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Abstract

Conditions are presented for closed-loop stabilizability of linear time-invariant (LTT) multi-input,
multi-output (MIMO) plants with input delays using PID (Proportional + Integral + Derivative)
controllers. We show that systems with at most two unstable poles can be stabilized by PID con-
trollers provided a small gain condition is satisfied. For systems with only one unstable pole, this
condition is equivalent to having sufficiently small delay-unstable pole product. Our method of syn-
thesis of such controllers identify some free parameters that can be used to satisfy further design
criteria than stability.

1 Introduction

While finite dimensional LTT systems are sufficiently accurate models for a wide range of dynamical
phenomena, there are many cases in which delay effects cannot be ignored and have to be included in
the model, [6]. A multi-output LTT system with 7 inputs uy, ..., uy and delays in the input channels can
be represented in time domain as follows:

i(t) = Am(t) + Blur(t — Ty) oot — T, y(t) = Cx(t) + Dlur(t — Tyt =T

where = is the state of the finite dimensional part, y is the output vector, A, B, C, D are real matrices and
the 7" input channel delay T is a non-negative real number, j = 1,...,7. The transfer matrix of such
a system is given by P(s) = G(s)A(s), where G(s) = C(s] — A)"'B + D is the finite dimensional part,
and A(s) = diag [rf. ~ T8 s ,r:‘T""] is the delay matrix. This paper considers closed-loop stabilization
(see Figure 1) of such systems using proper PID-controllers [5]:

K; Kys

Coin=K,+—+
pid PT s s+ 1!

(1)

where I(,, I{,, and Iy are real matrices.

Stability of delay systems of retarded type, or even neutral type, is extensively investigated and
many delay-independent and delay-dependent stability results are available (see [6], [9]). The feedback
stabilization of delay systems is also well investigated. Being a subclass of infinite dimensional systems,
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delay systems inherit the results on robust control of infinite dimensional systems, [4]. Also, since delay
element is an integral part of process control systems, most of the tuning and internal model control
techniques used in process control systems apply to delay systems, [1]. The more special, but practically
very relevant (see [5]), problem of existence of stabilizing PID-controllers is unfortunately not easy to
solve even lor the delay-lree case. One way ol gaining insight into the difficully of the problem is to
note that, in the delay-free case, the existence of a stabilizing PID-controller is equivalent to that of a
constant stabilizing output feedback for a transformed MIMO plant. Alternatively, the problem can be
posed as determining conditions of existence of a fixed order, stable, and minimum-phase controller for
a suitable plant, which is again well-known to be a difficult problem, [2, 17].

It should be mentioned that there are some computational PID-stabilization methods, which consist
of “efficient search™ in the parameter space, recently developed for single-input single-output (SISO)
delay-free systems, see [11] and references therein. Some of these techniques have been extended to cover
first-order, scalar, single-delay systems, [13]. A parameter-space approach for finding stability regions
of a class of quasi-polynomials is proposed in, [7]. Moreover, this technique can be used for finding
stability regions in the PID controller parameter space for delay systems. For example, in [12], the
method developed by [7] is applied to PID controller tuning for active queune management problem.

For a plant consisting of a chain of integrators, stabilization using multiple delays is studied in [10, 8].
Although the motivation of [10, 8] is to stabilize non-delayed plants using delayed output with static
gains, clearly, their problem includes proportional control design for an integrator (and oscillator in the
case of [8]) with delay. This is one of the special cases we will study as well.

In this paper, making a novel use of the small gain theorem, we arrive at two main results: First, for
MIMO plants with input delays, we obtain some sufficient conditions on the existence of stabilizing PID
controllers, and second, we explicitly construct PID controllers for plants having only one unstable pole
(under the condition that the product of unstable pole with delay is sufficiently small). This construction
is extended to the case of two unstable poles, either on the real-axis or the imaginary-axis. As our goal is
to establish existence of stabilizing PID-controllers at this point, we do not consider performance issues
but propose freedom in the design parameters that can be used towards satisfaction of performance
criteria.

Notation: As usual, IR, ©, €©_, €} denote real, complex, open left-half plane complex and open
right-half plane complex numbers. Throughout the paper, & denotes the extended closed right-half
plane, ie., Y = { s € €| Re(s) > 0 } U{oo}; R, denotes proper rational functions; S denotes stable
proper real rational functions of s. We define M(S) as the set of matrices whose entries are in S. The
space H,, is the set of all bounded analytic functions in €. For h € H.,, the norm is defined as
[t]lcc = ess sup,eg, |h(s)], where ess sup denotes the essential supremum. A matrix valued function H
is in M(Hoo) if all its entries are in Heo, and in this case || H||oo = ess supgeq, 7(H(s)), where ¢ denotes
the maximum singular value. From the induced L? gain point of view, a system whose transfer matrix
is 1 is stable if and only if H € M(H.,). Moreover, for a square transfer matrix H € M(H.) we say
that H is unimodular it H7 € M(Ho,).

For simplicity, we drop (s) in transfer matrices such as G(s) where this causes no confusion. Also,

since all the norms we are interested in are ., norms, we will drop the norm subscript, i.e. || [lee = |-
whenever this is clear from the context.

2 Problem Description

Consider the standard unity-feedback system shown in Fig. 1, where G € Rp,""" and € € R,"™" denote
the plant without the time delay term (non-delayed plant, for short) and the controller transfer-functions.
The delay term is A = diag [g--sTl cemsTe ﬂ—ﬂ“’-], where, for 1 < j<r, T; €0, =0, Ti,,) C Ry.

We assume that the delay upper bound 779 is known for all input channels j = 1,...,r. Define

nmax
T :=(1\,...,7) and ©® ;= (©,...,0,). As a shorthand notation we will write 7 € © fo represent
all possibilities T; € ©,, 1 < 7 < 7. It is assumed that the feedback system is well-posed and that the
non-delayed plant and controller have no unstable hidden-modes. It is also assumed that G € R, " is
full normal rank,
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The closed-loop map Hy from (r,v) to (u,y) is given by

g, - [ CU+GAC)  —C(I+GAC)'GA .
7 | GAC(I+GAC)™!  (I+GAC)'GA | (2)

We consider the proper form of PID-controllers in (1), where the real matrices K, Ky, K4 are called
the proportional constant, the integral constant, and the derivative constant, respectively. Due to imple-

mentation issues of the derivative action, a pole is typically added to the derivative term (with 7 € IR,

¢ > 0 when Ky # 0) so that the transfer-function Cpiq in (1) is proper. If one or more of the three

. i ; i K;
terms K, | i, K is zero, then the corresponding subscript is omitted from Cpia; te., Oy = Kp + —

Ky s

TdSs

denotes a proportional+integral (PI), = K, +

K; Ky s ; &

Cig = == + i—!-"l denotes an integral+derivative (ID) controller; Cp,,C;,Cy correspond to pure
& TdS

proportional (P}, integral (I), derivative (D) controllers, respectively.

denotes a proportional+derivative ( PD),

Definition 2.1 a) The unity-feedback system Sys(GA, C) is said to be stable iff the closed-loop map Hy
is in M(Hoo). b) A delayed plant GA, where G € Rp™", is said to admit a PID-controller iff there
exists a PID-controller C = Cpig os in (1) such that the system Sys(GA, C) is stable. We say that GA

is stabilizable by a PID-controller, and Cpiq is a stabilizing PID-controller. u

Let G = Y ' X be any left coprime factorization (LCF) of the plant, C = N,D; ! be any right coprime
factorization (RCF) of the controller, where we use coprime factorizations over S: i.e., for G € Rp’"”,
X,Y € M(S) and det Y (o0) # 0, and similarly for C € R,"™", N., D, € M(S) and det D.(c0) # 0.
The controller C' stabilizes G if and only if M := YD, + XN, € M(S) is unimodular, i.e., M1 €
M(8), [17]. When dealing with systems with time delays, M(S) is replaced with M(Ho) in the above
definitions. More precisely, the controller C' stabilizes GA if and only if My := Y D.+ XAN. € M(Hs)
is unimodular, i.e.,, My ' € M(Hoo), [15].

Lemma 2.1 (Two-step controller synthesis): Let G € Rp,"™". Suppose that C, is a controller that
stabilizes GA, and Cy 1s a controller that stabilizes the stable system H := Hy, = GA(I+ CyGA)™?!
M(Hs). Then

C = Cy+Cy (3)

is also u controller that stabilizes GA. m

Proof of Lemma 2.1: Let G = Y~'X be an LCF; let Cy = Ny D‘l be an RCF. The controller
Cy = NgD7 U stabilizes GA = YLXA if and only if My = YD, 4+ XANS is unimodular. Since C,
stabilizes G the transfer-functions H = GA(J + C,GA)™! and I -CyH = (I +CyGA)™! are stable.
Now C), stabilizes H € M(H) if and only if Ch(! + HCp) ™! € M(Ho), and (I -l—H’Ch)_1 € M(Ho).
Write (3) as C = Cy + Cp = NyD; (I + HCy) + (I — CqH)Ch(I + HCy)™'D, D (I + HCy) =

[N, +(I-C, H}Ch(f—t-HCh 1D, 1[I {-HCh) 1Dg4]71. Define N, := [Ny+(I-C H)Ch(f+HCh) D, €

M(Hoo), De := (I + HCR)™ 1[) € M(Hs). Then YD, + XAN, = Y(I + HCy) Dy + XAN, +
yY—lXA(I—CQH)Ch(HHch)—iDQ = Y[(I+HCh) " +CA(I+CyGA) 1 Ch(I+ HCy) | Dyt X AN, =
Y[(I+ HCy) '+ HCW(I + HCh) YDy + XAN, = M, is unimodular. Therefore, C = N.D71is an
RCF of a stabilizing controller for GA. -

T - T

R s

Figure 1: Unity-Feedback System Sys(GA, C') with input delays.

Y
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3 Main Results

Although it is obvious that stable plants admit PID-controllers, the freedom in the stabilizing controller
parameters is still worth investigating. We propose a PID-controller synthesis for stable plants in the
following Proposition 3.1, which will be frequently referred to in the sequel.

Proposition 3.1 (PID-controller synthesis for stable plants): Let H € 8™ et (normal) rankH(s) =1
i) PD-design: Choose any K, , Kq e R™", 74> 0. Then,

K,; & A o kd b
Elba— =alk —_— 4
w p+'rds+1 “ p+‘rds-l-] &
is a PD-controller that stabilizes HA for T € ©, where o € IR satisfies
K
0<a< | His) (Ky+— T (5)
s+1
For K4 =0, (4) is a P-controller Cy, ; for K, =0, (4) is a D-controller Cy .
ii) PID-design: Let rankH (0) = r. Choose any Kp‘Kd e R™*", 14 > 0. Then,
. yH(0)"' 4 Kys ,
Cpia =7 K 6
pid =Yy F § T4s+ 1 (6)
is @ PID-controller that stabilizes HA for T € ©, where v € IR, satisfies
_ " . Kys H(S)AS)HO)" =1 4
0<y< min || H(s)A(s)(Kp + ———) + 5 = (M)

For K4 =0, (6) is a PI-controller Cyp; ; for f(p =0, (6) is an ID-controller Cyq ; for Kq= IA(P =0, (6)

is an I-controller . =

Proof of Pmposatwn 3.1: i) Let Cpq be as in (4) for a € IR batlsfymg (5). Then Mpq := 1+ HAC,y =

f—i—aHA(Kp-l—TdS 1}15 unimodular since v || H(s) A(s) (K,ﬁ—w_;jj1 Y=l H(s) (Kp +;‘:—3_‘ﬁ )|l < 1.

Therefore, Cpq stabilizes HA. Since I%p , K 4 are arbitrary, they can be chosen as zero. i) Let Cpig be as

Vs - Kys
HA(K -
’Y( ( p+?‘ds+l){—

HA

in (6) for v € IR satisfying (7). Then M4 :=
s+
H(s)A(s)H(0)™t — T
s
can be chosen as zero, =
In the following proposition, we state some general existence conditions for stabilizing PID controllers.

} is unimodular. Therefore, sz'd.' stabilizes HA. Since 1\’?J ; f\’d are arbitrary, they

Proposition 3.2 (General existence conditions for stabilizing PID-controllers): Let G € Ry "XT. Let
(normal) rankG(s) = r. a) If GA admits a PID-controller such that the integral constant K e IR™™*" s
nonzero, then G has no transmission-zeros at s = 0 and rank{{; = r.

b) If GA admits a PID-controller such that any one of the three constants I, , Kgq, Ki 1s nonzero,
then GA admits a PID-controller such that uny two of the three constants is nonzero, and GA admits a
PID-controller such that all of the three constants is nonzero.

c) If GA admits a PID-controller such that two of the three constants ICy Ky, I; is nonzero, then GA
admits a PID-controller such that all of the three constants is nonzero.

In b) and c), the integral constant K; # 0 only if G has no transmission-zeros at s = 0. n

Proof of Proposition 3.2 a) Let G = Y !X be an LCF of G. Let Cpyy = K, + K + :—‘;‘Jr—l— be a
PID-controller that stabilizes GA. For any positive a € IR, an RCF Cpiq = N(,Dc'l is

Cpia = N.DZ' = |( K, + L Y e il 7 3 _]. (8)
& T ! T4s+1 "5+ @ s+ a s+ a
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Since Cpiq stabilizes GA, My = Y D, + XAN, is unimodular, which implies rankMy(0) = r =
rank X (0) I(; . Therefore, rankX (0) = r, equivalently, G has no transmission-zeros at s = 0, and
rank/; = r. b) Suppose that GA is stabilized by Cp, equivalently H, = GA(l + C},GI\)_I (=
M(Heo); or by Cu4, equivalently Hy = GA(I + C4GA)™! € M(Hx); or by C;, which implies
H; = GA(I + CiGA)™' € M(Hs). The (normal) rank of Hy,Hqa,H; are equal to rankG = r.
By Proposition 3.1-(i), there exists a a P-controller for Hgy, for H;, and for H,y; there exists a D-
controller for H,, for H;, and for Hy;. By Proposition 3.1-(ii), there exists an I-controller for Hp,
for Iy, and for Hpy. Consider H, € M(Heo): If G has no transmission-zeros at s = 0, then
rankH,(0) = rank(Y + XAC,)"1(0)X(0)A(0) = rankX(0) = r (because (Y + XAC),) is unimodu-
lar). Let Cy, be a D-controller and Cj, be an I-controller for H,. By Lemma 2.1, the PD-controller
Cpg = Cp + Can and the Pl-controller Cp; = Cp + C;n stabilize GA. Similarly, consider Hy € M(Heo) :
Since Mya = (Y +XACy) is unimodular, rank My, (0) = rankY'(0) = r; i.e., G has no poles at s = 0. i e
has no transmission-zeros at s = 0, then rankHg(0) = rankM ;! (0)X (0)A(0) = rank X (0) = r. Let Cpa
be a P-controller and €}, be an I-controller for Hy. By Lemma 2.1, the PD-controller Cgp = Cy + Cpp
and the ID-controller Cy; = Cyq + Cin stabilize GA. Now consider H; € M(Ho): Let Cpp be a P-
controller and Cy, be a D-controller for H; . By Lemma 2.1, the PI-controller Cj, = Cj + Cpr and
the ID-controller Cyy = C; + Cap stabilize GA. c¢) Suppose that GA is stabilized by Cpq, equivalently
Hpy = GA(I + CpaGA)™! € M(He); or by Cpi, which implies Hp; = GA(] + CpiGA) ™! € M(Heo);
or by C;q, which implies H;q = GA(I -+ CiaGA)~! € M(Heo). The (normal) rank of Hpg, Hpi, Hia
are equal to rankG = r. Consider Hyg € M(Hs): If G has no transmission-zeros at s = 0, then
rank H,q(0) = rank(Y + XACpq)~1(0)X (0)A(0) = rankX(0) = r. Let Cin be an T-controller for Hpy.
Let Cyn be a D-controller for Hy; . Let Cpn be a P-controller for Hiqg. By Lemma 2.1, each of the
PID-controllers Cpai = Cpa + Cin, Cpid = Cpi + Cap » and Cigp = Ciq + Cpp stabilize GA. m

Proposition 3.2 states that if a stabilizing P, I, or D-controller exists, then it can be extended to a sta-
bilizing PI, ID, PD, PID-controller. However, Proposition 3.2 does not explicitly define the plant classes
that admit P, 1, or D-controllers. We investigate specific classes of plants that admit such controllers and
propose stabilizing PID-controller design methods in Section 3.1.

3.1 Delayed plant classes that admit PID-controllers

Plants that admit PID-controllers are a subset of plants that are strongly stabilizable, i.e., that can be
stabilized using stable controllers. This condition is formalized next in Lemma 3.1.

Lemma 3.1 (Strong stabilizability as a necessary condition for PID stabilization): Let G € R,"*". Let
(normal) rankG(s) = r. If GA admits o PID-controller for any T € O, then G is strongly stabilizable.

Proof of Lemma 8.1: Let G = Y !X be an LCF of G. Let Cpiq be a PID-controller that stabilizes

GA. An RCF Cpiy = N.D7' is given by (8). Then det D.(z;) = det j_ =1, > 0 for all z >
Z;

0. If Cpia stabilizes GA, then My = Y D, + X AN, is unimodular, which implies det Mu(z;) =

det Y(z;) det D,(z;) has the same sign for all z; € U such that X(z) = 0; equivalently, detY'(z;)
has the same sign at all blocking-zeros of G. Therefore, G has the parity-interlacing-property; hence, it

is strongly stabilizable, [17]. u

By Lemma 3.1, plants that admit PID-controllers are necessarily strongly stabilizable. In Proposi-
tion 3.1, we gave a PID-controller synthesis method for stable plants and showed that if G € """, then
there exist P, D, PD-controllers for GA. If rankG(0) = r, then there also exist I, P1, 1D, PID-controllers
for GA. When we consider unstable plants, it is clear that the location of the U-poles of & is important
in determining if GA admits PID-controllers. But even when the real-axis U-poles and zeros satisfy the
parity-interlacing-property, GA may not admit PID-controllers since the strong stabilizability condition
is far from being sufficient. For example, PID controllers are at most second order (SISO case); on the
other hand, there are bounds on the order of strongly stabilizing controllers for a given plant, [14]. If the
right half plane pole-zero pattern of the plant is “close to violating parity interlacing property,” then the
minimal order of the strongly stabilizing controller is high, [14]; moreover, in this case, the smallest H
norm achievable using a strongly stabilizing controller is large, [18].

We now consider plants with a limited number of U-poles on the positive real-axis, including the
origin. Such limitations on the number of U-poles are not surprising; for example, as it can be easily
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shown in the case of (s — p)=3 for p > 0, plants that have more than two poles in i/ do not necessarily
admit PID-controllers.

3.1.1 Plants with only one {{-pole at s = 0 or on the positive real-axis

Let G € R,"™" have full (normal) rank. Let G have no transmission-zeros at s = 0. Let G have
any number of poles in the stable region. Other than a U-pole at s = p € R, p > 0, let ¢ have

no poles in the unstable region ¢/. The pole at s = p > 0 may appear in some or all entries of G.

Therefore, G has an LCF G = V-1X = [ (i—_p_) I ]_IM G
. as + 1 as+1
where rank X (p) = rank(s — P)G(8)|s=p = r. Furthermore, since G has no transmission-zeros at s = 0,

rank X (0) = rank(s — p)G(s)|s—0 = r. Under certain assumptions on the pole at s = p > 0, the delayed
plant G'A admits P, PD, PI, PID-controllers. If p = 0, then plants in this class do not admit D-controllers
of the form Cy = Kys/(m4s + 1) since the plant pole at s = 0 would then cancel the controller’s zero.
Furthermore, some plants may not admit I-controllers; for example, let G = where ¢ > 0; then

ypelR, p>0anda e R, a > 0,

1
&l 54e
G does not admit any controllers of the form C; = K;/s. Stabilizing D—controll(ers Jur I-controllers may
not exist when p > 0. For example, let G = ;:; where z, p > 0; then obviously & does not admit
D-controllers Cy = Kys/(74s + 1) for any 74 > 0 and it does not admit I-controllers Ci=K;/s.

Proposition 3.3 develops a PID-controller synthesis for plants with one “small” real-axis pole at p=0
subject to the norm-bound 0 < p < ||®4] ! as defined in (9). Obviously, p = 0 satisfies this condition.
Let 0 < 2,4, € IR be the smallest positive real-axis blocking-zero of (+; then X (Zmin) = 0. Consider pure
proportional controller synthesis (/; = 0 in Cpa): Then || @] > 1/2mi implies p < [2All~" < zpmin
Le, p must be closer to the origin than the smallest positive zero.

Proposition 3.3 Let G € R, rankG(s) = r. Let p € R, p>0. Let X = E;-}—EDT) G € M(S), for
(LS

a € IR, a>0. Let rankX(p) = rank(s — P)G(8)|s=p = r. Let X(0) = (s - p)G(s)]s=0 be nonsingular,

G 10) = —p X(0)-1.

i) PD-design: Choose any K4 € IR™*", 75 > 0. Define

(s=p)G(s)A(s) X(0)"t — [ Ky
i} = §— J E . 9
Py = + (s —p) G(s)A(s) v (9)
< i ~1 then
If 0<p< min || @4 |7, then
. +p)Kas
= : 1 (Or 0
pd = (a+p) X(0)"! 4 T REel (10)
is a PD-controller that stabilizes GA for T € ©, where o € IR salisfies
- 5. =L _
Oc”{}flelg—l)” Dy || o (11)

IfKg=0, (10) is a P-controller.
it) PID-design: Let 0 < p < glig [| ®5 ||7". Let Cpd be as in (10). Let Hpq := GA( + Cpa GA)7L. Then
2

X (0) ! ¥ - f( 5
Cpid = (@ +p) X(0)~* + M___Lﬂl’)_d_" (12)
5 Ta8 + 1
is @ PID-controller that stabilizes GA for T € ©, where v € IR satisfies
Hya(8)Hpg(0)™F — 1
0<vy< min | pa(8) Hpa(0) |~
Ted ]
: . Gs)AGT1(0) — I iy
= I+ GAC,)™ — Hpals = |-t 13)
min || (/ + GAChq) 3 ;a:(*JmH] [l (13)
and I1,4(0)"! = o X(0)'. 1f f{’d =0, (12) is a Pl-controller. @
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(S_p) ~:3 Rds
1 ; TA(X _—
as+1[ Hetn) GALX() +Tds+1

Dy | ((;—:al)) is unimodular since @, > 0. Therefore, Cpy stabilizes GA. Since f(d is

Proof of Proposition 3.3: ¢) By (11), Mpg := Y4+ XAC,y =

(a+p)s
s+a
arbitrary, it can be chosen as zero. i) Since Cpg in (10) stabilizes GA, Hyg = M?;],lXA = GA(I +
CpaGA)™! € M(Hes), where Hpa(0)™* = G71(0) + K = X(0)7'Y(0) + (a+ p)X(0)"! = aX(0)".
For any v € IR satisfying (13), the I-controller K;/s = vHpq(0)~!/s stabilizes Hpq. By Lemma 2.1,
Cpia = Cpa + Ki/s in (12) stabilizes GA. n

)=

[1+

S

Example 3.1 Consider the plant GA = e T, where 2 > 0. Then fora >0, X := (s — z)/(as +

1), X(0) = —z. Choose any Ky € R and 74 > 0. Following Proposition 3.3, for any positive o <
=1 _ o T 1 s Kq(s— - K
it || __e—5f+e +e—.-..T a’-(s z) ”_19de:_a g8
Te® 2 5 Tas+1 z Td S )
GA. Now let Hpq(s) = G(s)A(s)(I+Cpa(s) G(s)A(s)) ™ = eT (s—2)(s+Cpa(s)(s—2z)e~*T)~L. Choose
—az  Hyy(s) — I = K
any positive v € IR satisfying v < Fﬂé% | i ;d(s) | z’Ysa :;s i‘j

o PID-controller that stabilizes *—* e T for all T € O©.

Clearly, for a fized time delay T, and the right half plane zero z, there is an upper bound on the

—sT

e —1

————||I”', and this relation is
Ts

shown in Figure 2. o

is a stabilizing PD-controller for

|. Then Cpia(s) = 1:5 + is

- —
controller gain . For ezample, when Kg =0, Ta < || T—e_ST +
2

T o versus T z
10 maX =

/%

107

.Tc)) admissible !

S

2

b7 s
10

Figure 2: Maximum e versus z for Kag=0.

—sT

: 5 where p > 0. Then fora > 0, X := 1/(as + 1),

X(0) = 1. Choose any K4 € R and 74 > 0. Following Proposition 3.5, if p < Flé% | @r 7% =

Example 3.2 Consider the plant G(s)A(s) =

: esT —1 _s7 K Ly G : ) .
min || —— + ¢ ——% _ |7}, then for any positive @ < min | @ |77 —p as in
Teo 5 Tas+1 TeE®

(p i Oﬁ) Kys

(11), Cpa(s) = (p+ ) + = is a stabilizing PD-controller for GA. Now let Hp4(s) =

G(s)A(s) (I + de(S)G(s)A(S}}“ = e5T(s — p+ Cpa(s)e™*T)~1. Choose any positive v € R satis-

H,qls) —1 - +a)Kgs
¥ !Jd(s) ” Then Cpid(s) e (p + IQ'J 4 E + M
5 s TS +

stabilizes & for all T € ©.

fying v < jl_‘ﬂélé I is a PID-controller that
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Figure 3: Maximum proportional gain versus pole-delay product pT'.

Let us now consider proportional controller design for a fized T and p in this example. It is easy to
show that a stabilizing proportional controller exists if and only if pT" < 1. Moreover, for any fived pT" < 1,
there is a mazimum allowable gain Ky for the proportional controller; this is shown in Figure 3 as the
exact bound. On the other hand, our approach uses the small gain argument and leads to C, — (p+ )

- A 1
as the controller gain. With |, = || T -e——s,}:—} | =T, the condition p < [[Pall"" is the same

as pI'" < 1. From the bound given in (11), o < T-1_ p; we see that the largest controller gain we
can use in our case is 1/T. This bound is also shown in Figure 3, which illustrates that the approach
used here is not too conservative. The figure also demonstrates the difficulty of controlling this plant
using a proportional controller when the product of the unstable pole with delay is relatively large. Other
fundamental performance limitations can also be quantified, in terms of smallest achievable sensitivity
level, [16], or mived sensitivity H>® cost. i, 3]. See [16] for further discussion and motivations for
studying this benchmark problem.

It is also clear that by using the derivative term we can improve the bound on largest allowable pT'. The
largest pole delay product for which we can find a PD-controller is 1.38 = 1/0.725, and that corresponds

to 7y — 0 and ffﬂr_/T = 0.31, see Figure J. =

3.1.2 Plants with two U-poles at s = 0 or on the positive real-axis

Let G € Rp™ " have full (normal) rank. Let G have no transmission-zeros at s = 0. Let G have any
number of poles in the stable region. Other than U-poles at s — PPER, s=p;eR,p; >0, p >0,
let G have no poles in the unstable region I . Some or all of the entries of G contain one or both of the
(s —p1)(s — pa) - (s —p1)(s — p2) G
(bs +1)(as + 1) (bs+1)(as+1)
Pi.p2 €IR,py >20,p> >0, anda b e R, a,b > 0, where rank X (py) = rank(s —p1)(s —P2)G(8)|s=p, =7
and rankX (p;) = rank(s — py)(s — P2)G(8)|s=p, = r. Furthermore, since G has no transmission-zeros
at s = 0, rankX(0) = rank(s — p1)(s — P2)G(s)|s=0 = r. Proposition 3.4 shows that under certain
assumptions on the poles at py, p, > 0, the delayed plant GA admits PD and PID-controllers. Stabilizing
P-controllers, D-controllers or I-controllers may not exist. For example, for G = m where
P1 = 0, pa = 0. GA does not admit P-controllers Cy = K, , or D-controllers Ca = Kus/(rqs + 1) for any
74 > 0, or I-controllers () = Ki/s.

poles at p; and p,. Therefore, G has an LCF ¢ — ¥E =]

Propo_sition 3.4 Let G € R,"™", rankG(s) = r. Let py,py € R, pr 20, ps >0. Let X =
%%E%G € S, for a.b e R,a,b > 0. Let X(0) = (5 = p1)(s = P2)G(s)]eo be nonsingu-
lar, where G=1(0) = pyps X (0)~1,
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P versus K _ and T
max d d

Figure 4: Maximum pole-delay product pT" versus K4 and 74.

i) PD-design: Choose any 14 > 0. Define
o (ras+1)"Y(s — p1)(s — p2) G(s)A(s) X(0)~! — 1

i ]
A : (14
If0<p < ?qlelg | @14 |7, then choose any positive o € IR satisfying
N <
l<a< Inin | 14 || P (15)
Define
P .
all+ fet+m) (s — pa) G(8)A(s) X (0) ' |71 (s — p2) G(s)A(s) X(0) ' =1
s T4+ 1
Dop = = » (16)
If 0<pa< Tmcig | ®2a | =1, then choose any positive 8 € IR satisfying
0<f< min || ®on |7 —p2 . (17)
Let Kp = (a8 —p1 pa)X(0)™Y, Kg=(a+p1)(1+ Tap2) X (0)71; then
’ +p1) (1 +7ap2) X(0)'s
— (@B —pr o) X(0) + 2
Cpa= (B —p1p2) X(0)™" + Pt (18)
is a PD-controller that stabilizes GA for T € ©.
i) PID design: Let Cpa be as in (18). Then
) aBX(0)"  (a+p)(+74p2) X(0) s
=T b= pps) gy 22ET0 bl Vo) B0 (19)

5 Tas+1
is a PID-controller that stabilizes GA for T € ©, where vy € IR satisfies (13) with Hpg(0)™ ' = af X(0)~".

5 —; bs + 1
%ST‘D;)I + (a+ p1) E;tr BX(S)A(S)X(O)—l =

(s —pa) (e +p1)s (s + )
LT ) (R B o

i 5 s+a 1A]as+l
T4s + 1

Proof of Proposition 5.4: i) By (15), Wa =

is unimodular. Define

s—p1,, (s—m) , <3
L )G(s)A(s) X (0
as + 1I+ as+1 (atp)Gls)Als) (0) T8+ 1

H = (bs + l)WOTl XA ; then I}(U)"l = aX(0)"'. By (18), Cpg = (@ + p1) X0+ a8+
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(bs+1)

Tds + 1

(s —p2) [ (s —p1)
bs+1 ' as+1
@ (B + p2) X (s)A(s)X(0)™" = W,[S2P2 ) |y Al +p2) X(s)A(s) X(0)™!] = wy[S=P2y
T bs 41 & ! ' “bs+1
af HX(0)! . (B+p)s._ (s+8)
T iy =Wy r4 220
bs+1 J all+ s+ (I)""J\Jbs+1
Therefore, Cpa stabilizes GA, ii) Since Cpa in (18) stabilizes Gy Hpgi= ,flz}'p]lXA =GA(I+CuGA) 1 ¢
M(Heoo); Hpg(0)"1 = Ky + X(0)7'Y(0) = o g X(0)~!. For any v ¢ R satisfying (13), the L-controller
Ki/s = yH,q(0)~! /s stabilizes Hpy. By Lemma 2.1, Cpia = Cpg + K;/s in (19) stabilizes GA. "

p2)X(0)". By (17), Myy == ¥ + XACpy = X(s)A(s)X(0)7'] +

I+ (v 4+ py)

is unimodular since b, 3 > 0 and W, is unimodular,

3.1.3 Plants with one pair of imaginary poles

Let G € R,™" have full (normal) rank. Let G have no transmission-zeros at s = 0. Let G have any
number of poles in the stable region. Other than a complex conjugate pair of jw-axis poles at s — +ip € T,
P >0, let G have no poles in the unstable region ¢/ . The poles at s = +jp may appear in some or all

2 3 2 2
of the entries of (. Therefore, G' has an LCFG=Y-1x = [ @ Ei 1;5 l D “1(——%%—1—) G,
s s as

PEIR, p>0andabe R, a,b > 0, where rankX (jp) = rank(s? + pz)G(s}[ssz = r. Furthermore,
since G' has no transmission-zeros at 5 =0, X(0) = p?G(0) is nonsingular. Under certain assumptions
on the magnitude p of the poles at s = 455, the delayed plant GA admits D, PD, ID, PID-controllers.
P-controllers or I-controllers Mmay not exist for plants in this class. For example, ¢ = ;—i—p—f does not
admit P-controllers or I-controllers for any p=0.

Proposition 3.5 develops a PID-controller synthesis for plants with one complex conjugate pair of
Jw-axis poles with “small” magnitude, subject to the norm-bound P < 0.5)|T4||~! as defined in (20).
Note that MEAll = 1/ 20 implies p < 0.5(|W, = 1 —— i.e., the magnitude p is smaller than half
of the smallest positive zero o
Propositi Let G € Ry™", rankG(s) = r. L R, p>0. Let X = (5 +0°)

roposition 3.5 Let G € Rp"*", ran (s) =r. Let p € R, p>0. Let X = m
M(S), for a,b € R, a,b > 0. Let rankX (p) = rank(s? + P?)G(8)s=jp = 7. Let X(0) = p*°G(0) be
nonsingilar,

1) PD-design: Choose any 74 > 0. Define

G e

(s + 2746 + 2 Gl 06) SO

\;[-‘_1\ = . (20)

8

1 : o
If 0<p< 5 ;}gg | a (77, then choose a, 8 € IR, o, 3 > 0, satisfying
<o+ f in| Wy ||t =2, 21
0_0‘4‘.5{,}111(:_13”‘1‘:\“ P (21)

Let K, = [aB + p(a + ) [X(0)™, Ky = (a+ 8+ 2p)X(0)~! — 14 K, ; then

Kas o (a+6+2,0)s+aﬁ+,0(a+ﬁ) | G(0)~1

nd = K = (22
Cd (p+rds+1 Tas+1 o2 \%<)
s a PD-controller that stabilizes GA forTe@. Ifa=p8= 0, (22) is a D-controller.
1
i) PID-design: Let 0 < p < 5 gp&% | ¥a (7. Let Cpy be as in (22). Then
'+ 0+2p)s+a G i 26 v+ G(0)~1
Cpf,f.={(a+'j+ )54 af+pla+g) L P +a +,o(a+,J)J (,j (23)

Tys+ 1 g P

s a PID-controller that stabilizes C'A forT € ©, where v € R satisfies (13) with Hpa(0)™ ! = [p* +a B+
pla+B)]X(0)™). Ifa=8= 0, (23) is an ID-controller. "
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, o , . nl(s) s[(a+0+2p)s+af+plet+8)] n(s)
vof of Proposition 3.5 4) Defing =it = By (21), |22 0, | <
Proof of Proposition 3.5: i) Define i) (s+a+p)(s+B8+p) y (21), 10) Uall <
o g . (5% + p?) n

7 lie Vi 1 : = — A =
(@ + 8 + 2p)¥a < 1 implies Mpq Y + XACpd @+ Dbs+ 1) I + GACpq] [ +
o) d(s)

d(s) Al (as + 1)(bs + 1)
Cpa in (22) stabilizes GA, Hpq := M};;;XA = GA(I + CpaGA) ™! € M(Heo); Hpq(0)™ = G7H(0) + K5 .
For any v € IR satisfying (13), the I-controller K;/s = '\(de(o)—L/s stabilizes H,q4. By Lemma 2.1,
Cpia = Cpa + Ki/s in (23) stabilizes GA. =

s unimodular since a, b > 0, , 8 > 0. Therefore, Cpq stabilizes GA. 11) Since

4 Conclusions

We showed existence of stabilizing PID-controllers for a class of LTI, MIMO plants with delays in the
input channels. Moreover, for plants with only one or two unstable poles we have given explicit formulae
for PID controller parameters. These results are obtained from a small gain based argument. Therefore,
they are conservative. We were able to quantify the level of conservatism on an SISO benchmark example.

Plants with more than two poles on the positive real-axis do not necessarily admit PID-controllers
even if they are strongly stabilizable. Further assumptions are needed on such plants, which would impose

restrictions on the transmission-zeros. For example, as it can be easily shown in the case of (——-)3 or
s—p

m;—*'_?;z_) for p > 0, many plants that have more than two poles in the unstable region cannot be
stabilized using PID-controllers even when the magnitudes of these poles are “small”.

For MIMO plants with output delays, if V-1 commutes with the delay matrix A (recall that the finite
dimensional part of the plant was factored as G = Y~1X), then the proofs remain valid. Indeed, all
explicit controller design problems studied here had diagonal ¥ ~!, hence the results are valid for output
delay case as well (of course with necessary minor modifications). Similarly, we can handle the case of
both input and output delays, again by making minor modifications in the proofs under the assumption
that Y~ commutes with the output channel delay matrix. Details will be included in the full version of
the paper which is in preparation.
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