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Abstract— Systematic methods are proposed for reliable de-
centralized PID-controller synthesis. These controllers achieve
closed-loop stability and asymptotic tracking of step-input
references at each output channel when all controllers are
operational, and they maintain stability when one of the
controllers fails completely.

I. INTRODUCTION

In many practical control applications, Proportional +

Integral + Derivative (PID) controllers are widely used and

preferred due to their simplicity. For multi-input multi-output

(MIMO) systems, the decentralized controller structure pro-

vides simple implementation. In this paper we propose

systematic methods for the synthesis of reliable decentralized

PID-controllers for two-channel linear, time-invariant MIMO

systems. These controllers achieve closed-loop stability when

both channels are operational, and maintained even if one of

the controllers fails completely. Due to the integral-action

in the PID-controllers, asymptotic tracking of step-input

references is achieved at each output channel.

Reliable control has been considered under full-feedback

and decentralized controller structures in e.g., [3], [6], [7],

[9]. We only consider PID-controllers, which can stailize

only certain classes of plants. Although used widely, most

PID design approaches lack systematic procedures and rigor-

ous closed-loop stability proofs. Rigorous synthesis methods

are studied in recent literature, e.g., [8]. Decentralized PID

designs were considered for two-by-two plants in [1].

We present systematic synthesis procedures for several

plant classes that can be stabilized using PID-controllers.

The proposed designs achieve closed-loop stability and as-

ymptotic tracking. Performance issues are not considered but

the freedom offered in the design parameters may be used to

satisfy other criteria. The PID designs are (partially) reliable
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against the failure of one controller. If the plant is stable,

(fully) reliable controller designs are also presented against

the failure of either one of the two controllers. A controller

that fails is set equal to zero; i.e., the failure is recognized

and the failed controller is taken out of service. Although the

failed channel does not achieve asymptotic tracking with zero

steady-state error, closed-loop stability is still maintained.

We illustrate the design methods with two examples. A

partially reliable PID-controller is designed for the linearized

model of a sugar mill process, which has poles at the origin

and a non-minimum phase zero, [4]. A fully reliable PID-

controller is designed to achieve asymptotic tracking of the

desired step-input references at two outputs for a simplified

model representing a particular patient under anesthesia, [2].

Notation: Let CI , IR, IR+ denote complex, real, positive real

numbers; U = {s ∈ CI |Re(s) ≥ 0} ∪ {∞} is the extended

closed right-half plane; In is the n× n identity matrix; Rp

denotes real proper rational functions of s; S is the stable

subset with no U-poles; M(S) is the set of matrices with

entries in S. The H∞-norm of M(s) ∈ M(S) is ‖M‖ :=

sup
s∈∂U

σ̄(M(s)); σ̄ is the maximum singular value and ∂U
is the boundary of U . We drop (s) in transfer functions

such as G(s) whenever this causes no confusion. We use

coprime factorizations over S ; i.e., for G2 ∈ Rp

n2×n2 ,

G2 = XY −1 = Ỹ
−1

X̃ gives a right-coprime-factorization

(RCF) and a left-coprime-factorization (LCF); X, X̃, Y, Ỹ ∈
Sn2×n2 , detY (∞) �= 0, det Ỹ (∞) �= 0.

II. PRELIMINARIES

We consider the linear time-invariant (LTI) decentralized

feedback system S(G,CD) with two multi-input multi-

output (MIMO) channels as shown in Fig. 1. We assume that

the feedback system is well-posed, the plant and controller

have no unstable hidden-modes. The plant G ∈ Rp

n×n and

the decentralized controller CD ∈ Rp

n×n are partitioned as:

G =

[
G1 G12

G21 G2

]
, CD = diag [ C1 , C2 ], (1)

where each channel has as many inputs as outputs, i.e., Gj ∈
Rp

nj×nj , and rankG = n . The plants are either stable, or
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if they are unstable, then one of the input channels or one of

the output channels has stable transfer-functions. Since the

inputs and outputs can be re-ordered, we assume that these

stable transfer-functions are associated with the first channel.

Furthermore, the unstable poles of the second channel are

reflected in G2 . Let G2 = X2Y
−1 = Ỹ

−1
X̃2 be an RCF

and LCF of G2 . Therefore we assume that G satisfies the

following plant assumptions: i) G1 ∈ Sn1×n2 ; ii) G2 ∈
Rp

n2×n2 may be unstable; iii) either G21 ∈ Sn2×n1 ; and

G12Y ∈ Sn1×n2 or G12 ∈ Sn1×n2 and Ỹ G21 ∈ Sn2×n1 .

Let r := [r1, r2]T , v := [v1, v2]T , y := [y1, y2]T , w :=

[w1, w2]T denote the input and output vectors.

Definition 2.1: [5] a) The feedback system S(G,CD) is

stable iff the transfer-function from (r, v) to (y, w) is stable.

b) The controller CD stabilizes G iff CD is proper and

S(G,CD) is stable. c) The controller CD that stabilizes G

is partially reliable iff the system S(G, 0, C2 ) is stable, i.e.,

the transfer-function from (r2, v) to (y, w2) is stable. d) The

controller CD that stabilizes G is fully reliable iff the system

S(G, 0, C2 ) is stable, i.e., the transfer-function from (r2, v)

to (y, w2) is stable, and the system S(G,C1, 0 ) is stable,

i.e., the transfer-function from (r1, v) to (y, w1) is stable.

Fully reliable decentralized controllers exist if and only if G

is stable. Partially reliable decentralized controllers exist for

the two unstable plant cases, where the transfer-functions of

the first channel inputs or outputs are stable.

Theorem 2.1: [6] a) Let G ∈ M(Rp) as in (1) satisfy

the plant assumptions. Let rankG = n, rankG2 = n2 .

The decentralized CD = diag [ C1, C2 ] stabilizes G and is

partially reliable if and only if i) C2 stabilizes G2 and ii)

C1 stabilizes W = G1−G12C2(I +G2C2)−1G21 ∈ M(S).

b) Let G ∈ M(S) , rankGj = nj . The decentralized CD =

diag [C1, C2 ] stabilizes G and is fully reliable if and only

if i) C2 stabilizes G2 and ii) C1 simultaneously stabilizes

G1 and W = G1 − G12C2(I + G2C2)−1G21 ∈ M(S).

By Theorem 2.1, partially reliable decentralized controllers

can be designed for the class of plants under consideration.

The controllers Cj ∈ Rp

nj×nj , j = 1, 2, will be designed

in the following proper PID-controller form, [4]:

Cj = Kpj +
Kij

s
+

Kdj s

τj s + 1
, (2)

where, for j = 1, 2, Kpj , Kij , Kdj ∈ IRnj×nj are called

the proportional, the integral, and the derivative constants,

respectively, and τj ∈ IR, τj > 0. The integral-action in

Cj is present when Kij �= 0. Subsets of PID-controllers are

obtained by setting one or two of the three constants equal

to zero; (2) becomes a PI-controller when Kdj = 0 and an

I-controller when Kpj = Kdj = 0.

III. PID STABILIZATION CONDITIONS AND DESIGN

PID-controllers cannot stabilize certain unstable plants.

We now give conditions for reliable PID stabilizability.

Lemma 3.1: (Existence conditions for partially reliable

decentralized PID-controllers): a) Let G ∈ M(Rp) as in (1)

satisfy the plant assumptions. Let rankG = n, rankG2 = n2 .

If there exist partially reliable decentralized PID-controllers

CD = diag[C1 , C2 ] with nonzero integral constants Kij ∈
IRnj×nj , then G and G2 have no transmission-zeros at

s = 0 and G2 is strongly stabilizable. b) Let G ∈ M(S) ,

rankG = n, rankG2 = n2 . There exist partially reliable

decentralized PID-controllers CD = diag[ C1 , C2 ] with

nonzero integral constants Kij ∈ IRnj×nj if and only if G

and G2 have no transmission-zeros at s = 0.

Lemma 3.2: (Existence conditions for fully reliable decen-

tralized PID-controllers): Let G ∈ M(S) , rankGj = nj . a)
There exist fully reliable decentralized PID-controllers CD =

diag[ C1, C2 ] with nonzero integral constants Kij ∈ IRnj×nj

only if G,G1, G2 have no transmission-zeros at s = 0.

b) There exist fully reliable decentralized PID-controllers

CD = diag[ C1, C2 ] with nonzero integral constants Kij ∈
IRnj×nj if G,G1, G2 have no transmission-zeros at s = 0

and W (0)G1(0)−1 = [ I −G12(0)G2(0)−1G21(0)G1(0)−1 ]

is symmetric, positive-definite.

Remark: If at least one of C1 , C2 , G12 , G21 has blocking-

zeros in U (including infinity), then fully reliable decentral-

ized PID-controllers exist only if G and Gj , j = 1, 2, have

no transmission-zeros at s = 0 and detW (0)G1(0)−1 =

det [ I − G12(0)G2(0)−1G21(0)G1(0)−1 ] > 0.

By Lemma 3.1, a necessary condition for existence of

PID-controllers is that G2 is strongly stabilizable. Obviously

then, stable plants admit PID-controllers. A PID-controller

synthesis method applicable to MIMO plants based on the

small-gain approach is given in Proposition 3.1.

Proposition 3.1: Let H ∈ Snj×nj . Let rankH(0) = nj .

Choose any K̂p , K̂d ∈ IRnj×nj , τ > 0. Then, for any β ∈
IR+ satisfying (4), a PID-controller that stabilizes H is given

by (3); for K̂d = 0, (3) is a PI-controller; for K̂d = K̂p = 0,

(3) is an I-controller:
Cpid = β K̂p +

β H(0)−1

s
+

β K̂d s

τs + 1
, (3)
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β < ‖H(s)(K̂p +
K̂ds

τs + 1
) +

H(s)HI(0) − I

s
‖−1. (4)

We propose PID-controllers for three classes of unstable

strongly stabilizable plants with restrictions on the blocking-

zeros in U and complete freedom in the U-poles.

1) Unstable plants with no zeros in the unstable region:

Consider unstable G2 with no zeros in the unstable region

U , including infinity. For these plants, G−1
2 ∈ Sn2×n2 . In

the SISO case, G2 has relative-degree equal to zero. A PID-

controller synthesis is given in Proposition 3.2.

Proposition 3.2: Let G2 ∈ Rp

n2×n2 , rankG2(s) = n2.

Let G2 have no transmission-zeros in U (including infinity).

Choose Kp2,Kd2 ∈ IRn2×n2 , τ2 > 0 such that det R(∞) =

det [G2(∞)−1+Kp2+τ−1
2 Kd2] �= 0, where R := G−1

2 (s)+

Kp2+
Kd2s

τ2s + 1
. Then, for any γ ∈ IR+ satisfying (6), a PID-

controller that stabilizes G2 is given by (5); if Kd2 = 0, (5)

is a PI-controller; if Kp2 = Kd2 = 0, (5) is an I-controller:

C2= Kp2+
γ[G2(∞)−1 + Kp2 + τ−1

2 Kd2]
s

+
Kd2s

τ2 s + 1
, (5)

γ > ‖ s [ R (G2(∞)−1 + Kp2 + τ−1
2 Kd2 )−1 − I ] ‖. (6)

2) Unstable plants with one positive real-axis zero in-

cluding infinity: Consider unstable G2 with one real-axis

blocking-zero in U ; G2 may have other transmission-zeros

in the stable region. In the SISO case, G2 has relative-degree

equal to 0 or 1. We consider two cases where the real-axis

U-zero is either 1) “large”, including infinity, or 2) “small”.

Case 1) Let G2 = [
(1 − s/z)

s + a
G−1

2 ]−1 (1 − s/z)
s + a

I =: Ỹ
−1

X̃ ,

z ∈ IR, 0 < z ≤ ∞ , a ∈ IR+. Proposition 3.3 considers

plants with one “large” real-axis zero satisfying z > ‖Ψ‖
defined in (7). A zero at infinity satisfies this bound. In the

SISO case, if G2 is strictly-proper, this class corresponds to

minimum-phase unstable plants with relative-degree one.

Proposition 3.3: Let G2 ∈ Rp

n2×n2 , rankG2(s) = n2.

Let G2 have no transmission-zeros at s = 0. Let z ∈ IR,

0 < z ≤ ∞. Let
(1 − s/z)

s + a
G−1

2 ∈ M(S), for a ∈ IR,

a > 0. Let Ỹ (∞)−1 = (1 − s/z)−1sG2(s)|s→∞. If z > 0

is finite, let Kd2 = 0. If the zero is at infinity, choose any

Kd2 ∈ IRn2×n2 , τ2 > 0. Define

Ψ := (1 − s/z) [ G−1
2 (s) +

Kd2 s

τ2s + 1
]Ỹ (∞)−1 − s I . (7)

If z > ‖Ψ‖ then, for any α ∈ IR+ satisfying (9), let Cpd

be as in (8):
Cpd =

α

1 + α/z
Ỹ (∞) +

Kd2 s

τ2 s + 1
, (8)

α > ‖ Ψ ‖ ( 1 − ‖ Ψ ‖/z )−1 . (9)

Define Hpd := G2(I + CpdG2 )−1. Then, for any γ ∈ IR+

satisfying (15), a PID-controller that stabilizes G2 is given

by (10); if Kd2 = 0, (10) is a PI-controller:

Cpid = Cpd +
γ

s
[G−1

2 (0) +
α

1 + α/z
Ỹ (∞)]. (10)

Case 2) Let G2 = [
(s − z)
as + 1

G−1
2 ]−1 (s − z)

as + 1
I =: Ỹ

−1
X̃ ,

z ∈ IR, z > 0, a ∈ IR+ . Proposition 3.4 gives a PID-

controller synthesis for plants with one “small” real-axis zero

satisfying 0 < z < ‖Φ‖−1 defined in (11).

Proposition 3.4: Let G2 ∈ Rp

n2×n2 , rankG2(s) = n2.

Let G2 have no transmission-zeros at s = 0. Let G2 have

no poles at s = 0. Let z ∈ IR, z > 0. Let
(s − z)
as + 1

G−1
2 ∈

M(S), for a ∈ IR+ . Let Ỹ (0)−1 = −z−1 G2(0). Choose

any Kd2 ∈ IRn2×n2 , τ2 > 0. Define

Φ :=
(s − z)G−1

2 (s)Ỹ (0)−1− I

s
+

(s − z)Kd2Ỹ (0)−1

τ2s + 1
. (11)

If 0 < z < ‖Φ‖−1 then, for any α ∈ IR+ satisfying (13),

let Cpd be as in (12):

Cpd =
α

1 + α z
Ỹ (0) +

Kd2 s

τ2s + 1
, (12)

α > ( ‖Φ ‖−1 − z )−1 . (13)

Define Hpd := G2(I + CpdG2 )−1. Then, for any γ ∈ IR+

satisfying (15), a PID-controller that stabilizes G2 is given

by (14); if Kd2 = 0, (14) is a PI-controller:

Cpid = Cpd +
γ

s
[ G−1

2 (0) + α (1 + αz)−1Ỹ (0) ], (14)

γ < ‖ HpdHpd(0) − I

s
‖−1 =

‖(I + G2Cpd )−1 [G2G2(0)−1 − I]
s

− Hpd Kd2

τ2s + 1
‖−1. (15)

3) Unstable plants with two positive real-axis zeros in-

cluding infinity: Consider unstable G2 with two real-axis

blocking-zeros in U ; G2 may have other transmission-zeros

in the stable region. In the SISO case, G2 has relative-degree

equal to 0 or 1. We consider two cases where z1, z2 ≥ 0 are

either 1) both “large”, including infinity, or both“small”.

Case 1) Let

G2 = [
2∏

�=1

(1 − s/z�)
(s + a�)

G−1
2 ]−1

2∏
�=1

(1 − s/z�)
(s + a�)

I =: Ỹ
−1

X̃ ,

z� ∈ IR, 0 < z� ≤ ∞, a� ∈ IR+ , � = 1, 2.

Proposition 3.5: Let G2 ∈ Rp

n2×n2 , rankG2(s) =

n2. Let z� ∈ IR, 0 < z� ≤ ∞, � = 1, 2. Let∏2
�=1

(1 − s/z�)
(s + a�)

G−1
2 ∈ M(S), for a� ∈ IR+ . Let

Ỹ (∞)−1 = (1−s/z1)−1(1−s/z2)−1s2 G2(s)|s→∞. Choose

any δ > 0. Define

Ψ1 :=
(1 − s/z1)(1 − s/z2)

(s + δ)
G−1

2 (s)Ỹ (∞)−1 − sI. (16)

If ‖Ψ1 ‖ < z1 ≤ ∞ , then choose any α ∈ IR+ satisfying

α > ‖Ψ1 ‖ ( 1 − ‖Ψ1 ‖/z1 )−1 . (17)
Define

Ψ2 :=
(s + δ)

(1 + α/z1)
[I+

α(s + δ)G2(s)Ỹ (∞)
(1 + α/z1)(1 − s/z2)

]−1−sI. (18)
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If (1+α/z1)−1‖Ψ2 ‖ < z2 ≤ ∞ , then choose any β ∈ IR+

satisfying

‖Ψ2 ‖ ( 1 − ‖Ψ2 ‖/z2 )−1 < β < α−1 z1 z2 . (19)

With η := (1 − αβ

z1z2
), τ2 = η[β(1 +

α

z1
) + δ(1 +

β

z2
)]−1,

Kp2 = η−1τ2δαβỸ (∞), Kd2 = (
1
δ
− τ2)Kp2, let

Cpd = Kp2 +
Kd2 s

τ2s + 1
=

η−1τ2αβ(s + δ)
τ2s + 1

Ỹ (∞). (20)

Then, for any γ ∈ IR+ satisfying (15), a PID-controller that

stabilizes G2 is given by (21):

Cpid = Cpd +
γ

s
[G−1

2 (0) + η−1τ2δ α β Ỹ (∞) ]. (21)

Case 2) Let

G2 = [
2∏

�=1

(s − z�)
(a�s + 1)

G−1
2 ]−1

2∏
�=1

(s − z�)
(a�s + 1)

I =: Ỹ
−1

X̃ ,

z� ∈ IR, z� > 0, a� ∈ IR+ , � = 1, 2.

Proposition 3.6: Let G2 ∈ Rp

n2×n2 , rankG2(s) = n2.

Let G2 have no poles at s = 0. Let z� ∈ IR, z� > 0. Let∏2
�=1

(s − z�)
(a�s + 1)

G−1
2 ∈ M(S), for a, b ∈ IR, a, b > 0. Let

Ỹ (0)−1 = z−1
1 z−1

2 G2(0) . Choose any δ > 0. Define

Φ1 := s−1(
(s − z1)(s − z2)

(δs + 1)
G−1

2 (s)Ỹ (0)−1 − I). (22)

If 0 < z1 < ‖φ1‖−1, then choose any α ∈ IR+ satisfying

α > ( ‖Φ1 ‖−1 − z1 )−1 . (23)
Define

Φ2 := s−1(
(δs + 1)
(1 + αz1)

[I+
α(δs + 1)G2(s)Ỹ (0)
(1 + αz1)(s − z2)

]−1−I). (24)

If 0 < z2 < (1 + αz1 )−1 ‖Φ2 ‖−1, then choose any β ∈
IR+ satisfying

( ‖Φ2 ‖−1 − z2 )−1 < β < ( α z1 z2 )−1 . (25)

With η := (1 − α β z1 z2), τ2 = η−1 [ β (1 + αz1) + δ(1 +

βz2) ], Kp2 = η−1 α β Ỹ (0), Kd2 = ( δ − τ2 )Kp2 , let

Cpd = Kp2 +
Kd2 s

τ2s + 1
=

η−1 α β ( δ s + 1 )
τ2 s + 1

Ỹ (0) . (26)

If β = ( α z1 z2 )−1, then (26) is a PI-controller Cpi =

α β [ β (1 + αz1) + δ(1 + βz2) ]−1 ( δ s + 1 )/s. Then, for

any γ ∈ IR+ satisfying (15), a PID-controller that stabilizes

G2 is given by (27):

Cpid = Cpd +
γ

s
[ G−1

2 (0) + η−1 α β Ỹ (0) ]. (27)

IV. RELIABLE DECENTRALIZED DESIGN

In this section, for partially reliable controller design,

assume rankG = n, rankG2 = n2 and G and G2 have

no transmission-zeros at s = 0. Based on Theorem 2.1,

first design a PID-controller C2 that stabilizes G2 by using

the synthesis methods in Section III. Then design a PID-

controller C1 that stabilizes the stable W = G1−G12C2(I+

G2C2)−1G21 following the synthesis in Proposition 3.1.

For stable G, we can design partially reliable decentralized

PID-controllers if and only if rankG(0) = n, rankG2(0) =

n2 . We follow the synthesis method of Proposition 3.1 to

design a PID-controller C2 that stabilizes G2 and then

a PID-controller C1 that stabilizes the stable transfer-

function W . By Lemma 3.2, fully reliable decentralized PID-

controller design requires rankG(0) = n, rankG1(0) = n1 ,

rankG2(0) = n2 . We further assume the sufficient condition

that W (0)G−1
1 (0) > 0. A fully reliable decentralized PID-

controller synthesis is given in Proposition 4.1:

Proposition 4.1: Let G ∈ Sn×n. Let rankG(0) = n ,

rankGj(0) = nj , j = 1, 2. Let W (0)G−1
1 (0) :=

I − G12(0)G−1
2 (0)G21(0)G−1

1 (0) be symmetric, positive-

definite. Choose any K̂p2 , K̂d2 ∈ IRn2×n2 , τ2 > 0. For

any β2 ∈ IR+ satisfying (29), let C2 be given by (28):

C2 = β2 K̂p2 +
β2 G2(0)−1

s
+

β2 K̂d2 s

τ2 s + 1
, (28)

β2 < ‖G2(s)(K̂p2+
K̂d2 s

τ2s + 1
)+

G2(s)G−1
2 (0) − I

s
‖−1. (29)

Let W := G1 − G12C2(I + G2C2)−1G21. Choose any

K̂p1 , K̂d1 ∈ IRn1×n1 , τ1 > 0. For any β1 ∈ IR+ satisfying

(31), let C1 be as in (30):

C1 = β1 K̂p1 +
β1 G1(0)−1

s
+

β1 K̂d1 s

τ1s + 1
, (30)

β1 < min{‖G1(s)(K̂p1+
K̂d1 s

τ1s + 1
)+

G1(s)G−1
1 (0) − I

s
‖−1,

‖W (K̂p1 +
K̂d1 s

τ1s + 1
) +

[W (s) − W (0)]G−1
1 (0)

s
‖−1}. (31)

Then CD = diag [ C1, C2 ] is a fully reliable decentralized

PID-controller. For K̂dj = 0, (28) and (30) are PI-controllers;

for K̂dj = K̂pj = 0, (28) and (30) are I-controllers.

Example 4.1 illustrates partially reliable decentralized PID

design for a linearized model of a sugar mill process, [4].

Example 4.1: Let G =

[ −5
25s+1

s2−0.005(s+1)
s(s+1)

1
25s+1

−0.0023
s

]
=[

G1
s2−0.005(s+1)

(s+a)(s+1)

G21
−0.0023
(s+a)

][
I 0

0 s
(s+a)

]−1

; With Y = s
s+a ,

a > 0, G satisfies the plant assumptions: G1, G21 ∈ M(S),

G12Y ∈ M(S). The only U-pole of G2 is at s = 0, which

also appears as a pole of G12. The plant G and G2 have no

transmission-zeros at s = 0; G has a transmission-zero at

s = 0.137 ∈ U (and another at s = −0.1205). The only zero

of G2 is at infinity. Following Proposition 3.3, design C2:

Choose Kd2 = −1, τ2 = 0.1. Then (9) holds for α > 0.023;

take α = 0.06. Then (15) holds for γ < 0.06; take γ = 0.04.

The PID-controller C2 = −26.0870 − s
0.1s+1 − 1.0435

s .
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Following Proposition 3.1, design C1 stabilizing W = G1 −
G12C2(I+G2C2)−1G21 ∈ S: Choose K̂d1 = 0, K̂p1 = −4.

Then β < ‖WK̂p1 + W (s)W (0)−I
s ‖−1 = 0.1168; take

β = 0.1. The PI-controller C1 = −0.4 − 0.0139
s . Fig. 2

shows the step responses for the two outputs y1, y2, with

unit-steps applied at both references r1, r2 . The controller

CD = [ C1, C2 ] is active. Fig. 3 shows the step responses

when C1 fails, i.e., CD = [ 0, C2 ], with only the second

channel operational. The partially reliable design guarantees

closed-loop stability when C1 = 0 but asymptotic tracking

with zero steady-state error is achieved only in the second

channel with integral-action.

To illustrate the fully reliable decentralized PID-controller

design approach, the synthesis procedure in Proposition 4.1

is applied in Example 4.2 to design a control system that

manipulates the flow rate of two drugs, dopamine and sodium

nitroprusside, to a critical care patient. We use the simplified

model in [2] without input delays. The anesthesiologist

infuses several drugs to the patient during surgery to maintain

the outputs, the main arterial pressure and cardiac output,

close to their desired setpoints.

Example 4.2: Let G =

[ −6
0.67s+1

3
2s+1

12
0.67s+1

5
5s+1

]
∈ M(S);

then rankG(0) = 2, G1(0) �= 0, G2(0) �= 0, I −
G12(0)G−1

2 G21(0)G−1
1 (0) = 2.2 > 0. Design C2 : Choose

K̂p2 = 1.05, K̂d2 = 0. With β2 = 1.5 < 4 satisfying

(29), we obtain Kp2 = 1.575, Ki2 = 0.3. The PI-controller

C2 = 1.575s+0.3
s as in (28). Design C1 that simultaneously

stabilizes G1 and W = −8.955s3−62.69s2−27.16s−2.955
s4+3.768s3+4.583s2+1.922s+0.2239 :

Choose K̂p1 = −0.1, K̂d1 = −0.1, τ1 = 0.01. With

β1 = 0.25 < min{1.1346, 0.3779} satisfying (31), we

obtain Kp1 = −0.025, Kd1 = −0.025, Ki1 = −0.0417.

The PID-controller C1 = −0.02525s2−0.02542s−0.04167
s (0.01s+1) as in

(30). When CD = diag [ C1, C2 ], the closed-loop poles

are {−121.81,−3.0562,−0.21554,−0.18956,−0.55344 ±
j0.70938}. Fig. 4 shows the step responses of S(G, CD)

for the two outputs y1 (dashed), y2 (solid), with unit-steps

applied at both references r1, r2 , with CD = [ C1, C2 ] hav-

ing both channels active. Both channels achieve asymptotic

tracking with zero steady-state error. Fig. 5 shows the step

responses when C1 is taken out, i.e., CD = [ 0, C2 ]. The

output y1 does not track the step reference due to the lack

of integral action in the first channel. Fig. 6 shows the step

responses when C2 is turned off, i.e., CD = [ C1, 0 ].

V. CONCLUSIONS

We proposed systematic synthesis of decentralized PID-

controllers that achieve closed-loop stability and asymptotic

tracking of step-input references at each output channel

when both channels are operational, and maintain closed-

loop stability even when one of the controllers is turned off.

Although we considered the two-channel decentralized case

here, the results may be extended to more channels.

VI. APPENDIX: PROOFS

Proof of Proposition 3.1: Let Cpid be as in (3). Then

Mpid := s
s+β I + H s

s+β Cpid = I + β s
s+β [ H (K̂p + K̂ds

τs+1 ) +
HHI(0)−I

s ] is unimodular. Therefore, Cpid stabilizes H .

Proof of Proposition 3.2: By assumption, Kp2 ,Kd2 , τ2

are such that R(∞)−1 exists. By (6), Mpid := s
s+γ G−1 +

s
s+γ C2 = s

s+γ R+ γ
s+γ R(∞) = [ I + 1

s+γ s (R(s)R−1(∞)−
I ) ] R(∞) is unimodular. Therefore, C2 stabilizes G2 .

Proof of Proposition 3.3: By (9), Mpd := Ỹ + X̃Cpd =
(1−s/z)

s+a [G−1
2 + Cpd] = [I + (1+α/z)

s+α Ψ]Ỹ (∞) (s+α)
(1+α/z)(s+a)

is unimodular . Therefore, Cpd stabilizes G2 and Hpd ∈
M(S); Hpd(0)−1 = G−1

2 (0) + Kp2 . Since Ki/s stabilizes

Hpd, Cpid = Cpd + Ki2/s stabilizes G2 .

Proof of Proposition 3.4: i) By (13), Mpd := Ỹ +X̃Cpd =
(s−z)
as+1 [G−1

2 + Cpd] = [α(s−z)
as+1 I + (1 + αz) (s−z)

as+1 (G−1
2 +

Kd2 s
τ2s+1 )Ỹ (0)−1] Ỹ (0)

(1+α z) = [ I + (1+α z)s
α s+1 Φ]Ỹ (0) (αs+1)

(1+αz)(as+1)

is unimodular. Therefore, Cpd stabilizes G2 and Hpd :=

M−1
pd X̃ = G2(I + CpdG2)−1 ∈ M(S); Hpd(0)−1 =

α(1 + αz)−1Ỹ (0) + G−1
2 (0). Since Ki/s stabilizes Hpd,

Cpid = Cpd + Ki/s stabilizes G2 .

Proof of Proposition 3.5: i) By (19), 1 − αβ(z1z2)−1 =

η > 0. By (17), Ud := (s+a2)
s+δ Ỹ + α(1−s/z1) Ỹ (∞)

(1+α/z1)(s+a1)
=

(s+α)
(1+α/z1)(s+a1)

[ (1+α/z1)(1−s/z1)(1−s/z2)
(s+α)(s+δ) G−1

2 Ỹ (∞)−1 +
α(1−s/z1)

s+α I]Ỹ (∞) = (s+α)
(1+α/z1)(s+a1)

[ (1+α/z1)
s+α Ψ1 +

I]Ỹ (∞) is unimodular. Since z2 > ‖Ψ2 ‖, by

(19), Mpd := Ỹ + X̃Cpd = τ2 (s+δ)
η(τ2s+1) [(1 +

β/z2)Ỹ + β(1+α/z1)(1−s/z2)
(s+δ) Ỹ + X̃αβỸ (∞)] =

τ2(s+δ)
η(τ2s+1) [(1 + β/z2)Ỹ + Ud

β(1+α/z1)(1−s/z2)
(s+a2)

] =
(s+β)(1+α/z1)τ2(s+δ)

(s+a2)η(τ2s+1) Ud[
(1+β/z2)(s+a2)
(s+β)(1+α/z1)

U−1
d Ỹ +

β (1−s/z2)
s+β I] = (s+β)(1+α/z1)τ2(s+δ)

(s+a2)η(τ2s+1) Ud [ (1+β/z2)
s+β Ψ2 + I]

is unimodular. Therefore, Cpd stabilizes G2 and

Hpd := M−1
pd X̃ = G2(I + CpdG2)−1 ∈ M(S);

Hpd(0)−1 = τ2δαβỸ (∞)/η + G−1
2 (0). Since Ki2/s

stabilizes Hpd, Cpid = Cpd + Ki2/s stabilizes G2 .

Proof of Proposition 3.6: By (25), η ≥ 0. By (23), Ud :=
α(s−z1)Ỹ (0)

(1+αz1)(a1s+1) + (a2s+1)
δs+1 Ỹ = (αs+1)

(1+αz1)(a1s+1) [
α(s−z1)

αs+1 I +
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(1+αz1)(s−z1)(s−z2)
(αs+1)(δs+1) G−1

2 Ỹ (0)−1]Ỹ (0) = (αs+1)
(1+αz1)(a1s+1) [I +

(1+αz1) s
αs+1 Φ1]Ỹ (0) is unimodular. By (25), Mpd := Ỹ +X̃Cpd

= (δs+1)
η(τ2s+1) [(1 + βz2)Ỹ + β(1+αz1)(s−z2)

(δs+1) Ỹ + X̃αβỸ (0)] =
(δs+1)

η(τ2s+1) [(1 + βz2)Ỹ + Ud
β(1+αz1)(s−z2)

(a2s+1) ] =
(βs+1)(1+αz1)(δs+1)

η(a2s+1)(τ2s+1) Ud[
(1+βz2)s

βs+1 Φ2 + I] is unimodular.

Therefore, Cpd stabilizes G2 and Hpd := M−1
pd X̃ ∈ M(S);

Hpd(0)−1 = αβỸ (0)/η + G−1
2 (0). Since Ki2/s stabilizes

Hpd, Cpid = Cpd + Ki2/s stabilizes G2 .

Proof of Proposition 4.1: By Proposition 3.1, C2 in (28)

stabilizes G2 ∈ M(S) and C1 in (28) stabilizes G1 ∈
M(S). By Theorem 2.1-(b), we must show that C1 stabilizes

W . Now C2(I +G2C2)−1 ∈ M(S) since C2 stabilizes G2 ,

and hence, W ∈ M(S). Furthermore, C2(I+G2C2)−1(0) =

G−1
2 (0) implies W (0) = G1(0) − G12(0)G−1

2 (0)G21(0).

By assumption, Θ := W (0)G−1
1 (0) > 0 implies ‖sI(sI +

β1Θ)−1‖ = 1 for β1 > 0. Then Mw := sI(sI + β1Θ)−1 +

WC1sI(sI + β1Θ)−1 = sI(sI + β1Θ)−1 + β1 W (K̂p1 +
K̂d1s
τ1s+1 + G−1

1 (0)

s ) sI (sI + β1Θ)−1 = I + β1 [W (K̂p1 +
K̂d1s
τ1s+1 ) + W (s)G−1

1 (0)−Θ

s ] sI (sI + β1Θ)−1 is unimodular.

Therefore, C1 stabilizes W .
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Fig. 1: The two-channel decentralized system S(G,CD).
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Fig. 2: Example 4.1 step-responses with CD = [ C1, C2 ].
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Fig. 3: Example 4.1 step-responses with CD = [ 0, C2 ].
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Fig. 4: Example 4.2 step-responses with CD = [ C1, C2 ].
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Fig. 5: Example 4.2 step-responses with CD = [ 0, C2 ].
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Fig. 6: Example 4.2 step-responses with CD = [ C1, 0 ].
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