Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

ThC09.1

Simultaneous Tracking Controller Synthesis for MIMO Systems

A. N. Giindes

Abstract— Simultaneous stabilization of linear, time-
invariant, multi-input multi-output stable plants is considered
with asymptotic tracking of step-input references with zero
steady-state error. Conditions are derived for existence of
simultaneous integral-action controllers and PID-controllers.
A systematic simultaneous PID synthesis method is proposed.

[. INTRODUCTION

We consider simultaneous stabilization of a finite class of
linear, time-invariant (LTT) multi-input multi-output (MIMO)
stable plants while achieving asymptotic tracking of step-
input references with zero steady-state error. We derive
conditions for existence of general integral-action controllers
and particularly proportional+integral+derivative (PID) con-
trollers that achieve simultaneous stabilization.

Simultaneous stabilization of three or more plants and
strong stabilization are difficult problems even without the
controller order restriction [1], [2], [6]. Rigorous PID design
methods exist mostly for single-input single-output (SISO)
systems (see e.g., [5]). Simultaneous PID designs for MIMO
systems have not been explored extensively. The results
here are necessary conditions for existence of simultaneous
integral-action controllers based on the DC-gains of the
plants (Lemma 3.1), and sufficient conditions and explicit
PID synthesis (Proposition 3.1). For single-output systems,
the sufficient conditions are also necessary. The freedom in
the PID parameters may be used to satisfy additional perfor-
mance criteria. The discussion is based on continuous-time
systems; all results apply also to discrete-time systems with
appropriate modifications. Notation: U = { s € C| Re(s) >
0 } U {oo} is the extended closed right-half complex plane;
IR, IRy denote reals and positive reals; R, denotes real
proper rational functions of s; S C Ry, is the stable subset
with no poles in U; M(S) is the set of matrices with entries
in S; I,,, is the (size m) identity matrix. The H,-norm of
M(s) € M(8) is ||M|| := sup,egy 0(M(s)), where & is
the maximum singular value and Ol is the boundary of U.
We drop (s) in transfer matrices such as G(s).

II. PRELIMINARIES

Consider the standard LTI, MIMO unity-feedback system
Sys(Gj,C) in Fig. 1, where G; € S™*", j € {1,...,k},
and C € Rp"*™ denote the plant and the controller.
We assume Sys(G;,C) is well-posed, G; and C have no
unstable hidden-modes, and rankG; = m. The objective
is to design C' achieving asymptotic tracking of step-input
references with zero steady-state error for a finite class of
stable plants G; simultaneously. Let C = N.D_ ! be aright-
coprime-factorization (RCF); N, € S“*™, D, € S™*™,
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det D.(c0) # 0. Then C' stabilizes G; € M(S) if and
only if M; := D, + G;N, is unimodular [6], [4]. Let the
transfer-function from r to e be H7" and let the transfer-
function from r to y be HY" ; then Hf" = (I, + G;C) " =
L, —G;C(I, + G;C) ' =1 I, — GH" =: I, — HJ" .

Definition 2.1: i) The system Sys(G;,C) is stable iff
the transfer-function from (r,v) to (y,w) is stable. ii) The
controller C' simultaneously stabilizes G; for j € {1,...,k}
iff C is proper and all Sys(G;,C) are stable. iii) The
stable Sys(G , C) has integral-action iff " has blocking-
zeros at s = 0. iv) The controller C' is a simultaneously
stabilizing integral-action controller iff C stabilizes G; for
j € {1,....k}, and D, of any RCF C = N.D_! has
blocking-zeros at s = 0, i.e., D.(0) = 0. .
Suppose that Sys(G;,C) is stable. Then the steady-state
error e(t) due to step inputs at 7(¢) goes to zero as t — 00
if and only if H;"(0) = 0. By Definition 2.1, the stable
Sys(G; ,C) achieves asymptotic tracking of constant refer-
ence inputs with zero steady-state error if and only if it has
integral-action. Write H" = (I, + G )l = Dchfl =
I, — G; N, Mj_1 . Then Sys(G,,C) has integral-action if
and only if C = N.D_ 1 is an integral-action controller
since Hf"(0) = (DCM]._l)(O) = 0 if and only if D.(0) = 0.
The simplest integral-action controllers are in the proper
(realizable) PID form Cp;q = Kp + % + fs’ii, where
Kp,K;,Kp € R**™ are the proportional, integral, and
derivative constants [3]. Due to implementation issues, a pole
is typically added to the derivative term (with 7 > 0) so that
the transfer-function Cp;4 is proper. The only U/-pole of Cp;q
is at s = 0. The constants Kp, Kp, K; may be negative; in
the scalar case, this means the zeros of Cp;q may be in U .
The integral-action in C;q is present when K # 0.

III. MAIN RESULTS

We derive necessary conditions for existence of simulta-
neously stabilizing integral-action controllers. We propose
explicit PID-controller design under a sufficient condition,
which is necessary for systems with a single-output.

Lemma 3.1: (i) (Necessary condition for integral-action):
Let G; € S™*". If the system Sys(G,,C) has integral-
action, then rankG;(0) = m < wu, ie, G; has no
transmission-zeros at s = 0. (ii) (Necessary conditions
for simultaneous integral-action): Let G; € S™ ", j €
{1,...,k}. Let rankG;(0) = m < u. Let G;(0)! € R"*™
denote a right-inverse of G,(0). a) Suppose that for all
i,7 € {1,...,k}, Gi(z0) — Gj(2,) = 0 for some s =
zo € IRNU . If there exist simultaneously stabilizing integral-
action controllers, then

det [G;(0)G:(0)'] > 0, forall 4,j€{1,...,k}. (1)
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b) Suppose that each G;(z;) = 0 for some z; € RNU,
j €{1,...,k}. If there exist simultaneously stabilizing PID-
controllers, then (1) holds for all ¢,5 € {1,...,k}. .

Proposition 3.1: (Simultaneous PID-controller synthesis):
Let G; € 8™ ", rankG;(0) = m < u, j € {1,...,k}.
Designate an arbitrary plant as Gy . Let G1(0)! € R**™
denote a right-inverse of G1(0). If all eigenvalues of
G;j(0)G1(0)! are real and positive for j € {2,...,k},
then simultaneously stabilizing PID-controllers exist and
can be designed as follows: Let F© = 0 for a PD-
controller, ' = [ for a PID-controller. Choosp any
KP,IA(D € IRuxm, 7 > 0. Define é = Kp—f— Kps +

Ts+1
%O)IF. Choose any 3 € IR, satisfying 0 < B <

Mminjefa,... k} I 5G CLG"EO)GI(O)IF |~ Let Kp = BKp,
Kp = BKp, K; = 3G1(0)!. Then a PID-controller that
51mu1taneously stabilizes all G is Chpiqg = B C = 5K p+

’st(fls + 6G1( ) F, which is a PD-controller for F' =0, a

PI-controller for K D= 0 an ID-controller for K p =20, an
I-controller for K D= K p=0. .

Corollary 3.1: (Necessary and sufficient existence condi-
tions for simultaneous PID-controllers): Let G; € glxu s
G;(0) # 0, j € {1,...,k}. a) Suppose that for all
i,j € {1,....k}, Gi(z,) — Gj(z,) = 0, for some s =
zo € IRNU . There exist simultaneously stabilizing integral-
action controllers if and only if G;(0)G;(0)! > 0, for all
i, € {1,...,k}. b) Suppose that each G;(z;) = 0 for
some z; € IRNU, j € {1,..., k}. There exist simultaneously
stabilizing PID-controllers if and only if G;(0)G1(0)! > 0,
forall j € {2,...,k}. .

IV. CONCLUSIONS

We showed that a class of stable plants {G1,...,Gk}
with blocking-zeros in &/ can be simultaneously stabilized
using low-order integral-action (PID) controllers only if
det [G;(0)G;(0)'] > 0 for all 4,5 € {1,...,k}. If the
eigenvalues of G;(0)G1(0)! are all real and positive for
some arbitrary G of the class, then there exist simultaneous
PID-controllers. The necessary conditions and the sufficient
conditions coincide for systems with only one output. Under
the sufficient condition of positive eigenvalues for the DC-
gain matrix, we presented a PID synthesis method, which
allows a wide range of choices for the PID parameters.

APPENDIX: PROOFS

Proof of Lemma 3.1: i) The stability of Sys(G;,C)

implies H{"(0) = I, — G;H™(0) = 0, ie,
G;jH?"(0) = I, . Therefore, rank|[G;(0)H;"*(0)] = m g
mm{rankG (0), rankH}““(O)} implies m < rankG;(0) <

min{m,u} and hence, rankG,;(0) = m. ii) it a) Let
C = N.D;! be an integral-action controller simultane-

ously stabilizing the class {G1,...,Gi,...,Gj,..., Gk},
where G;,G; are two arbitrary plants. Since C' has
integral-action, D. =: - _f_aD for any a € R.,

where D, € M(S). Then M; =

M; =

p +aD + G;N, and
5 +aD + GjN. are unimodular. By assumption,
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Gi(2,) = G,(z,) for the same 2z, € IRy U oo implies
M;(z0) — Mj(20) = [Gi(20) — Gj(20) |Ne(20) = 0, ie.,
M;(z,) = M;j(z,). Since det M;(z,) = det M;(z,) at

some 2z, € U, det M;(s) has the same sign as det M;(s)
for all s € U NIR. At s = 0, M;(0) = G;(0)N.(0)
implies N.(0) = G;(0)!M;(0) and hence, M;(0) =
G;(0)N.(0) = G;(0)G;(0)!M;(0). The conclusion fol-
lows since det M; ( ) = det[G,(0)G;(0)" ] det M;(0), with
det M;(0) having the same sign as det M;(0), implies
(1). b) Let Cpiq be a simultaneously stabilizing PID-
controller. Write Cp;q = N.D;' = (== wta € Cp”i)( q_i%alm)’l

for any @ > 0; ie., N, = [KP + £ Bl + s{(lfa
Then M,; = e, = S I—i—GNC are
unimodular. By assumption, Gi(zi) = O for some z; €

R4+ U oo and Gj(z,) for same z; € IRy U oo im-
plies det M;(z;) = det %, > 0 and detM;(z;) =
j' > 0. Since det M;(s) has the same sign for
all s € U NIR, det M;(0) > 0; similarly, det M;(0) >
0. At s = 0, Ml(()) = G1<O)NC(0) = Gi(O)a_lKi
implies K; = aG;(0)!M;(0) and hence, M;(0) =
G;(0)N.(0) = G;(0)G;(0)!M;(0). The conclusion fol-
lows since det M;(0) = det[ G;(0)G;(0)! ] det M;(0), with
det M;(0) > 0 and det M;(0) > 0, implies (1). .
Proof of Proposition 3.1: Write Cpq = N.D;! =
[Cpia DI — ;4 F]™" for any a € Ry. Then Cpiq
stabilizes G € ./\/1( ) if and only if M; := D. + G; N, is
unimodular. By assumption, ©; := G;(0)G1(0)! has posi-
tive real eigenvalues. Since a > 0, 3 > 0 and (sIJrﬂ@ )t
M(S), M; is unimodular if and only if M; := M; [I +
(aI—$0;) (sI+(30;)~" F]is unimodular. Note thatM

M; for F =0, and M, := M; (s+a) (sI+ﬂ@ )1 forF—
I. Define D i— I— ﬁ@ (51+59j)f , N:=CpaD;
ie, D =1 for F = OandD 5](5]—1—/66)1f0r
F=1I. ThenM canbewnttenasM 7D+G N=1I+

3(G, (Kp+fi’fl)D+(G OIS )sI(sI—i—ﬁ@j)_lF].
Since ||(s]+30;)!

systems Sys(G; ,C) are stable for j € {1,...,

sl =1, M ; is unimodular. Hence, the
k}. .
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Fig. 1. Unity-Feedback System Sys(G;,C).
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