
Appl. Comput. Math. 6 (2007), no.1, pp.18-26

RESILIENT PI AND PD CONTROLLER DESIGNS
FOR A CLASS OF UNSTABLE PLANTS WITH I/O DELAYS*

H. ÖZBAY †, A. N. GÜNDEŞ ‡, §

Abstract. In [8] we obtained stabilizing PID controllers for a class of MIMO unstable plants
with time delays in the input and output channels (I/O delays). Using this approach, for plants
with one unstable pole, we investigate resilient PI and PD controllers. Specifically, for PD
controllers, optimal derivative action gain is determined to maximize the allowable controller
gain interval. For PI controllers, optimal proportional gain is determined to maximize a lower
bound of the largest allowable integral action gain.
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1. Introduction

PID controllers are still very popular in many control applications thanks to their simple
structure, [1, 5]. Design of PID controllers for delay systems is still an active research area,
see for example the recent book [15], and its references. In this paper we consider unstable
plants with time delays. It is clear that, even for delay-free systems, not all unstable plants are
stabilizable by a PID controller (strong stabilizability is a necessary condition for stabilization by
a PID controller, and there are bounds on the order of strongly stabilizing controllers, [8, 17, 19]).
Moreover, right half plane poles and zeros in the plant transfer matrix, as well as time delays
in the input and/or output channels (I/O delays) of the plant, impose additional restrictions on
the feedback controllers, see e.g. [6, 7, 11, 18, 21].

Recently, PID controllers are designed in [20] under specified gain margin and sensitivity
constraints, and in [14] under an H∞ performance condition. PID controller tuning rules are
also discussed in [9, 16] under different optimality conditions. For SISO unstable systems with
delays PID controller tuning has been studied in [10, 13]. An extension of predictive control is
used in [3] to derive PID controllers for a class of MIMO unstable plants with delays.

In a recent work [8] obtained PID controllers from a small gain argument for a class of
MIMO unstable plants with delays in the input and output channels (I/O delays). In this paper
we use the results of [8] for plants with one unstable pole, and investigate stabilizing PI and
PD controllers with the largest allowable interval for the controller gain. This is an important
problem to study, because sensitivity of the closed loop stability to perturbations in the controller
coefficients can be minimized this way, and hence resilient PI and PD controllers (see e.g. [15]
and its references for a discussion of this issue) can be obtained. There are many important
practical examples of plants with single unstable pole and time delays, see e.g. [2, 10, 13, 15, 18]
and their references.

Remaining parts of the paper are organized as follows. Preliminary results from [8] are
summarized in Section 2. Main results on PD controller design are given in Section 3, and the
results on PI controller are given in Section 4; concluding remarks are made in Section 5.
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Dept. Electrical & Computer Eng., Univ. of California, Davis, CA 95616, U.S.A., angundes@ucdavis.edu
§Manuscript received May 22, 2007.
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2. Problem Definition and Preliminary Results

Consider the linear time invariant (LTI) feedback system shown in Figure 1, where C is the
controller to be designed and GΛ := ΛoGΛi is the plant with r inputs and r outputs. Here
G is the delay free part of the system which is assumed to be finite dimensional. Time delays
in the input and output channels of the plant are represented by their transfer matrices as
Λ• = diag

[
e−sh•1 , . . . , e−sh•r

]
, where, h•j is the jth channel input (when • = i) or output (when

• = o) delay, for 1 ≤ j ≤ r.

- h - C - h? - -ΛoGΛi
6−
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Figure 1. Feedback system Sys(GΛ, C) with GΛ = ΛoGΛi.

Transfer matrix Hcl from (yref , v) to (u, y) is

Hcl =
[

C(I + GΛC)−1 −C(I + GΛC)−1GΛ

GΛC(I + GΛC)−1 (I + GΛC)−1GΛ

]
. (1)

We consider the proper form of PID controllers, [5],

C(s) = Cpid(s) = Kp +
Ki

s
+

Kd s

τds + 1
, (2)

where Kp, Ki, Kd are real matrices and τd > 0. But we will restrict ourselves to PI and PD
controllers, i.e., Cpi = Kp + Ki

s and Cpd = Kp + Kd s
τds+1 respectively.

Definition. The feedback system Sys(GΛ, C) is stable if all entries of Hcl are in H∞. We
define Spid, Spi, Spd to be the sets of all PID, PI and PD (respectively) controllers stabilizing the
feedback system Sys(GΛ, C).
Assumptions.
(A1) G admits a coprime factorization in the form G(s) = Y (s)−1X(s) = X(s)Y (s)−1 where
X ∈ Hr×r∞ , and Y (s) = (s−p)

(as+1)I. Here p ≥ 0 is the unstable pole of the plant, and a > 0 is
arbitrary.
(A2) X(0) = (s− p)G(s)|s=0 is nonsingular.

Proposition 2.1. [8] Consider the plant GΛ = ΛoGΛi, where G satisfies (A1) and (A2). i)
PD-design: Choose any K̂d ∈ Rr×r, and τd > 0. Define Ĉpd := X(0)−1 + K̂ds

τds+1 and
ΦΛ := s−1 ((s− p)GΛ(s)ĉpd(s)− I)
Φ̃Λ := s−1 (ĉpd(s)(s− p)GΛ(s)− I).

If 0 ≤ p < max{‖ΦΛ‖−1∞ , ‖Φ̃Λ‖−1∞ }, then for any α > 0 satisfying

0 < α < max{‖ΦΛ‖−1
∞ − p , ‖Φ̃Λ‖−1

∞ − p } , (3)

the controller Ĉpd(s) = (α + p)Ĉpd(s) is in Spd.

ii) PID-design : Let Cpd be as above, and define Hpd := GΛ(I+Cpd GΛ)−1, Υ := Hpd(s)Hpd(0)−1−I
s ,

Υ̃ := Hpd(0)−1Hpd(s)−I
s . Then, for any γ ∈ R satisfying

0 < γ < max{‖Υ‖−1
∞ , ‖Υ̃‖−1

∞ }, (4)

the PID-controller given in (5) is in Spid,

Cpid(s) = Cpd(s) +
γαX(0)−1

s
. (5)
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If (3) and (4) are satisfied for K̂d = 0 then (5) with K̂d = 0 is a PI controller in Spi.

ΛG(s) =
[

1 0
0 180

(s+6)(s+30)

]

This result appears in [8] for systems with possibly uncertain time delays, but for our purposes
fixed time delays version stated above is sufficient. Now consider the plants with input delays
only satisfying the following structural assumption.
Assumption (A3). GΛ(s) = G(s)Λi(s), with G(s) = 1

s−pG0ΛG(s) where G0 is a non-
singular constant matrix and ΛG(s) is a stable diagonal matrix with ΛG(0) = I, i.e., ΛG(s) =
diag[g1(s), . . . , gr(s)], where g1(s), . . . , gr(s) are stable proper transfer functions with gj(0) = 1,
for all j = 1, . . . , r. Note that with A3 we have X(0) = G0 and earlier assumptions A1 and A2
are satisfied. Moreover, this assumption results in a diagonal structure in the input sensitivity
matrix, as demonstrated below. An example for A3 is the transfer matrix of a distillation column

with input channel delays, [4], GΛ(s) = 1
s G0 ΛG(s)Λi(s), where G 0 =

[
3.04 − 278.2/180
0.052 206.6/180

]
,

ΛG(s) =
[

1 0
0 180

(s+6)(s+30)

]
.

2.1. PD Control of Systems With Input Delays. Let A3 hold, and define K̂d = K̃i
dX(0)−1 =

K̃i
dG

−1
0 . Then, the PD controller of Proposition 2.1 can be re-written as Cpd(s) = (α +

p)
(
I + K̃i

d
s

τds+1

)
G−1

0 . Then choosing K̃i
d := diag[qi

1, . . . , q
i
r], we have a diagonal input sen-

sitivity matrix Si(s) = (I + Li(s))−1, where

Li(s) =
(α + p)
(s− p)

(
I + K̃i

d

s

τds + 1

)
ΛG(s)Λi(s).

Proposition 2.1 gives a lower bound on the largest controller gain interval: p < (α + p) <

‖Φ̃Λ‖−1∞ . For the purpose of designing a resilient controller, we would like to maximize the size
of this interval. That is equivalent to minimizing

µi := ‖Φ̃Λ‖∞ = ‖ΛFi(s)− I

s
+ K̃i

d

ΛFi(s)
τds + 1

‖∞ (6)

where ΛFi := ΛGΛi. Therefore, in Section 3 we will study the problem of minimizing µi defined
by (7) over the free parameters qi

1, . . . , q
i
r, where f i

j(s) := gj(s)e−hi
js

µi = max
j
‖f i

j(s)− 1
s

+ qi
j

f i
j(s)

τds + 1
‖∞. (7)

We should point out that with the dual structural assumption GΛ(s) = Λo(s)G(s), with
G(s) = 1

s−pΛG(s)G0 where G0 and ΛG(s) are as in A3, a similar problem can be defined for the
output delay case, where ‖ΦΛ‖∞ is minimized. The case where both input and output delays
exist is more difficult, but if either output or input delays are equalized in all the channels, then
that would lead to the same problem of minimizing either ‖ΦΛ‖∞ or ‖Φ̃Λ‖∞, see [12].

2.2. PI Control of Systems With Input or Output Delays. Now consider PI controllers
with the proportional part Cp = (α + p)X(0)−1, where α satisfies (3). The PI controller is then
in the form

Cpi(s) = (α + p)X(0)−1 +
γα

s
X(0)−1 (8)

where γ satisfies (4). Recall that, under the structural assumption A3, we have X(0) = G0.
An interesting problem in this case is to find the largest allowable interval for γ, for a fixed α
satisfying (3).

Note that in this case Hpd(s) = Hp(s) = GΛ(I + CpGΛ)−1 = (I + GΛCp)−1GΛ. As in the
above discussion on PD controller design we will assume that A3 holds and α is in the interval
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0 < α < ‖Φ̃Λ‖−1∞ − p. In this case, since the derivative term is absent, we have Φ̃Λ = Λ(s)−I
s ,

where Λ = ΛGΛi. Then a lower bound for the maximum interval for the allowable “integral
action gain” γ is found from (4) where Υ̃ = αΛ(s)((s−p)I+(α+p)Λ(s))−1−I

s . It is easy to see that in
the dual case, where output delays are considered, and the added restriction 0 < α < ‖ΦΛ‖−1∞ −p,
we have Υ = αΛ(s)((s−p)I+(α+p)Λ(s))−1−I

s , where Λ = ΛoΛG. Thus, it is interesting to study the
upper bound γmax for γ where

γmax := ‖
α

s−pΛ(s)(I + α+p
s−p Λ(s))−1 − I

s
‖−1
∞ (9)

as a function of α satisfying

0 < α < ‖Λ(s)− I

s
‖−1
∞ − p (10)

where Λ(s) = ΛG(s)Λi(s) for the input delay case and Λ(s) = Λo(s)ΛG(s) for the output delay
case.

3. Optimal Derivative Action Gain

Recall from (7) that we are interested in solving the following problem: given h > 0 and a
stable transfer function g(s) with g(0) = 1, let f(s) = g(s)e−hs, and find q ∈ R such that µ is
minimized, where

µ = ‖f(s)− 1
s

+ q
f(s)

τds + 1
‖∞ , τd → 0. (11)

We shall denote the optimal solution by qopt. This is a single parameter scalar function H∞
norm minimization problem and it can be solved numerically using brute force search. More
precisely, such an algorithm would perform the following steps:

0. Choose the candidate values of q = q1, . . . , qN , over which the optimization is to be done,
and the frequency values ω = ω1, . . . , ωM over which the norm (cost function) is to be
computed.

1. For k = 1, . . . , N and ` = 1, . . . , M compute
Ψ(qk, ω`) := |f(jω`)−1

jω`
+ qk

f(jω`)
jτdω`+1 | .

2. Define µ(qk) := max` Ψ(qk, ω`).
3. Optimal q is qopt = arg mink µ(qk).

As an example, consider the distillation column transfer matrix given in Section 2, where g1(s) =
1 and g2(s) = 180

(s+6)(s+30) . Optimal derivative gains are computed in [8] (see Figure 4 of [8]) using
the numerical procedure given above. However, this procedure is sensitive to the number of grid
points chosen for q and ω. So, it would be useful if one could derive a closed form expression
for the solution, at least for the simplest case g(s) = 1, i.e. f(s) = e−hs. It turns out that this
is possible, and we claim that qopt(h) = sin(2.33)

2.33 h = 0.31 h for f(s) = e−hs. In the rest of this
section we discuss how qopt can be computed directly for a class of functions f .

Note that (11) is a min-max problem

µ = min
q∈R

max
ω∈R

Ψ(q, ω) (12)

where Ψ(q, ω) = |f(jω)−1
jω + q f(jω)

jτdω+1 | , τd → 0. Let us now consider the max-min problem where
minimization over q is done for each fixed ω. In this case, it is easy to show that optimal q is

qopt(ω) = − 1
ω

sin(φ(ω))
ρ(ω)

(13)
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where ρ(ω) = |f(jω)| is the magnitude and φ(ω) = ∠f(jω) is the phase of f(jω). Inserting (13)
into Ψ(q, ω) we obtain

Ψ(qopt(ω), ω) =
∣∣∣∣
ρ(ω)− cos(φ(ω))

ω

∣∣∣∣ =: η(ω). (14)

Therefore, solution of the max-min problem is

qo = − 1
ωo

sin(φ(ωo))
ρ(ωo)

(15)

where ωo is maximizing η(ω). It is very easy to find qo, we only need to search for ωo. Whereas
the min-max problem requires two dimensional search.
Example. Consider f(s) = e−hs, h > 0. Then ρ(ω) = 1 and φ(ω) = −hω. Hence η(ω) =
|1−cos(hω))

ω |. It is easy to show that the ω value maximizing this function is the solution of
cos(hω) + (hω) sin(hω) = 1. That gives hωo = 2.33 rad., qo = 0.31 h, and it matches qopt(h).

Now it remains to be shown that qo given in (15) is equal to the solution qopt of the original
problem defined by (12), at least for a large class of functions f(s), including the above example.
For this purpose, we need to show that the pair (ωo, qo) is a saddle point for the min-max problem
(12), i.e. the following inequalities hold

Ψ(qo, ω) ≤ Ψ(qo, ωo) ≤ Ψ(q, ωo) ∀ q, ω ∈ R . (16)

First note that by the definition of qopt(ω) we have Ψ(qopt(ω), ω) ≤ Ψ(q, ω) for all q ∈ R and
ω ∈ R. In particular, setting ω = ωo in this inequality we obtain the second part of (16), namely

Ψ(qo, ωo) ≤ Ψ(q, ωo) ∀ q ∈ R . (17)

For the first inequality of (16), when τd = 0, we have Ψ(qo, ω) = |Ψ(qopt(ω), ω)+∆q(ω) f(jω)|,
where ∆q(ω) = qo − qopt(ω). We claim that

|Ψ(qo, ω)|2 = |η(ω)|2 + |∆q(ω)|2|ρ(ω)|2 ∀ ω. (18)

To see this let us define the real and imaginary parts R(ω) + jI(ω) := f(jω)−1
jω + qopt(ω) f(jω).

Similarly, let Rf (ω) + jIf (ω) := f(jω) be the real and imaginary parts of f . With these
definitions we have RfR + IfI = 0, which implies (18).
Assumption A4. The function f(s) is such that Γ(ω) := η2

o − η2(ω)− |∆q(ω)|2ρ2(ω) ≥ 0 ∀ ω
where η(ω) is defined by (14), ηo = maxω η(ω), and equations (13) and (15) define ∆q(ω) =
qo − qopt(ω).

Now with A4, (18) and ηo = Ψ(qo, ωo), we have Ψ(qo, ω) ≤ Ψ(qo, ωo) ∀ ω ∈ R which is the
first part of (16). In summary, we have proven the following result.

Proposition 3.1. Let f(s) = g(s)e−hs, with g ∈ H∞, g(0) = 1 and h > 0, satisfy A4. Then,
qopt = qo where

qopt = arg min
q∈R

‖f(s)− 1
s

+ q
f(s)

τds + 1
‖∞ , τd → 0

qo = − 1
ωo

sin(φ(ωo))
ρ(ωo)

,

where ωo is maximizing η(ω) := |ρ(ω)−cos(φ(ω))
ω |.

Example. Consider the first channel in the distillation column example, where f(s) = e−hs,
h > 0. Figure 2 shows Γ/h versus ω. Since Γ(ω) ≥ 0 for all ω, A4 is satisfied, hence the
formula qopt = 0.31 h is valid. Now for the second channel in the distillation column example,
f(s) = 180

(s+6)(s+30)e
−hs, Figure 3 illustrates that A4 is satisfied. Figure 4 shows qopt and µ versus

h for this example. We observe that, as h increases µ increases, which means the allowable
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Figure 2. Γ(ω)/h versus ω for f(s) = e−hs.
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Figure 4. qopt and µ versus h.

interval for the control gain shrinks with increasing h. Note that qopt in Figure 4 is in perfect
agreement with Figure 4 of [8].

An interesting problem arising in this context is to characterize the class of functions f(s) =
g(s)e−hs, g ∈ H∞, g(0) = 1, h > 0, satisfying A4. At the moment we do not have a definite
answer to this question. As shown for the distillation column example, A4 holds for many
interesting classes of f . In particular, it holds for all f in the form f(s) = e−hs

1+τs , and f(s) =
e−hs 1−τs

1+τs , for all τ ≥ 0 and h > 0. But, there are also many important functions for which it
does not hold. For example, f(s) = e−s 1−s

1+τs satisfies A4 when τ ≥ 0.25; but A4 is violated
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when τ ≤ 0.2. Similarly, A4 holds for f(s) = e−s 1+s
1+τs when τ ≤ 1.02, but it is violated when

τ ≥ 1.05.

4. Integral Action Gain in PI Controller

We now study the bound γmax on the integral action gain γ defined by (9), where Λ(s) is
a given diagonal matrix in the form diag[f1(s), . . . , fr(s)] with fk(s) = gk(s)e−hks, gk ∈ H∞,
gk(0) = 1, hk > 0, and α satisfies (10) which is equivalent to p < α + p < mink ‖fk(s)−1

s ‖−1∞ .
Clearly,

γ−1
max = max

k
‖

α
s−pfk(s)(1 + α+p

s−p fk(s))−1 − 1

s
‖∞. (19)

Let us define
θ := max

k
θk where θk := ‖fk(s)− 1

s
‖∞ . (20)

Then, a necessary condition for the results stated in Proposition 2.1 is 0 < αθ < 1− pθ. After
a simple algebra, it can be shown that (19) implies

γ? := α
1− (α + p) θ

1 + p θ
≤ γmax . (21)

The lower bound γ?, found in (21) for γmax, is between 0 and α, and it decreases with increasing
θ. Note that θ−1 is also an upper bound for the proportional gain (α+p). Therefore, the level of
difficulty in controlling the system increases with increasing θ. The other difficulty comes from
the C+ pole of the plant: as p increases γ? decreases.

Example. Let fk(s) = e−hks. Then, θk = hk, and θ is the largest time delay in the system.
Now consider f1(s) = e−h1s, and f2(s) = 180

(s+6)(s+30)e
−h2s. In this case we have θ1 = h1, and

θ2 = 0.2 + h2. Since the norm in (20) is attained at ω = 0 for both f1 and f2 and the phase of
f2(jω) near ω ≈ 0 is −0.2 ω, we can see θ2 as the “effective time delay” in the second channel.
Then, θ = max{h1, 0.2 + h2} is the largest effective time delay.

In the light of (21) an interesting problem to study is to find the optimal α maximizing γ?,
subject to 0 < αθ < 1− pθ. It is easy to see that in this sense the optimal α is

α? =
1− pθ

2θ
(22)

and the corresponding maximal γ? is

γ?,max =
α?

2
(1− pθ)
(1 + pθ)

. (23)

Equations (22) and (23) show once again that the difficulty level increases with increasing pθ,
where p is the right half plane pole and θ can be seen as the maximal “effective time delay” in
the system.

5. Conclusions

PI and PD controller design problems are studied for unstable systems with delays in the
input/output channels. The results of [8] are used for plants with single right half plane pole.
For PD controller design, optimal derivative action gain is determined for maximizing the interval
for the overall controller gain. For PI controller design, optimal proportional gain is calculated
for maximizing the interval for the integral action gain. With these results resilient PI and PD
controllers can be designed for the class of plants considered. Examples illustrated difficulty of
controller design for plants whose products of unstable pole with effective time delay are large.

Acknowledgement: The authors would like to thank Prof. A. B. Özgüler for fruitful discus-
sions.
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