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Abstract— Simultaneous stabilization of linear, time-
invariant, multi-input multi-output stable plants is considered
with asymptotic tracking of step-input references with zero
steady-state error. Conditions are derived for existence of
simultaneous integral-action controllers and PID-controllers.
A systematic simultaneous PID synthesis method is proposed.

I. INTRODUCTION
We consider simultaneous stabilization of a finite class of

linear, time-invariant (LTI) multi-input multi-output (MIMO)
stable plants while achieving asymptotic tracking of step-
input references with zero steady-state error. We derive
conditions for existence of general integral-action controllers
and particularly proportional+integral+derivative (PID) con-
trollers that achieve simultaneous stabilization.

Simultaneous stabilization of three or more plants and
strong stabilization are difficult problems even without the
controller order restriction [1], [2], [6]. Rigorous PID design
methods exist mostly for single-input single-output (SISO)
systems (see e.g., [5]). Simultaneous PID designs for MIMO
systems have not been explored extensively. The results
here are necessary conditions for existence of simultaneous
integral-action controllers based on the DC-gains of the
plants (Lemma 3.1), and sufficient conditions and explicit
PID synthesis (Proposition 3.1). For single-output systems,
the sufficient conditions are also necessary. The freedom in
the PID parameters may be used to satisfy additional perfor-
mance criteria. The discussion is based on continuous-time
systems; all results apply also to discrete-time systems with
appropriate modifications. Notation: U = { s ∈ CI | Re(s) ≥
0 } ∪ {∞} is the extended closed right-half complex plane;
IR , IR+ denote reals and positive reals; Rp denotes real
proper rational functions of s; S ⊂ Rp is the stable subset
with no poles in U ; M(S) is the set of matrices with entries
in S ; Im is the (size m) identity matrix. The H∞-norm of
M(s) ∈ M(S) is ‖M‖ := sups∈∂U σ̄(M(s)), where σ̄ is
the maximum singular value and ∂U is the boundary of U .
We drop (s) in transfer matrices such as G(s).

II. PRELIMINARIES
Consider the standard LTI, MIMO unity-feedback system

Sys(Gj , C) in Fig. 1, where Gj ∈ Sm×u, j ∈ {1, . . . , k},
and C ∈ Rp

u×m denote the plant and the controller.
We assume Sys(Gj , C) is well-posed, Gj and C have no
unstable hidden-modes, and rankGj = m . The objective
is to design C achieving asymptotic tracking of step-input
references with zero steady-state error for a finite class of
stable plants Gj simultaneously. Let C = NcD

−1
c be a right-

coprime-factorization (RCF); Nc ∈ Su×m, Dc ∈ Sm×m,

The author is with Electrical and Computer Engineering, University of
California, Davis, CA 95616 angundes@ucdavis.edu

det Dc(∞) 6= 0. Then C stabilizes Gj ∈ M(S) if and
only if Mj := Dc + GjNc is unimodular [6], [4]. Let the
transfer-function from r to e be Her

j and let the transfer-
function from r to y be Hyr

j ; then Her
j = (Im +GjC)−1 =

Im −GjC(Im + GjC)−1 =: Im −GjH
wu
j =: Im −Hyr

j .
Definition 2.1: i) The system Sys(Gj , C) is stable iff

the transfer-function from (r, v) to (y, w) is stable. ii) The
controller C simultaneously stabilizes Gj for j ∈ {1, . . . , k}
iff C is proper and all Sys(Gj , C) are stable. iii) The
stable Sys(Gj , C) has integral-action iff Her

j has blocking-
zeros at s = 0. iv) The controller C is a simultaneously
stabilizing integral-action controller iff C stabilizes Gj for
j ∈ {1, . . . , k}, and Dc of any RCF C = NcD

−1
c has

blocking-zeros at s = 0, i.e., Dc(0) = 0.
Suppose that Sys(Gj , C) is stable. Then the steady-state
error e(t) due to step inputs at r(t) goes to zero as t →∞
if and only if Her

j (0) = 0. By Definition 2.1, the stable
Sys(Gj , C) achieves asymptotic tracking of constant refer-
ence inputs with zero steady-state error if and only if it has
integral-action. Write Her

j = (Im + Gj C)−1 = DcM
−1
j =

Im − Gj Nc M−1
j . Then Sys(Gj , C) has integral-action if

and only if C = NcD
−1
c is an integral-action controller

since Her
j (0) = (DcM

−1
j )(0) = 0 if and only if Dc(0) = 0.

The simplest integral-action controllers are in the proper
(realizable) PID form Cpid = KP + KI

s + KD s
τ s+1 , where

KP ,KI ,KD ∈ IRu×m are the proportional, integral, and
derivative constants [3]. Due to implementation issues, a pole
is typically added to the derivative term (with τ > 0) so that
the transfer-function Cpid is proper. The only U -pole of Cpid

is at s = 0. The constants KP ,KD,KI may be negative; in
the scalar case, this means the zeros of Cpid may be in U .
The integral-action in Cpid is present when KI 6= 0.

III. MAIN RESULTS

We derive necessary conditions for existence of simulta-
neously stabilizing integral-action controllers. We propose
explicit PID-controller design under a sufficient condition,
which is necessary for systems with a single-output.

Lemma 3.1: (i) (Necessary condition for integral-action):
Let Gj ∈ Sm×u. If the system Sys(Gj , C) has integral-
action, then rankGj(0) = m ≤ u , i.e., Gj has no
transmission-zeros at s = 0. (ii) (Necessary conditions
for simultaneous integral-action): Let Gj ∈ Sm×u , j ∈
{1, . . . , k}. Let rankGj(0) = m ≤ u . Let Gj(0)I ∈ IRu×m

denote a right-inverse of Gj(0). a) Suppose that for all
i, j ∈ {1, . . . , k}, Gi(zo) − Gj(zo) = 0 for some s =
zo ∈ IR∩U . If there exist simultaneously stabilizing integral-
action controllers, then

det [ Gj(0) Gi(0)I ] > 0 , for all i, j ∈ {1, . . . , k} . (1)
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b) Suppose that each Gj(zj) = 0 for some zj ∈ IR ∩ U ,
j ∈ {1, . . . , k}. If there exist simultaneously stabilizing PID-
controllers, then (1) holds for all i, j ∈ {1, . . . , k}.

Proposition 3.1: (Simultaneous PID-controller synthesis):
Let Gj ∈ Sm×u , rankGj(0) = m ≤ u , j ∈ {1, . . . , k}.
Designate an arbitrary plant as G1 . Let G1(0)I ∈ IRu×m

denote a right-inverse of G1(0). If all eigenvalues of
Gj(0)G1(0)I are real and positive for j ∈ {2, . . . , k},
then simultaneously stabilizing PID-controllers exist and
can be designed as follows: Let F = 0 for a PD-
controller, F = I for a PID-controller. Choose any

K̂P , K̂D ∈ IRu×m, τ > 0. Define Ĉ := K̂P + K̂D s
τ s+1 +

G1(0)
I

s F . Choose any β ∈ IR+ satisfying 0 < β <

minj∈{1,...,k} ‖ s Gj Ĉ−Gj(0) G1(0)
I F

s ‖−1. Let KP = βK̂P ,
KD = βK̂D , KI = βG1(0)I . Then a PID-controller that
simultaneously stabilizes all Gj is Cpid = β Ĉ = β K̂P +
β K̂D s
τ s+1 + β G1(0)

I

s F , which is a PD-controller for F = 0, a
PI-controller for K̂D = 0, an ID-controller for K̂P = 0, an
I-controller for K̂D = K̂P = 0.

Corollary 3.1: (Necessary and sufficient existence condi-
tions for simultaneous PID-controllers): Let Gj ∈ S1×u ,
Gj(0) 6= 0, j ∈ {1, . . . , k}. a) Suppose that for all
i, j ∈ {1, . . . , k}, Gi(zo) − Gj(zo) = 0, for some s =
zo ∈ IR∩U . There exist simultaneously stabilizing integral-
action controllers if and only if Gj(0)Gi(0)I > 0, for all
i, j ∈ {1, . . . , k}. b) Suppose that each Gj(zj) = 0 for
some zj ∈ IR∩U , j ∈ {1, . . . , k}. There exist simultaneously
stabilizing PID-controllers if and only if Gj(0)G1(0)I > 0,
for all j ∈ {2, . . . , k}.

IV. CONCLUSIONS

We showed that a class of stable plants {G1, . . . , Gk}
with blocking-zeros in U can be simultaneously stabilized
using low-order integral-action (PID) controllers only if
det [Gj(0) Gi(0)I ] > 0 for all i, j ∈ {1, . . . , k}. If the
eigenvalues of Gj(0)G1(0)I are all real and positive for
some arbitrary G1 of the class, then there exist simultaneous
PID-controllers. The necessary conditions and the sufficient
conditions coincide for systems with only one output. Under
the sufficient condition of positive eigenvalues for the DC-
gain matrix, we presented a PID synthesis method, which
allows a wide range of choices for the PID parameters.

APPENDIX: PROOFS

Proof of Lemma 3.1: i) The stability of Sys(Gj , C)
implies Her

j (0) = Im − GjH
wu
j (0) = 0, i.e.,

GjH
wu
j (0) = Im . Therefore, rank[Gj(0)Hwu

j (0)] = m ≤
min{rankGj(0), rankHwu

j (0)} implies m ≤ rankGj(0) ≤
min{m, u} and hence, rankGj(0) = m . ii) it a) Let
C = NcD

−1
c be an integral-action controller simultane-

ously stabilizing the class {G1, . . . , Gi, . . . , Gj , . . . , Gk},
where Gi, Gj are two arbitrary plants. Since C has
integral-action, Dc =: s

s+aD̂c for any a ∈ IR+ ,
where D̂c ∈ M(S). Then Mi = s

s+aD̂c + GiNc and
Mj = s

s+aD̂c + GjNc are unimodular. By assumption,

Gi(zo) = Gj(zo) for the same zo ∈ IR+ ∪ ∞ implies
Mi(zo) − Mj(zo) = [ Gi(zo) − Gj(zo) ]Nc(zo) = 0, i.e.,
Mi(zo) = Mj(zo). Since detMi(zo) = det Mj(zo) at
some zo ∈ U , det Mi(s) has the same sign as detMj(s)
for all s ∈ U ∩ IR. At s = 0, Mi(0) = Gi(0)Nc(0)
implies Nc(0) = Gi(0)IMi(0) and hence, Mj(0) =
Gj(0)Nc(0) = Gj(0)Gi(0)IMi(0). The conclusion fol-
lows since detMj(0) = det[ Gj(0)Gi(0)I ] det Mi(0), with
det Mj(0) having the same sign as detMi(0), implies
(1). b) Let Cpid be a simultaneously stabilizing PID-
controller. Write Cpid = NcD

−1
c = ( s

s+a Cpid)( s
s+aIm)−1

for any a > 0; i.e., Nc = [KP + KD s
τs+1 ] s

s+a + KI

s+a .
Then Mi = s

s+aI + GiNc , Mj = s
s+aI + GjNc are

unimodular. By assumption, Gi(zi) = 0 for some zi ∈
IR+ ∪ ∞ and Gj(zo) for same zj ∈ IR+ ∪ ∞ im-
plies detMi(zi) = det zi

zi+a > 0 and detMj(zj) =
det zj

zj+a > 0. Since detMi(s) has the same sign for
all s ∈ U ∩ IR, detMi(0) > 0; similarly, detMj(0) >
0. At s = 0, Mi(0) = Gi(0)Nc(0) = Gi(0)a−1Ki

implies Ki = aGi(0)IMi(0) and hence, Mj(0) =
Gj(0)Nc(0) = Gj(0)Gi(0)IMi(0). The conclusion fol-
lows since detMj(0) = det[ Gj(0)Gi(0)I ] det Mi(0), with
det Mj(0) > 0 and detMi(0) > 0, implies (1).
Proof of Proposition 3.1: Write Cpid = NcD

−1
c =

[Cpid Dc][I − a
s+a F ]−1 for any a ∈ IR+ . Then Cpid

stabilizes Gj ∈M(S) if and only if Mj := Dc + Gj Nc is
unimodular. By assumption, Θj := Gj(0)G1(0)I has posi-
tive real eigenvalues. Since a > 0, β > 0 and (sI+βΘj)−1 ∈
M(S), Mj is unimodular if and only if M̂ j := Mj [ I +
(aI−βΘj) (sI+βΘj)−1 F ] is unimodular. Note that M̂ j :=
Mj for F = 0, and M̂ j := Mj (s+a) (sI+βΘj)−1 for F =
I . Define D̃ := I−βΘj ( sI +βΘj)−1F , Ñ := Cpid D̃ ;
i.e., D̃ = I for F = 0 and D̃ = s I ( sI + βΘj)−1 for
F = I . Then M̂ j can be written as M̂ j = D̃+Gj Ñ = I +
β [ Gj (K̂P + K̂Ds

τ s+1 )D̃+ ( Gj G1(0)
I−Θj )

s sI(sI+βΘj)−1 F ] .
Since ‖(sI +βΘj)−1 s ‖ = 1, M̂ j is unimodular. Hence, the
systems Sys(Gj , C) are stable for j ∈ {1, . . . , k}.
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Fig. 1. Unity-Feedback System Sys(Gj , C).
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