
MIMO Integral-Action Anti-Windup Controller Design and
Applications to Temperature Control in RTP Systems

A. N. Mete and A. N. Gündeş

Abstract— An integral-action controller synthesis is pre-
sented, where the controller achieves closed-loop stability and
zero steady-state error due to step-input references. Closed-
loop stability is maintained even when the integrators in all of
the controller channels are limited or completely switched off
to protect against integrator windup. The proposed method is
applied to temperature control in Rapid Thermal Processing
systems, where critical requirements are imposed on tracking
of temperature profiles.

I. INTRODUCTION

We consider controller synthesis for linear, time-invariant
(LTI) multi-input multi-output (MIMO) plants subject to
input saturation. Our goal is to achieve closed-loop stability
and asymptotic tracking of step-input references with zero
steady-state error. To achieve robust tracking, the controller
is designed to have integral-action.

The performance of integral-action controllers depends
on the system operating in a linear range. They suffer
serious loss of performance due to a phenomenon called
integral windup, which occurs when the actuators in the
control-loop saturate (see e.g. [6]). Limitations of actuators
put an upper bound on the amplitude of the control signal.
Actuators reach their saturation limit when a reference
signal requiring a control effort beyond that bound is applied
to the system. The integrators in the controller continue to
integrate the error although the input is constrained, and
once the input comes out of the saturation limit, the initial
condition that the integrator has built up to causes a large
transient response and serious performance degradation.
Effects of integral windup can range from large overshoots
in transient response to loss of stability. Therefore, integral-
action controllers should be modified by taking actuator
limitations into account. Most methods of dealing with
the effect of integrator windup are based on the idea of
turning off the integrators when the input reaches a limit
and resetting the integrators’ states. Numerous anti-windup
modifications have been proposed, many of which can be
considered as observer-based modifications (see e.g., [1]). A
synthesis procedure for designing observer-based controller
gains in anticipation of windup can be found in [10].

There are several ways to design LTI integral-action
controllers (see e.g. [2], [12], [8], [9], [5] for decentralized
and centralized integral-action controller synthesis). The
simplest controller that achieves integral-action is in the
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proportional+integral+derivative (PID) form. Closed-loop
stability can be achieved using PID-controllers only for cer-
tain classes of plants, while many others cannot be stabilized
using PID-controllers. Standard observer-based integral-
action controller designs apply Linear Quadratic Regulator
(LQR) or pole-placement methods to an augmented plant
model, which includes the n states of the plant and the ny

states of the integrators [13], [11], [5]. An augmented full-
order observer-based design results in an (n + ny)-th order
controller. The integrators cannot be completely switched
off since the gain matrix corresponding to the integrator
states are part of the feedback loop that ensures stability.
Instead of turning off the integral-action completely to
protect against integrator windup, the integrators are limited
so that the input does not reach the saturation limits.

In this paper, we propose an integral-action synthesis
procedure based on adding integral-action onto the system,
where an initially designed stabilizing controller is already
present in the feedback loop. This is achieved in two stages:
An initial stabilizing controller is designed for the original
plant using any desired method (LQR, H∞ , etc.) and it does
not have integral-action. Then a PID-controller is designed
for a stable system associated with the plant. These two
blocks are configured so that the final controller achieves
closed-loop stability and integral-action. Furthermore, all
integral-action controllers can be obtained from this con-
troller by inclusion of a free controller parameter. If a
full-order observer-based controller is chosen for the initial
stabilizing stage, then only the plant states are estimated and
the state feedback gains are only associated with the plant
states without augmenting. The transfer-function of the final
controller once the PID block is added on is (n + 1). To
protect against windup due to the integrators in the PID
block containing the integral-action, this second block can
be completely switched off without affecting closed-loop
stability or it can be limited.

The proposed integral-action controller design is applied
to temperature control in Rapid Thermal Processing (RTP)
systems (see e.g. [14], [3] for modelling and control of
RTP). The recent technology of RTP in integrated circuit
manufacturing is a fast and efficient multi-chamber single-
wafer technology that uses a much smaller chamber than
a batch process. Single-wafer processing achieves more
uniform film thickness for larger wafers. During an RTP
process, it is crucial to maintain uniform temperature on the
wafer surface at all times since small temperature variations
can lead to large variations in reaction rates [3]. The benefits
of RTP cannot be realized without meeting the stringent
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temperature uniformity specifications. Fast tracking control
laws that achieve near uniform spatial temperature distribu-
tions across a semiconductor wafer during both transient
and quasi steady-state phases of the process need to be
developed for RTP systems, which are inherently nonlinear
dynamic processes with actuator saturation.

The paper is organized as follows: The problem descrip-
tion and definitions are in Section II. The main results
are in Section III: Section III-A explains the proposed
controller synthesis. Theorem 3.1 states that all integral-
action controllers can be realized in two stages, where the
integral-action is achieved using a separate PID block that
can be switched off or limited without affecting closed-
loop stability. One method of designing the PID stage is the
systematic procedure in Proposition 3.1. Section III-B gives
a review of integral-action design using an augmented plant
model. In Section IV, the results are applied to a linearized
MIMO RTP system model subject to lamp input saturation
nonlinearity as described in [4]. The proposed systematic
synthesis approach is compared with the standard observer-
based controller design with augmented state feedback.

Although we discuss continuous-time systems here, all
results also apply to discrete-time systems with appropriate
modifications. The following notation is used: Let CI , IR
denote complex and real numbers. The extended closed
right-half complex plane is U = {s ∈ CI |Re(s) ≥ 0}∪{∞};
Rp denotes real proper rational functions of s; S ⊂ Rp

is the stable subset with no poles in U ; M(S) is the set
of matrices with entries in S ; In is the n × n identity
matrix. The H∞-norm of M(s) ∈ M(S) is ‖M‖ :=
sups∈∂U σ̄(M(s)), where σ̄ is the maximum singular value
and ∂U is the boundary of U . We drop (s) in transfer ma-
trices such as G(s) whenever this causes no confusion. We
use coprime factorizations over S ; i.e., for G ∈ Rp

ny×nu ,
G = NgD

−1
g denotes a right-coprime-factorization (RCF),

where Ng ∈ Sny×nu , Dg ∈ Snu×nu , detDg(∞) �= 0;
G = D̃−1

g Ñg denotes a left-coprime-factorization (LCF),
where Ñg ∈ Sny×nu , D̃g ∈ Sny×ny , det D̃g(∞) �= 0.

II. PROBLEM DESCRIPTION

Consider the LTI, MIMO unity-feedback system
Sys(G, Ĉ) in Fig. 1; G ∈ Rp

ny×nu and Ĉ ∈ Rp
nu×ny

are the plant’s and the controller’s transfer-functions, re-
spectively. Assume that the feedback system is well-posed,
the plant and controller have no unstable hidden-modes, and
the plant G ∈ Rp

ny×nu is full normal rank. Let Her =
(Iny + GĈ)−1 = Iny − GĈ(Iny + GĈ)−1Iny − GHwr

denote the (input-error) transfer-function from r to e.
Definition 2.1: i) The system Sys(G, Ĉ) is said to be

stable iff the closed-loop transfer-function from (r, v) to
(y, w) is stable. ii) The controller Ĉ is said to stabilize

� � � Ĉ � ��� G �
�−

r e
v

w y

Fig. 1. Unity-Feedback System Sys(G, Ĉ).

G iff Ĉ is proper and Sys(G, Ĉ) is stable. iii) The stable
system Sys(G, Ĉ) is said to have integral-action iff Her

has blocking zeros at the origin.
Suppose that Sys(G, Ĉ) is stable and that step reference

inputs r are applied to the system. The steady-state error
due to all step inputs goes to zero if and only if Her(0) = 0,
i.e., the system has integral-action.

Let G = NgD
−1
g = D̃−1

g Ñg , Ĉ = NcrD
−1
cr = D−1

c� Nc�

be any RCF and LCF of the plant and the controller. Then
Ĉ stabilizes G if and only if ML in (1) equivalently, MR ,
is unimodular [15], [7]:

D̃gDcr + ÑgNcr =: ML , Dc�Dg + Nc�Ng =: MR (1)

Then Her can be written as in (2), and equivalently, (3):

Her = (Iny
+ GĈ)−1 = DcrM

−1
L D̃g , (2)

Her = Iny− GĈ(Iny + GĈ)−1 = Iny− NgM
−1
R Nc� . (3)

By Definition 2.1, Sys(G, Ĉ) has integral-action iff
Her(0) = (DcrM

−1
L D̃g)(0) = 0.

Definition 2.2: The controller Ĉ = NcrD
−1
cr is said to

be an integral-action controller iff Ĉ stabilizes G and the
denominator matrix Dcr for any RCF of Ĉ has blocking
zeros at the origin, i.e., Dcr(0) = 0.

By Definition 2.2 and (2), if Ĉ = NcrD
−1
cr is an integral-

action controller, then Sys(G, Ĉ) has integral-action. Ob-
viously, Dcr(0) = 0 is sufficient but not necessary for
Her(0) = (DcrM

−1
L D̃g)(0) = 0. If G has poles at s = 0,

rankD̃g(0) < ny ; hence, the system may achieve integral-
action even if Dcr(0) �= 0. If G has no poles at s = 0, then
Sys(G, Ĉ) has integral-action if and only if Ĉ = NcrD

−1
cr

is an integral-action controller, i.e., Dcr(0) = 0.
Lemma 2.1 gives the necessary conditions imposed on

G due to the integral-action requirement:
Lemma 2.1: Let G ∈ Rp

ny×nu . If the system
Sys(G, Ĉ) has integral-action, then i) (normal) rankG =
ny ≤ nu ; ii) G has no transmission zeros at the origin.
Proof: The stability of Sys(G, Ĉ) implies Her(0) =
Iny − GHwr(0) = 0, i.e., GHwr(0) = Iny . Therefore,
(normal) rank(GHwr) = ny ≤ min{rankG, rankHwr}
implies ny ≤ rankG ≤ min{ny, nu}. By (3), Her(0) = 0
implies Ng(0)M−1

R (0)Nc�(0) = Iny ; hence, rankNg(0) =
rankNc�(0) = ny .

III. MAIN RESULTS

The simplest integral-action controllers are in PID form.
We consider a realizable form of proper PID-controllers,
where Kp , Ki , Kd ∈ IRnu×ny are called the proportional,
the integral, and the derivative constant, respectively [5]:

Cpid = Kp +
Ki

s
+

Kd s

τds + 1
, (4)

To implement the derivative term, a pole is typically added
to the derivative term (with τd > 0) so that Cpid in (4) is
proper. The integral-action in Cpid is present when Ki �= 0.
The controller in (4) is in proportional+integral (PI) form
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Cpi = Kp + Ki/s when Kd = 0, integral+derivative (ID)
form Cid = Ki/s + Kds/(τds + 1) when Kp = 0, pure
integral (I) form Ci = Ki/s when Kp = Kd = 0.

Although PID-controllers are simple and low order, some
(unstable) plants G are not stabilizable with any Cpid . Since
the plants considered here are not restricted to be stable,
existence of stabilizing PID-controllers is not guaranteed.
Proposition 3.1 shows that stable systems can be stabilized
using PID-controllers, with Ki �= 0, if and only if G has
no transmission zeros at the origin, and proposes a method
of selecting the constants Kp, Ki,Kd .

Proposition 3.1: Let Ng ∈ Sny×nu , (normal) rankNg =
ny ≤ nu . i) There exist stabilizing PID-controllers with
nonzero integral constant Ki ∈ IRnu×ny if and only if
rankNg(0) = ny . ii) Suppose rankNg(0) = ny . Let
Ng(0)I ∈ IRnu×ny be any right-inverse of Ng(0). Choose
any K̂p, K̂d ∈ IRnu×ny , τd > 0. With Ĉpd defined as in
(5) below, let Kp = ρK̂p , Kd = ρK̂d , Ki = ρNg(0)I ,
where ρ ∈ IR is any positive constant satisfying (6):

Ĉpd := K̂p +
K̂d s

τds + 1
; (5)

0 < ρ < ‖ Ng(s)Ĉpd +
Ng(s)Ng(0)I − I

s
‖−1. (6)

Then Ng is stabilized by the PID-controller in (7):

Cpid = ρK̂p +
ρNg(0)I

s
+

ρK̂ds

τds + 1
. (7)

In (7), K̂d = 0 gives a PI-controller; K̂p = 0 gives an
ID-controller; K̂d = K̂p = 0 gives a pure I-controller.
Proof : For any positive a ∈ IR, define Z ∈ M(S) as

Z := Cpid
s

s + a
= ( Kp +

Kds

τds + 1
)

s

s + a
+

Ki

s + a
. (8)

Then Cpid = Z( s
s+aIny )−1 is an RCF of Cpid . Since Cpid

stabilizes Ng , the matrix M defined by (9) is unimodular:

M :=
s

s + a
Iny + NgZ =

(
Iny + NgCpid

) s

s + a
Iny (9)

By (9), a �= 0, rankM(0) = rank(a−1Ng(0)Ki) = ny ≤
min{rankNg(0), rankKi} ≤ min{ny, nu} = ny implies
rankNg(0) = ny . Then there exist a right inverse Ng(0)I ∈
IRnu×ny , i.e., Ng(0)Ng(0)I = Iny . Define M̂ as

M̂ =
s + a

s + ρ
M =

s

s + ρ
I + NgCpid

s

s + ρ
. (10)

In (10), add and subtract ρ
s+ρIny

to obtain

M̂ = Iny +
ρs

s + ρ
( Ng Ĉpd+

Ng(s)Ng(0)I − Iny

s
) . (11)

Since ‖ ρs
s+ρ‖ = ρ, for any ρ > 0 satisfying (6), we have

‖ ρs

s + ρ
( Ng Ĉpd +

Ng(s)Ng(0)I − Iny

s
) ‖ < 1 . (12)

By (12), M̂ is unimodular; equivalently, M is unimodular
since a, ρ > 0; therefore Cpid stabilizes Ng .

A. Two stage integral-action design

Standard integral-action designs are generally based on
augmenting the plant to include the integrator’s states in
state-feedback. This approach is briefly reviewed in Sec-
tion III-B. In this section, we propose an approach that
does not involve augmenting the plant’s states. Theorem 3.1
states that any integral-action controller for G = NgD

−1
g

can be expressed as the sum of two blocks: The first is
any stabilizing controller Cg = Ỹ −1X̃ , designed using any
method, and does not have integral-action. The second is
Ỹ −1Cpid , where Cpid is any PID-controller that stabilizes
Ng ; it can be designed using any method including the
procedure in Proposition 3.1. This second block provides
integral-action and even if it is switched-off, the closed-
loop remains stable due to Cg still remaining in the loop.

Theorem 3.1: Let the plant be G ∈ Rp
ny×nu , (normal)

rankG = ny ≤ nu ; let G have no transmission zeros at
s = 0. Let G = D̃−1

g Ñg be any LCF, G = NgD
−1
g be any

RCF. Choose any controller Co
g ∈ Rp

nu×ny that stabilizes
G. There exists an LCF Co

g = D̃−1
c Ñc of Co

g that satisfies

D̃cDg + ÑcNg = Inu . (13)

Let Cpid be any PID-controller stabilizing Ng with Ki �= 0.
Then Ĉ is an integral-action controller for G if and only if

Ĉ = (D̃c − QÑg)−1 ( Ñc + QD̃g + Cpid ) , (14)

where Q ∈ Snu×ny satisfies det(D̃c − QÑg)(∞) �= 0.
We prove that any Ĉ in (14) is an integral-action controller
for G; a detailed proof that all integral-action controllers
are in the form given by (14) can be found in [8]:
Proof : Define Z ∈ M(S) as in (8). Since Cpid stabilizes
Ng , the matrix M in (9) is unimodular. Let Co

g = NcD
−1
c

be an RCF of Co
g that satisfies

D̃gDc + ÑgNc = Iny . (15)

Then all stabilizing controllers Cg for G can be expressed
as Cg = Ỹ −1X̃ = XY −1, where

Ỹ := (D̃c − QÑg), X̃ := (Ñc + QD̃g),
Y := (Dc − NgQ), X = (Nc + DgQ) , (16)

and Q ∈ Snu×ny satisfies det(D̃c − QÑg)(∞) �= 0
[15], [7]. Using Ỹ −1X̃ = XY −1 and (9), Ĉ in (14)
can be written as: Ĉ = Ỹ −1(X̃ + Cpid) = Ỹ −1X̃ +
Ỹ −1(Ỹ Dg + X̃Ng)Cpid = Ỹ −1X̃(Iny + NgCpid) +
DgCpid = XY −1

(
Iny + NgCpid

)
+ DgCpid = (X +

DgCpid
s

s + a
M−1Y ) Y −1M(

s

s + a
Iny )−1. Therefore, an

RCF Ĉ = NcrD
−1
cr for the controller Ĉ is given by

NcrD
−1
cr = (X + DgZM−1Y )(

s

s + a
M−1Y )−1, (17)

where Ncr, Dcr ∈ M(S) and Dcr is biproper. It follows
by (9), (15) and ÑgDg = D̃gNg that ML = D̃gDcr +
ÑgNcr = D̃g(

s

s + a
M−1Y ) + Ñg(X + DgZM−1Y ) =
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D̃g(
s

s + a
M−1Y +NgZM−1Y )+ÑgX = D̃gMM−1Y +

ÑgX = D̃gY + ÑgX = Iny is unimodular. The system
Sys(G, Ĉ) is stable since ML in (1) is unimodular. Since
Dcr(0) = (

s

s + a
M−1Y )|s=0 = 0, Dcr has blocking zeros

at s = 0. By Definition 2.2, any Ĉ = NcrD
−1
cr given by

(14) is therefore an integral-action controller for G.
The block diagram of Sys(G, Ĉ), with Ĉ as in (14), is in

Fig. 2. For Q = 0, the integral-action controller Ĉ becomes

Ĉo = Co
g + D̃−1

c Cpid . (18)

The controller Ĉ in (14) is simplified for stable plants as
follows: Let G ∈ Sny×nu , rankG(0) = ny ≤ nu . Let
Cpid, with Ki �= 0, be a PID-controller that stabilizes G.
Then Ĉ is an integral-action controller for G if and only
if Ĉ = (I − QG)−1 ( Q + Cpid ), where Q ∈ Snu×ny

satisfies det(I − QG)(∞) �= 0.
The parametrization given in (14) can also be obtained

using a state-space representation (A, B,C, D) of G ∈
Rp

ny×nu , where A ∈ IRn×n, (A,B) is stabilizable and
(C, A) is detectable. Let K ∈ IRnu×n and L ∈ IRn×ny be
such that FL and FK defined in (19) are stable:

FL := (sI−A+LC)−1 , FK := (sI−A+BK)−1 . (19)

Then using G = NgD
−1
g = D̃−1

g Ñg , where

Dg = I − KFKB , Ng = (C − DK)FKB + D,

D̃g = I − CFLL , Ñg = CFL(B − LD) + D , (20)

a controller Co
g = D̃−1

c Ñc = NcD
−1
c is given by

D̃c = I + KFL(B − LD) , Ñc = KFLL ,

Dc = I + (C − DK)FKL , Nc = KFKL ,

Co
g = K ( sI − A + BK + L(C − DK) )−1 L . (21)

With the nominal full-order observer-based controller Co
g

in (21), the expression for all integral-action controllers in
(14) of Theorem 3.1 becomes Ĉ = [I + KFL(B − LD)−
Q(CFL(B−LD)+D)]−1[ KFLL+Q(I−CFLL)+Cpid ],
where Q ∈ Snu×ny is such that det(I−Q(∞)D) �= 0. With
Q = 0, the controller Ĉo in (18) is expressed as

Ĉo = K(sI −A + BK + L(C −DK))−1L + D̃−1
c Cpid .

(22)
The block diagram of Sys(G, Ĉ), with Co

g as in (21), is
in Fig. 3. The PID block for Ng = [(C − DK)FKB +
D] can be designed using Proposition 3.1: Since G has no
transmission zeros at s = 0, Ng(0) has a right-inverse

Ng(0)I =
[
D − (C − DK)(A − BK)−1B

]I
. (23)

The expression (6) is simplified as follows: Since FK ∈
M(S), FK(0) = (−A + BK)−1 exists. By (23), [Ng(s)−
Ng(0)]Ng(0)I= [(C−DK)FKB+D−D+(C−DK)(A−
BK)−1B]Ng(0)I = (C − DK)(A − BK)−1[(sI(A −
BK)−1 − I)−1 + I]BNg(0)I = (C − DK)(A −
BK)−1[(sI(A−BK)−1−I)−1sI(A−BK)−1]BNg(0)I =

�
r

−
�

�
�

e
Ñc

� � �D̃−1
c

� Cpid

� � ��

v

�
Q

�
�

� G �

�D̃−1
g

� � Ñg
�

w u y

�

Fig. 2. The system Sys(G, Ĉ) with integral-action controller Ĉ.

� sKd

τds + 1
�

� s−1I � Ki

�

� Kp

�
�

�

Cpid

�r

−
�

�

e

�

� Q
�

� �−L

�

�

�
�

D

� C �
x̂

�−K � � � � �

(sI − A)−1 � �

B

�

��

��

v

uw
G� �y

Fig. 3. Sys(G, Ĉ) using full-order observer-based controller Co
g

.
(C − DK)(A − BK)−1(sI − A + BK)−1sBNg(0)I

implies s−1(Ng(s)Ng(0)I − I) = (C − DK)(A −
BK)−1FKBNg(0)I . The bound in (6) for ρ > 0 becomes

ρ < ‖Ng(s)Ĉpd +(C−DK)(A−BK)−1FKBNg(0)I‖−1.
(24)

Then Ng is stabilized by the PID controller Cpid in (7).

B. Integral-action design based on plant augmentation

We briefly review the well-known full-order observer-
based integral-action controller synthesis, where the integra-
tor’s states are also included in state-feedback [5], [4]. The
state-feedback matrix can be designed using pole-placement
or LQR. Let (A,B, C, D) be a state-space representation of
G ∈ Rp

ny×nu , where A ∈ IRn×n, (A,B) is stabilizable,
(C, A) is detectable. Let L ∈ IRn×ny be such that FL ∈
Sn×n. Define the (n + ny)-th order augmented system as

Aa :=
[

A 0
−C 0

]
, Ba :=

[
B
−D

]
, Ca := [C 0 ] . (25)

The pair (Aa, Ba) is stabilizable if and only if (A,B) is
stabilizable and G has no transmission zeros at the origin.
A state-feedback Ka = [ Kx Kξ ] is then determined for
the augmented system in (25), and the resulting (n+ny)-th
order observer-based controller is called Ĉa , given by

Ĉa = −Ka [sI − Aa + BaKa + La(Ca − DKa) ]−1
La,
(26)
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where La :=
[ −L

Iny

]
. The block diagram of Sys(G, Ĉa)

with the (n+ny)-th order Ĉa is in Fig. 4. The augmented
system is stabilized using Ka ; if Kξ = 0, the design
does not guarantee stability with Kx acting alone. The
integrators cannot be taken out of service completely.

IV. APPLICATIONS TO RTP SYSTEMS

We apply the integral-action controller design procedure
of Section III-A to temperature control in RTP systems.
We use the linearized model described in [4], with three
standard tungsten halogen lamps as actuators, and three
temperature sensors. Let x = [x1 x2 x3]T denote the
temperatures. The linearized MIMO system has a state-
space representation (A,B, C, D), where

A =

⎡
⎣ −0.0682 0.0149 0

0.0458 −0.1181 0.0218
0 0.04683 −0.1008

⎤
⎦ ,

B =

⎡
⎣ 0.3787 0.1105 0.0229

0 0.4490 0.0735
0 0.0007 0.4177

⎤
⎦ , C = I3, D = 0 .

We design an integral-action controller following the two-
stage procedure of Section III-A; a full-order observer-based
stabilizing controller is chosen for the first stage and a PI-
controller for the second block. We choose to design the
initial controller Co

g as in (21). The estimator is designed
here by pole placement, with the poles of FL located at
{−3, −4, −5}. We use LQR to find a state-feedback gain
K ∈ IR3×3 such that FK is stable. We choose the state
weighting matrix Q̂ = 20I3 and the control weighting
matrix R̂ = I3 . Then L,K ∈ IR3×3 are

L =

⎡
⎣ 2.9318 0.0149 0

0.0458 3.8819 0.0218
0 0.0468 4.8992

⎤
⎦ , (27)

K =

⎡
⎣ 4.2308 −0.4739 −0.0610

0.6725 4.1515 −0.2611
0.0966 0.4407 4.2242

⎤
⎦ . (28)

The controller Co
g = K(sI−A+BK+L(C−DK))−1L =

(nij) /d, where d = (s + 4.609)(s + 5.921)(s + 6.809),
is a stabilizing controller for the plant G and it does not
have integral-action. We follow Proposition 3.1 to design

� s−1I �−Kξ

��r

−
�

�

e

�

ξ Ĉa

� �−L

�

�

�
�

D

� C �
x̂

�−Kx
� � �

(sI − A)−1 � �

B

�

��

��

v

uw
G� �y

Fig. 4. Sys(G, Ĉa) with augmented observer-based controller.

the PID block for Ng in (20) of the RCF G = NgD
−1
g .

Choosing K̂p = 15I3 and K̂d = 0, the inequality
(24) becomes 0 < ρ < ‖Ng(s)Ĉpd + (C − DK)(A −
BK)−1FKBNg(0)I‖−1 = 0.3292. Choose ρ = 0.3; with

Ng(0)−1 =

⎡
⎣ 4.44 −0.58 −0.05

0.57 4.43 −0.35
0.09 0.32 4.46

⎤
⎦, Cpi = ρ(K̂p +

1
s
Ng(0)−1) = 4.5I3 +

0.3
s

Ng(0)−1. Finally, with Q =

0, the integral-action controller Ĉo = Co
g + D̃−1

c Cpi =
(hij) /d̂ , where d̂ = sd, is a fourth-order controller due
to the third-order observer-based controller Co

g in the first
stage and the first-order PI block in the second stage.

We also design a standard observer-based controller Ĉa

as in Section III-B using the augmented plant description
(25), with n = 3, ny = 3. We use the same state-estimator
gain L as in (27) and choose the augmented state weighting
Qa = diag[ 20I3 , I3 ] , the control weighting R = I3.
The state feedback Ka = [Kx Kξ ] is found using
LQR. The integral-action controller Ĉa is computed
using (26). Fig. 5 shows the closed-loop step responses
of the three temperatures individually for Sys(G, Ĉo) and
Sys(G, Ĉa), with unit steps applied at each of the three
inputs. The step response characteristics are very similar
for all three temperatures. The response of Sys(G, Ĉo)
(solid line) displayed no overshoot and fast rise time
(less than 1 sec.) in the absence of actuator saturation.
Temperature uniformity on the wafer surface is also
maintained. The responses for Sys(G, Ĉa) are slower
and have 22% overshoot. Step responses of Sys(G, Ĉo)
and Sys(G, Ĉa) when the integrators are turned off due
to actuator saturation are shown in Fig. 6. Saturation
nonlinearities included in the control loop saturate at
±0.3. The step responses of both systems are slowed
down because of the actuator saturations, with Sys(G, Ĉo)
displaying faster response. Although integral-action is
not available due to saturation, the steady-state errors are
negligibly small for both systems. Another anti-windup
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Fig. 5. Step responses of Sys(G, Ĉo) and Sys(G, Ĉa).
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technique limits the integral value when saturation occurs.
The step responses of the two systems are in Fig. 7; the
anti-windup gains (Kaw) of integrator limiting feedback
loops for Sys(G, Ĉo) and Sys(G, Ĉa) are selected as 0.18
and 1.2, respectively. Slightly faster responses are obtained
compared to those in Fig. 6, with zero steady-state errors.
In the system Sys(G, Ĉo), where Ĉ

o
= Co

g + D̃−1
c Cpi ,

the entire PI block Cpi can be turned off when the system
has input saturation. Since Co

g designed to stabilize G is
still active when Cpi is set to zero, the closed-loop system
is still stable. The step response of Sys(G,Co

g ) under
actuator saturation is in Fig. 8. The response without the PI
block is reasonably fast and the steady-state error is small,
although it is not zero due to the absence of integral-action.
These simulation results indicate that Sys(G, Ĉo) generally
has better step response than Sys(G,Ca) in the absence
of actuator saturation. The systems displayed very similar
characteristics under actuator saturation: Responses for
both systems slowed down and temperature uniformity on
wafer surface was not maintained; the third channel shows
approximately 2 seconds more delay than the other two.

REFERENCES
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Fig. 6. Step responses of Sys(G, Ĉo), Sys(G, Ĉa) without integrators.
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integrators.
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