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Abstract.

A recent result of [1] on simultaneous stabilization of a family of plants is re-derived with
some major simplifications. The result is that, under mild conditions, a finite number of LTI
plants having unstable zeros of fixed multiplicities only at the origin and/or at infinity admit a

common stabilizing controller.

1.Introduction

Although a solution to the problem of simultaneous stabilization of a finite number of LTI plants
is highly desirable in algebraic control [2] and in robust control [3] alike, there are a number of

strong negative results [4],[5],[6] on the topic and only a few positive ones [71.[8L.I9).110],[1].

In [1], any family of plants having unstable zeros of fixed multiplicities only at the origin
and/or at infinity has been shown to admit a single stabilizing controller provided the high (and
the low) frequency gains of the plants are “linked” by a positive definite matrix. Unlike similar
results in the literature, [1] contains an explicit construction of a common controller together
with a description of the set of all common controllers. Such a family is not obviously
stabilizable by high-gain since its plants have unstable zeros. For instance, the set of all auto-

regressive (AR) transfer matrices of order n:
B = {Q,.(s)‘l d=1.3,00)=20,5, Q,=1,0;5 are real matrices}
=0

is an admissible family. The family of “all-pole filters of a fixed order” may hence be stabilized

by a single controller by the result of [1].
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The purpose of this paper is to provide an alternative derivation of the main result of [1]. The
derivation is based on a small-gain lemma of [11] and a “separation lemma”. The latter lemma
may be of some independent interest. It splits the problem of construction of a stabilizing
controller for a family of plants, each plant having a fixed and a varying numerator, into two
easier sub-problems of constructing two common controllers for the fixed-numerator-plants and
varying-numerator-plant, separately. The lemma of [11], on the other hand, streamlines the
construction in [1] at the expense of using much more conservative controller pole and/or zero
Jocations.

In other words, the small gains used in this paper are “smaller” that the gains used in {1} and,
the large gains larger.

In order to make the main steps of the derivation as clear as possible, (i) we give the result
under a more restrictive cvondition than that of [1], namely, we assume that high (and the low)
frequency gains of the plants are all equal and (ii) we do not delve into the characterization of all

controllers. Such extensions can be incorporated, [12].

2.Main Results

Let a(s),f(s) be two Hurwitz stable monic polynomials of degrees w and m, respectively.

Let

m

§

B(s)

: 1
n(s) = —C—ZG, ny(s) =

be two fixed elements of S denoting the set of proper, stable, rational functions of s with real
coefficients. Let D/(s) for i =1,...,v be arbitrary nonsingular matrices over S. Consider that

families of plants

F={D,(s) " m(s):i = 1,00}
F, = {Di(s)"nz(s) = 1,...,v},
F, = {D,.(s)“nl(s)nz(s) = 1,...,v},

where v > 1. Let us denote D,(0) :=lim, ,_ D,(s). Thus, D,(s) is biproper if and only if D,(c0)

is nonsingular. We assume that the denominator matrices in F; are all biproper and the denomi-
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nator matrices in /, are nonsingular at s = 0,i.e.,D,(0) is nonsingular for all 7 =1,...,v. In F,

the denominator matrices are assumed to be nonsingular at s =0 if m > 1 and as s — oo if
w>1. These assumptions ensure that the member plants are in coprime fractional
representations over S.

Each member plant in ¥, has w zeros at infinity and no other unstable zeros. Each plant in
F, has m zeros at s =0 and no other unstable zeros. In both families, the plants can have

varying (with i) stable zeros and varying stable as well as unstable poles. A member of the

family F,, on the other hand, may zeros both at the origin and/or at infinity. A controller is said

to stabilize a family if it stabilizes every plant in that family. In Proposition 1-3 below, we
construct a stabilizing controller for each family.

The following lemma is a result by Smith and Sondergeld stated in [11] for scalar case and
for stable controllers. The extension given below is straightforward.

Lemma 1. If a strictly transfer matrix G(s) is stabilized by a controller transfer matrix G,_(s),
then for any ¢ >1, there exists a small enough &, >0, possibly depending on g, such that
(&5 +1)"G(s) is also stabilized by G_(s) forall £ € (0,5}
Proof. Let G = D'N be a left coprime representation of G over S, where N is strictly proper
as G is. Let Z_ = N_D,' be a right coprime representation of G, over §. Since G is stabilized
by G,, U == DD, + NN_ is unimodular over S . Let

s=1uw)|,
By Lemma 19 of [2], any matrix ¥ over S that satisfies [/'(s)-U(s)| <U|U(s)l|, is
unimodular, it is hence enough to show that there exists £ > 0 for which

“[(gs $ 17 = 1]N(S)M,(s)”m &5 . (1)
By strict properness of H = NN, there exists w, for which sup . o(H(jw)) < —g where
o'(H (jw)) is the largest singular value of H(jw). It follows that, for any finite &,

sup o|(gw + 1) ~1JH(w)) <5 . )

Ww2w,

Le |
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On the other hand, in the interval [0, WO], we have that max welo,w, ]

(gw+1)7 - ll < kwle for some
k that depends on ¢. Let p:= maxwe[(,,wo]a(h’ (jw)) so that for every choice of & less that
o/ pkwy , it holds that

sup &((gw+1) —1|H(w)< 5. 3)

we[(),wo}

By (2) and (3), the norm inequality (1) follows.

Proposition 1. If

D,(0) = D,(0), Vi=2,...,v, 4
then a controller C(s) stabilizing the family F exists. If w>1, then one such controller is
given by

. as)
Ci(5) = Dy(o0) 5

for some small enough ¢ > 0.
Proof. First observe that for each i =1,...,v, the transfer matrix D,.(s)”l[Dl (0)— Di(S)] is strictly
proper, it is a left coprime representation over S, and it is stabilized by the controller G, (s)=1.

By Lemma 1, there exists & > 0 such that each

U,(s) = D(s) + —‘T); [D,() - D,(s)]

(63-!—

is unimodular over S for all ¢ (0, 5]. Let &, := min, {g } It follows that for all ¢ € (0,8],

als)
(&s +1)""

U,(s)= D, (s)(l - (;]:FJ + n,(8)D, (o)

-1
are all unimodular for i=1....,v. The controller C(s)= {D, () (—a%}[] — (—l-l)—w} hence
s+l | &S+

stabilizes every plant in the family F.

Lemma 2. Let U(s)be left (right) unimodular over S. Then, [7(5) =U(s"") is also left (right)

unimodular over S.




b3

Biilent A. Ozgiiler and Nazh A. Giindes: Some Positive Results on Simultaneous Stabilization

Proof. A matrix U(s) over S is and if all its poles are in the open left half complex plane,

U(o) has full row rank, i.e., U(s) is proper, and U(4) has full row rank for all A in the
closed and extended right half plane. Since U(0) := U(e0), U(0) = U(), and since for every

finite and nonzero complex number A, we have Re 1 >0 if and only if Re ™' > 0,the result

follows.

The following is a dual version of Lemma I in which zeros at infinity are replaced by zeros at the

origin.

Lemma 3. Let G(s) be a proper rational matrix such that G(s™") is strictly proper. If G(s) is

stabilized by a controller rational matrix G _(s) such that G, (s™") is proper, then for any ¢ >1.
q

there exists a small enough &,, possibly depending on q, such that (—S—);G(s) is also
s+&

stabilized by G, forall £ € (0,50]

Proof. Let G(s"‘): ﬁ(s)"]\A/(s) be a left coprime representation over S. Note that N(s) is
strictly proper and la(s) is biproper. Let D(s) = D(s™) and N(s)= N(s™). Then,
G(s)= D(s)'N(s), where (D(s),N(s)) is left coprime over S by Lemma 2. Let
G.(s8)= NC(S)DC(S)_] be a right coprime representation. Since, G, stabilizes G, we have that

DD.+NN_:=U is unimodular over S. Substituting s for s, we obtain

D(s) De(s) + N(s)Ne(5) = U(s) , where De(s):= D.(s™ ). Ne(s) == N.(s"), and U(s):=U(s™).

Note that N.(s)D:(s)” = G.(s™') is proper. Also, by Lemma 2, ZA](S) is unimodular over S. By
Lemma 1 given any g1, there exists £>0 such that

D$)YD(s)+(es+1)77 N(s)Nc(s):IA/(s) is unimodular. Substituting s~ for s, we obtain

q

D(s)D,(s)+ N(s)N_(s) Fj: )q~ =V(s),where V(s)= I>(s”') is unimodular by Lemma 2. The
s+¢&
result follows.

Proposition 2. If
D.(0) = D(0),Vi=2,...,v, (5)

then a controller C(s) stabilizing the family F, exists. If m >1, then one such controller is
given by
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o B(s)
()= Dy(0) (s+ I)l(s +&)" —s" ]’

for some small enough ¢ > 0.

Proof. First observe that for each i =1,...,v,G(s) := [(s + i)DI(s)}1 [D] ©)-(s+DHD (s)}is
such that G(s ") is strictly proper and the pair (s +1)D,(s), D,(0)— (s +1)D,(s) is left coprime
over S by nonsingularity of D,(0). The controller G, (s) = I clearly stabilizes G(s). By Lemma
3, there exists & > 0 such that each

m

U.(s) = (s +1)D,(s) + [D,(0) = (s + DD,()]

(s+&)"

is unimodular over S for all ¢ € (0,&,]. It follows that, with &, := min, {¢,}, forall £ € (0,¢,],

(s + l)ks +e) - Sm]+ n,(s)D,(0) _BE)

U= DAY= e

are all unimodular for i=1...,v. The controller

A(s) [+ Dlis +2)" — s n‘

C(9) = Di(0) (s+&)"| (s +&)" 1

hence stabilizes every plant in the family 7.

Note that the family F; = {D,. () ' n(s)m,(s):i= ],...,v} is related to F; and F, in an obvious
way. It would simplify things a great deal if we could employ the constructions of Propositions 1
and 2 in order to find a stabilizing controller for F;. The following “separation lemma” provides

a mechanism for doing exactly this. Note that the stated result, in which one numerator may also

vary and be non-scalar, is a bit more than what is needed.

Lemma 4. Given a matrix M over S and a family of plants {D;‘N L iJ= 1,...,v} suppose there

exist matrices N ., D

cl? c

, over S such that DD, +N N, =U, are unimodular matrices for

j =1,...,v. Also suppose there exist matrices N_,,D,, over S such that U;ID D, +MN,, are

unimodular matrices for j =1...,v. If M and N, commute and D, ,MN_, + D, is nonsingular,
then a stabilizing (possibly non-proper) controller for the family of plants of

{D]'N M :j =1,...,v} is given by N, N,(D,MN,, +D,)".

i
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Proof. Let V, = U;'D,D,, + MN,,. Then, (D,D,, + N N JMN,, = U MN,, =U (v, ~U;'D,D,,)

e

so that D (D,MN,+D,)+NN,MN, =UJV,. Since N,M=MN,, we finally have

D (D,MN,, + D, 2)+N MN_N,, = UV, proving the claim.

Observe in Lemma 4 that if MN,, is strictly proper, then properness of the controllers
stabilizing the “separated families™ is enough for the properness of the resulting controller for
the “united family”.
Proposition 3. If

D,(x0) = D,(x), D,(0)=D,(0), Vi=2,...,v, (6)
then a controller C(s) stabilizing the family F, exists. If w>1 and m >1, then one such
controller is given by

Cy(s)y =0 s)ﬂ(s){s [(&s +1)" —I]D (o) [(v ) kac +1) DI(O)”}1

for some small enough ¢ > 0.

Proof. Let

a(s) (+1) -1 ;

(es+1) (s +1)"

so that, by Proposition 1, N, D.' is a stabilizing controller for the family F;, for all

N, (8)= D)=, Dy(8)=

¢ sufficiently small, achieving unimodular U, :=D D, +nN, for i=1,.,v. Consider the
family of plants

F, = {D,(s)" U (s)my(s) i = 1.}
Note that D,(s) = U,(s)"' D,(s) is such that

D,(0) =U,(0)" D,(0) = [ (O)N,, (O] ' D,(0) = D,(e0) ' D,(0)
is independent of ;. Following the construction in Proposition 2, where (s+1)D (s) is replaced
by B,(s), for all £ sufficiently small,

(s &) —5"
(s+a)’"

Bs) ’
( g)m

N, (s)= D,(0)" D,(0)--~ D, (s)=

- - Y €
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give a (non-proper) stabilizing controller N, D, for the family F,. By Proposition 3,

BN O
Na® =P Greap

_gs+s)’"~sm1 (&s—'rl)w—l " Decest D0
Do) =" T e Gray 0 PO

is such that C,(s) = N_,(s)D,;(s)" is proper stabilizing controller for F;.

3. Discussion

All there common controllers of PropositionsI-3 are high-gain controllers since for each
finite s

lim C,(s) —> o0, =1,2.3.

Consider the case D()=17 and D,(0)=17 in which the controllers have the simple

expressions
a(s)
Cif) =it I,
=Gy
O N
C2As) (s + g)"'[(s g &) = s”‘J ’
C,(s) = ANPE . L

&% l(gs +1)" - 1]+1(s +&) ~5" K&‘ +1)°
The controllers are all diagonal with the same diagonal entries. Moreover, (i) for any £ >0,

C,(s) is minimum-phase and stable except for a single pole at the origin. Its left hand plane set

of poles is

1 e
—[—1+e @ J:kzl,...,a)~1 :
&

(ii) For any £ > 0,C,(s) is stable and minimum phase, i.e.., it is a unit of S. The set of poles of

C,(s) , other than one pole at -1, is

£ w R0,
{——[1+e "’]:kzl,...,ar—l )
2

(iii) For sufficiently small & > 0 C;(s) is also and minimum phase, [12].

Some further results are derived at no cost. Consider a new family consising of the inverse

plants of F;:
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= {n,(s) ' Dy(s) U () i = 1.}
Member plants have all m fixed poles at the origin, no other unstable poles, and varying

numerator matrices. Since the stabilizing controller C,(s) of F, is biproper, its inverse

A ") (s+1)[(s+£)m —s""
C = D (0
,(5)=D,(0) 5

is a stabilizing controller for the family I:"‘2 . This is of course a low-gain controller.

The restrictive assumptions of Propositionsl-3 on the frequency gains at infinity and at zero,
ie., D(o)D, (o) =1, D(0)D(0)" =1, are not necessary. (See the discussion in [3] on
necessary conditions.) While these can be relaxed to

A, = D(0)D,(0)”', B, :=D,(0)D,(0)”', Vi=2,.,v
are such that - 4 — B are Hurwitz stable matrices, [12], any further relaxation seems to be

difficuit.
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