyr

j (0) = I = X̃j(0)Rj(0). Therefore, rankX̃j(0) = m,
equivalently, Gj has no transmission-zeros at s = 0.
b) Write Cpid = ND−1 as

Cpid = ND−1 = [ ( KP +
KD s

τs + 1
)

s

s + e
+

KI

s + e
][

s I

s + e
]−1

= [
s

s + e
Cpid ] [

s I

s + e
]−1 (22)

(for any e ∈ IR+ ). For all z > 0, det D(z) = det z
z+eI >

0 . If Cpid stabilizes Gj , by (1) Mj unimodular implies
det Mj(z) = det Yj(z) det D(z) has the same sign for
all z ∈ U such that Xj(z) = 0; equivalently, detYj(z)
has the same sign at all blocking-zeros of Gj , i.e., Gj

has the parity-interlacing-property; therefore Gj is strongly
stabilizable [10].

Proof of Lemma 2:
a) Let C = ND−1 be an integral-action controller

simultaneously stabilizing all plants Gj ∈ G∞ , where
Gi , Gj are any two arbitrary plants in the class;
therefore they are in the form (5). Since C has
integral-action, the denominator D can be written as
D =: s

s+eDc for e ∈ IR+ , where Dc ∈ M(S). By (1),
Mi = s

s+eYi Dc + XN and Mj = s
s+eYj Dc + XN

are unimodular. But Mi(0) = X(0)N(0) = Mj(0)
implies detMi(s) has the same sign as detMj(s) for all
s ∈ U and in particular, for s = ∞. Since X(∞) = 0,
det Mj(∞) = det Yj(∞) det Dc(∞) has the same sign as
det Mi(∞) = det Yi(∞) det Dc(∞) implies detYj(∞)
has the same sign as detYi(∞) and hence, condition (7)
follows.

Proof of Proposition 1:
i) a) Let Cpd = CpdI

−1 be as in (11). For Gj ∈ G∞ as in
(5), where X = 1

s+aI , Mj in (1) becomes

Mj = XCpd + Yj = XαY1(∞) + Yj + X
KD s

τ s + 1

=
(Wjs + αI)

(s + a)
[ (Wjs + αI)−1α I

+(Wjs + αI)−1( (s + a)Yj +
KD s

τ s + 1
)Y1(∞)−1] Y1(∞)

=
(Wjs + αI)

(s + a)
[ I + (Wjs + αI)−1Φj ] Y1(∞) .

By assumption, Wj has real positive eigenvalues implies
(Wjs + αI)−1 ∈ M(S); then ‖(Wjs + αI)−1‖ = 1/α .
If α satisfies (12), then

‖ (Wjs + αI)−1Φj ‖ ≤ ‖ (Wjs + αI)−1‖ ‖Φj ‖

=
1
α
‖Φj ‖ < 1

implies Mj is unimodular for each Gj ∈ G∞ and hence,
S(Gj , Cpd) is stable. Now for Ĝk ∈ Ĝo as in (6), where
X̂ = I , Ŷk = Ĝ−1

k , we have

M̂k = X̂Cpd + Ŷk = αY1(∞) + Ŷk +
KD s

τ s + 1

= [ I +
1
α

(Ĝ−1
k +

KD s

τ s + 1
)Y1(∞)−1 ] αY1(∞)

= [ I +
1
α

Φ̂k ] αY1(∞) .

If α > max
Ĝk ∈ Ĝo

‖ Φ̂k ‖ , then ‖ 1
α Φ̂k ‖ < 1 implies M̂k is

unimodular for each Ĝk ∈ Ĝo and hence, S(Ĝk, Cpd) is
stable. Therefore, if α satisfies (13), then Cpd stabilizes all
plants in the entire class G = G∞∪ Ĝo . If Ĝo is empty, then
α only satisfies (12).
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b) Let Cpid be as in (16) and write Cpid =
[ s
s+eCpid ] [ s I

s+e ]−1 as in (22). For Gj ∈ G∞ , Mj becomes

Mj = X Cpid
s

s + e
+ Yj

s

s + e

=
(s + g)
(s + a)

[
1

(s + g)
(KP +

gKP

s
+

KD s

τ s + 1
+(s+a)Yj ) ]

s

(s + e)

=
(s + g)
(s + a)

[
β Y1(∞)

s + e
+

1
(s + g)

(G−1
j +

KD s

τ s + 1
)

s

(s + e)
]

=
(s + g)
(s + a)

(Wjs + βI)
(s + e)

[ (Wjs + βI)−1β I

+(Wjs + βI)−1(G−1
j +

KD s

τ s + 1
)

s

(s + g)
Y1(∞)−1] Y1(∞)

=
(s + g)(Wjs + βI)

(s + a)(s + e)
[ I + (Wjs + βI)−1Ψj ] Y1(∞) .

Following similar steps as in part (a) above, (Wjs+βI)−1 ∈
M(S); then ‖(Wjs+βI)−1‖ = 1/β . If β satisfies (17), then

‖ (Wjs + βI)−1Ψj ‖ ≤ ‖ (Wjs + βI)−1‖ ‖Ψj ‖

=
1
β
‖Ψj ‖ < 1

implies Mj is unimodular for each Gj ∈ G∞ and hence,
S(Gj , Cpid) is stable. Now for Ĝk ∈ Ĝo we have

M̂k = X̂ Cpid
s

s + e
+ Ŷk

s

s + e

= [KP +
g KP

s
+

KD s

τ s + 1
+ Ŷk ]

s

s + e

=
(s + g)
(s + e)

KP + ( Ŷk +
KD s

τ s + 1
)

s

s + e

= [ I+
1
β

s

(s + g)
(Ĝ−1

k +
KD s

τ s + 1
)Y1(∞)−1 ]βY1(∞)

(s + g)
(s + e)

= [ I +
1
β

Ψ̂k ] βY1(∞)
(s + g)
(s + e)

.

If β > max
Ĝk ∈ Ĝo

‖ Ψ̂k ‖ , then ‖ 1
β Ψ̂k ‖ < 1 implies M̂k is

unimodular for each Ĝk ∈ Ĝo and hence, S(Ĝk, Cpid) is
stable. Therefore, if β satisfies (18), then Cpid stabilizes
all plants in the entire class G = G∞ ∪ Ĝo . If Ĝo is empty,
then β only satisfies (17).

ii) Let Cpd be as in (19). For Ĝk ∈ Ĝo we have

M̂k = X̂Cpd + Ŷk = α̂K̂P +
KD s

τ s + 1
+ Ĝ−1

k

= [ I +
1
α̂

(Ĝ−1
k +

KD s

τ s + 1
)K̂−1

P ] α̂K̂P .

For α̂ satisfying (21), ‖ 1
α̂ (Ĝ−1

k + KD s
τ s+1 )K̂−1

P ‖ < 1 implies
M̂k is unimodular and hence, Cpd stabilizes all Ĝk ∈ Ĝo .
Now let Cpid be as in (20). Then

M̂k = X̂Cpid
s

s + e
+ Ŷk

s

s + e

= [(1 +
ĝ

s
) α̂ K̂P +

KD s

τ s + 1
+ Ĝ−1

k ]
s

s + e

=
(s + ĝ)
(s + e)

α̂K̂P + ( Ĝ−1
k +

KD s

τ s + 1
)

s

s + e

= [ I +
1
α̂

s

(s + ĝ)
(Ĝ−1

k +
KD s

τ s + 1
)K̂−1

P ] α̂K̂P
(s + ĝ)
(s + e)

.

For α̂ satisfying (21),

‖ 1
α̂

s

(s + ĝ)
(Ĝ−1

k +
KD s

τ s + 1
)K̂−1

P ‖

≤ 1
α̂
‖ s

(s + ĝ)
‖ ‖ (Ĝ−1

k +
KD s

τ s + 1
)K̂−1

P ‖

≤ 1
α̂
‖ (Ĝ−1

k +
KD s

τ s + 1
)K̂−1

P ‖ < 1

implies M̂k is unimodular and hence, Cpid stabilizes all
Ĝk ∈ Ĝo .
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[7] A. N. Gündeş, “Simultaneous Tracking Controller Synthesis for
MIMO Systems,” Proc. 2007 American Control Conf., pp. 3775-3776,
2007.

[8] M. Morari, E. Zafiriou, Robust Process Control, Prentice-Hall, New
Jersey, 1989.

[9] G. J. Silva, A. Datta, S. P. Bhattacharyya, “New results on the synthesis
of PID controllers,” IEEE Trans. Automatic Control, vol. 47: 2, pp.
241-252, 2002.

[10] M. Vidyasagar, Control System Synthesis: A Factorization Approach,
Cambridge, MA: MIT Press, 1985.

- g - C - g?- Gj -
6−

r e
v

w y

Fig. 1. Unity-Feedback System Sys(Gj , C).
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