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Abstract

It is shown that a class of linear, time-invariant, multi-input multi-output plants can be simultaneously stabilized. This class of
plants all have the same number of zeros at in"nity, at zero, or both, but no other zeros in the unstable region. If they have zeros at
zero or in"nity, then their gain matrices at zero and in"nity also satisfy a positive-de"niteness condition. There is no restriction on the
poles of the plants considered in this class. An explicit design procedure is proposed to achieve simultaneously stabilizing controllers.
All simultaneously stabilizing controllers for this class of plants are also characterized in terms of a parameter matrix that satis"es
a unimodularity condition. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Simultaneous stabilization of a set of linear time-
invariant (LTI), single-input single-output (SISO) or
multi-input multi-output (MIMO) plants is a challenging
control problem. Controller design for a number of dif-
ferent plants is encountered in many applications, such as
when considering a class of systems generated by a given
nominal plant in di!erent modes of operation, or when
the actual plant is only known to belong to a "nite set of
plants, or when partial failures of sensors or actuators
change the original plant description so drastically that
the resulting systems cannot be described as small per-
turbations of the nominal plant.
In the case of two plants, the well-known parametriz-

ation of all stabilizing controllers leads to explicit
necessary and su$cient conditions for existence of simul-
taneously stabilizing controllers (Vidyasagar, 1985).
These simple conditions require that a pseudo-plant as-

sociated with the two given plants has the parity-interlac-
ing-property (PIP), i.e., it has an even number of poles
between consecutive pairs of real-axis zeros in the region
of instability. However, there are no known necessary
and su$cient conditions to check for existence of simul-
taneously stabilizing controllers for a completely general
class of three or more plants. Although it is necessary for
the plants to satisfy the PIP pairwise, this is not su$cient
in the case of three or more plants. In fact, conditions
restricted to checking the real-axis pole/zero locations
are not su$cient to guarantee that a single controller
can stabilize all of the plants simultaneously (Blondel,
Gevers, Mortini, & Rupp, 1994) and the simultaneous
stabilization problem for three or more plants is in gen-
eral rationally undecidable (Blondel, 1994). Since neces-
sary and su$cient conditions applicable to a completely
general class of three or more di!erent plants are not
available, it is important to identify classes for which
simultaneous stabilization is possible to achieve. Identi-
fying such classes has proven to be a very di$cult prob-
lem even in the SISO case. Some important su$cient
conditions for simultaneous stabilizability have been
considered in the literature. For example, a special class
of uncertain SISO plants was considered in Barmish
and Wei (1986), where it was shown that a class of
SISO minimum-phase, strictly proper plants that have
the same high-frequency gain sign are simultaneously
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stabilizable by a stable and strictly proper controller.
This result was extended to discrete-time systems in Wei
and Barmish (1988), and modi"ed for MIMO systems in
Wei (1993). Various special cases of su$cient conditions
presented in the literature for the simultaneous stabiliz-
ation of SISO plants were generalized in Bredemann
(1995) (see also the references therein), where the simulta-
neous stabilizability conditions for two plants were for-
mulated in terms of the di!erence of the plants, and
conditions for simultaneous stabilizability were derived
for SISO plants with zeros either at zero or at in"nity
(but not both). A su$cient condition for strong simulta-
neous stabilization of SISO systems that have the same
relative degree and the same unstable zeros was present-
ed in Abdallah, Dorato, and Bredemann (1997). It was
shown in GuK ndes7 and Kabuli (1999) that a class of
MIMO plants that have no other unstable poles except
at zero are simultaneously stabilizable and that the con-
troller can be chosen stable and strictly proper. While
conditions guaranteeing simultaneous stabilizability
have been studied extensively, most of the previous re-
sults are applicable to SISO systems. Furthermore, most
of these results derive existence conditions and do not
tackle explicit controller design, which is a di$cult prob-
lem even in the case of two plants.
In this paper, we consider the class P"

�P
�
,P

�
,2,P

�
� of n#1 LTI, MIMO plants that have

no other zeros in the region of instability except at
in"nity and/or zero. These plants all have w blocking-
zeros at in"nity and m blocking-zeros at zero, where
w and m are non-negative integers. In addition, when
wO0, or mO0, the high frequency gains or the low
frequency gains of the plants in this class are related by
positive-de"nite matrices (see Assumptions 2.1 for a com-
plete description of the class). There are no restrictions on
the poles of the plants considered here. In the special case
of SISO plants (�"1), Assumption 2.1(iii) is equivalent
to (P

�
/P

�
)(R)'0; Assumption 2.1(iv) is equivalent to

(P
�
/P

�
)(0)'0, for all j3�0, 1,2, n�. Note that more re-

stricted classes of plants with zeros either at zero or at
in"nity (but not both) were considered in previous litera-
ture and controller design for these classes has proven to
be a challenging task even in the SISO case. Although the
class considered here includes "nitely many MIMO
plants as `centersa, and proposes simultaneously stabiliz-
ing controller design that guarantees stabilization of
these centers, `smalla perturbations around these centers
are also stabilized using the same controller as in stan-
dard robustness results. However, the "nitely many
plants in the class are not related to one another by any
small-gain restrictions.
The main result of this paper (Proposition 2.3) gives

a simple design procedure of constructing a simulta-
neously stabilizing controllerC

�
, called the nominal con-

troller. This nominal controller C
�
is biproper; in fact,

it has a stable inverse. All simultaneously stabilizing

controllers are obtained from this nominal controller in
terms of a stable controller-parameter that satis"es an
additional unimodularity condition. Following the main
result, we apply the design method of Proposition 2.3 to
a class of MIMO plants in Example 2.5. We provide
a proof of Proposition 2.3 in the appendix.
Due to the algebraic framework described in the fol-

lowing notation, the results apply to continuous-time as
well as discrete-time systems. A continuous-time setting
was assumed throughout for simplicity; in the discrete-
time case, all evaluations and discussions involving poles
and zeros at s"0 should be interpreted at z"1.

Notation. Let U be the extended closed right-half-plane
(for continuous-time systems) or the complement of the
open unit-disk (for discrete-time systems). The sets of real
numbers, rational functions (with real coe$cients),
proper and strictly proper rational functions, proper ra-
tional functions that have no poles in the region of
instability U are denoted by �,R,R

�
,R

�
,R. The set of

matrices whose entries are inR is denoted byM(R); M is
called stable i! M3M(R); a square M3M(R) is called
unimodular i! M��3M(R). For M3M(R), the norm
�� ) �� is de"ned as ��M��"sup

��/U
�� (M(s)); �� denotes the

maximum singular value and �U denotes the boundary
of U. The product notation used with matrices
M

�
3M(R) assumes an ascending order in the index, i.e.,

��
���

M
�
"M

�
M

�
2M

�
.

2. Main results

Consider the standard LTI, MIMO, unity-feedback
system S(P

�
,C), where P

�
: e

�
Cy, C : eCy

�
, e"r!y,

e
�
"y

�
#u; P

�
3R���

�
and C3R���

�
represent the trans-

fer-functions of the plant and the controller, respectively.
It is assumed that P

�
and C have no hidden modes

corresponding to eigenvalues in the region of instabilityU.

2.1. Assumptions

The plant P
�
3R���

�
belongs to the class

P :"�P
�
,P

�
,2,P

�
�. For j3�0, 1,2, n�, P

�
3P satis"es

the following assumptions: (i) (normal) rankP
�
"�;

(ii) let w and m be non-negative integers; P
�
has w

blocking-zeros at R and m blocking-zeros at zero
(i.e., s	��P

�
(R)"0, s	P

�
(R)O0, s������P

�
(0)"0,

s��P
�
(0)O0) but it has no other transmission-zeros in

U; (iii) when wO0, (s	P
�
)(R)�

�
"(s	P

�
)(R), for some

symmetric positive-de"nite matrix �
�
3����; (iv) when

mO0, (s��P
�
)(0)�

�
"(s��P

�
)(0), for some symmetric

positive-de"nite matrix �
�
3����.

In the special case of SISO plants (�"1), As-
sumption 2.1(iii) is equivalent to (P

�
/P

�
)(R)'0;

Assumption 2.1(iv) is equivalent to (P
�
/P

�
)(0)'0, for

all j3�0, 1,2, n�.
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By Assumption 2.1, each P
�
3R���

�
in the class P has

a left-coprime-factorization (LCF) P
�
"D��

�
N given by

P
�
"D��

�
N":D��

�

s�

�	
���
(s#	

�
)��

���
(s#


�
)
I, (1)

where D
�
3R���, detD

�
(R)O0, !	

�
3��U for i"

1,2,w, !

�
3��U for i"1,2,m (i.e., for continuous-

time systems, 	
�
'0, 


�
'0). Note that (1) the numerator

(matrix) N is the same for every plant P
�
3P since the

plants P
�
all have the same blocking-zeros and no other

transmission-zeros in U; (2) P
�
"ND��

�
is a right-cop-

rime-factorization (RCF) sinceN commutes withD��
�
; (3)

if mO0, then detD
�
(0)O0, i.e., since P

�
has blocking-

zeros at s"0, it does not have any poles at s"0.
Furthermore, by (1), the assumption (s	P

�
)(R)�

�
"

(s	P
�
)(R) is equivalent to D

�
(R)D��

�
(R)"�

�
, and the

assumption (s��P
�
)(0)�

�
"(s��P

�
)(0) is equivalent to

D
�
(0)D��

�
(0)"�

�
.

2.2. Dexnitions

The systemS(P
�
,C) is said to be stable i! the transfer-

function from (r, u) to (y, y
�
) is stable. The controller C is

said to be a stabilizing controller for the plant P
�
(or

C stabilizes P
�
) i! C3M(R

�
) and the system S(P

�
,C) is

stable; C is said to simultaneously stabilize all P
�
3P i!

the system S(P
�
,C) is stable for all P

�
3P.

Let P"DI ��NI be any LCF of P3M(R
�
)

(DI , NI 3M(R), detDI (R)O0). It is well-known that the
controller C3M(R

�
) stabilizes the plant P3M(R

�
) if

and only if (DI D


#NI N



) is unimodular for any

RCF C"N


D��



(with D



, N



3M(R), detD



(R)O0)

(Vidyasagar, 1985). In the problem studied here, for the
particular RCF P

�
"D��

�
N given in (1), the controller

C"N


D��



simultaneously stabilizes all P

�
3P if and

only if

D
�
D



#NN



is unimodular (2)

for all j3�0, 1,2, n�. Let one of the plants
P
�
"D��

�
N3P be called the nominal plant. For the

left-coprime pair (D
�
,N), there exist <I ,;I 3M(R) such

that D
�
<I #N;I "I. All stabilizing controllers for

P
�
are C"(;I #D

�
Q)(<I !NQ)��, where Q3M(R) is

such that det (<I !NQ)(R)O0 (this condition guaran-
tees that C is proper and it holds for all Q3M(R) when
wO0, i.e., P

�
3M(R

�
)). In the case of two plants, i.e.,

P"�P
�
,P

�
�, by (2), there exists a controller that simul-

taneously stabilizes P
�
and P

�
if and only if there exists

a Q3M(R) such that D
�
(<I !NQ)#N(;I #D

�
Q)"

I#(D
�
!D

�
)<I #(D

�
!D

�
)NQ is unimodular. From

the parity-interlacing-property (PIP), such Q3M(R)
exists if and only if det[I#(D

�
!D

�
)<I (s

�
)] has the

same sign at all blocking-zeros s
�
3U of (D

�
!D

�
)N.

In the case of three or more plants, i.e., P"

�P
�
,P

�
,2,P

�
�, n'1, PIP between any pairs of plants

is a necessary condition for existence of controllers that
simultaneously stabilize all P

�
3P; however, it is not

su$cient. We now verify that P
�
and P

�
for any P

�
3P

actually satisfy the PIP under Assumptions 2.1:
For s

�
3U such that (D

�
!D

�
)(s

�
)"0, we have

det[I#(D
�
!D

�
)<I (s

�
)]"1'0. For s

�
3U such that

N(s
�
)"0 (i.e., s

�
"R or s

�
"0), we have (D

�
<I #

N;I )(s
�
)"I"D

�
(s
�
)<I (s

�
) implies det[I#(D

�
!D

�
)<I (s

�
)]

"det(D
�
<I )(s

�
)"detD

�
(s
�
)D��

�
(s
�
). By Assumption 2.1,

since �
�
and �

�
are positive-de"nite, detD

�
(R)D��

�
(R)

"det�
�
'0, detD

�
(0)D��

�
(0)"det�

�
'0, and hence,

PIP holds.
Checking that the PIP holds pairwise for the plants

P
�
3P only con"rms that the necessary condition is satis-

"ed. It does not guarantee existence of simultaneously
stabilizing controllers. Furthermore, this check is still
a long way from explicit construction of simultaneously
stabilizing controllers. In Proposition 2.3, an explicit
design procedure is given that achieves a simultaneously
stabilizing controller for the classP. In addition to de"n-
ing one such controller explicitly, all controllers can also
be characterized based on the nominal plant P

�
. The

selection of the nominal plant P
�
3P is completely arbit-

rary. Four possible cases are considered in Proposition
2.3: (a) P

�
has blocking-zeros at in"nity and zero

(w'0, m'0), (b) P
�
has blocking-zeros only at in"nity

(w'0, m"0), (c) P
�
has blocking-zeros only at zero

(w"0, m'0), (d) P
�
has no blocking-zeros at in"nity

and at zero (w"0, m"0). Since these plants have no
other transmission-zeros in the region of instability U,
the last case corresponds to the class of minimum-phase
plants. Existence of simultaneously stabilizing controllers
for case (d) is rather obvious and is included here only for
completeness.

2.3. Proposition

Let P
�
3R���

�
, P

�
3P satisfy Assumptions 2.1,

j3�0, 1,2, n�, i.e., P
�
"D��

�
N as in (1).

(a) If w'0, m'0, let k
�
3� satisfy (3); if w'1,

let k
�
3� satisfy (4); if w'2, let k

�
3�, v"3,2,w,

satisfy (5):

k
�
' max

����	2	��
��s(�

�
!D

�
D��

�
(R))��, (3)

k
�
' max

����	2	��
��s�I#D

�
D��

�
(R)

s

k
�
�

��

��, (4)

k
�
' max

����	2	��
��s�I#D

�
D��

�
(R)

���
�
���

s�
�

�
l��

1

kl�
��

��I#D
�
D��

�
(R)

���
�
���

s�
�

�
l��

1

kl���. (5)
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De"ne K3R��� as

K :"D��
�
(R)

	
�
���

s�
�

�
l��

1

kl

. (6)

Let f
�
3�, f

�
'0 satisfy (7); if m'1, let f

�
3�, f

�
'0

satisfy (8); if m'2, let f
�
3�, f

�
'0, v"3,2,m,

satisfy (9):

f
�
( min

����	2	��
��s�����

	
�
���

	
�

k
�

!(I#D
�
K)��D

�
D��

�
(0)

�
	
�
���

(s#	
�
)

k
�
���

��
, (7)

f
�
( min

����	2	��
��s���I#D

�
(K#D��

�
(0)s�� f

�

�
	
�
���

(s#	
�
)

k
�
��

��
(I#D

�
K)��

��
, (8)

f
�
( min

����	2	��
��s���I#D

��K#D��
�
(0)

���
�
���

1

s�
�

�
l��

fl

�
	
�
���

(s#	
�
)

k
�
��

��

�I#D
��K#D��

�
(0)

���
�
���

1

s�

�
�

�
l��

fl
	
�
���

(s#	
�
)

k
�
����

��
. (9)

A controller C
�
3R���

�
that simultaneously stabilizes all

P
�
3P is

C
�
"�

s�

�	
���
(s#	

�
)��

���
(s#


�
)
K

#

s�

��
���
(s#


�
)
D��

�
(0)

�
�
���

1

s�
�

�
l��

fl
	
�
���

1

k
�
�

��
. (10)

Furthermore, all simultaneously stabilizing controllers
C are

C"�C��
�

!

s�

�	
���
(s#	

�
)��

���
(s#


�
)
Q�

��
(I#QD

�
),

(11)

for j3�1,2, n�, Q3R��� is such that G
�
is unimodular:

G
�
:"I#(D

�
!D

�
)

��I#C��
�

D
�

�	
���
(s#	

�
)��

���
(s#


�
)

s� �
��

Q.

(12)

(b) If w'0, m"0, let k
�
, v"1,2,w, satisfy (3), (4),

(5). A controller C
�
3R���

�
that simultaneously stabilizes

all P
�
3P is

C
�
"��

	
�
���

(s#	
�
)�

��
K�

��

"D
�
(R)�

	
�
���

s�
�

�
l��

1

kl�
�� 	

�
���

(s#	
�
). (13)

Furthermore, all simultaneously stabilizing controllers
C are

C"�C��
�

!

1

	
�
���

(s#	
�
)

Q�
��
(I#QD

�
), (14)

for j3�1,2, n�, Q3R��� is such that GI
�
is unimodular:

GI
�
:"I#(D

�
!D

�
)�I#C��

�
D

�

	
�
���

(s#	
�
)�

��
Q. (15)

(c) If w"0, m'0, choose X3R��� such that
detX(R)O0. Let f

�
3�, f

�
'0 satisfy (16); if m'1, let

f
�
3�, f

�
'0 satisfy (17); if m'2, let f

�
3�, f

�
'0,

v"3,2,m, satisfy (18):

f
�
( min

����	2	��
�� s��[�

�
!D

�
D��

�
(0)]!D

�
D��

�
(0)X����,

(16)

f
�
( min

����	2	��
��s��[I#D

�
D��

�
(0)(I#sX)s�� f

�
]������,

(17)

f
�
( min

����	2	��
��s���I#D

�
D��

�
(0)(I#sX)

���
�
���

1

s�
�

�
l��

fl�
��

��I#D
�
D��

�
(0)(I#sX)

���
�
���

1

s�
�

�
l��

fl���
��
.

(18)

A controller C
�
3R���

�
that simultaneously stabilizes all

P
�
3P is

C
�
"�

s�

��
���
(s#


�
)
D��

�
(0)(I#sX)

�
�
���

1

s�
�

�
l��

fl�
��
.

(19)

Furthermore, all simultaneously stabilizing controllers
C are

C"�C��
�

!

s�

��
���
(s#


�
)
Q�

��
(I#QD

�
), (20)

Q3R��� is such that det( f
�
D��

�
(0)X!Q)(R)O0 and

for j3�1,2, n�, GK
�
is unimodular:

GK
�
:"I#(D

�
!D

�
)�I#C��

�
D

�

��
���
(s#


�
)

s� �
��

Q.

(21)

(d) If m"0 and w"0, let A3R��� be such that
��A��(min

����	2	��
��D

�
���� and detA(R)O0. A control-

ler C
�
3R���

�
that simultaneously stabilizes all P

�
3P is

C
�
"A��. Furthermore, all simultaneously stabilizing

controllers are C"(A!Q)��(I#QD
�
); Q3R��� satis-

"es det(A!Q)(R)O0 and I#(D
�
!D

�
)(I#AD

�
)��Q

is unimodular for j3�1,2, n�.
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2.4. Comments

(i) In Proposition 2.3, the choices of !	
�
3��U for

i"1,2,w, and !

�
3��U for i"1,2,m, are com-

pletely arbitrary (in the continuous-time case, 	
�
'0 and



�
'0). However, these choices will determine some of

the zeros of the designed controllers:When w'0, m'0,
C

�
has zeros at !	

�
and !


�
; when w'0, m"0, C

�
has zeros at !	

�
; when w"0, m'0, C

�
has zeros

at !

�
.

(ii) In all of the four cases considered in Proposition
2.3, the explicitly de"ned nominal controller C

�
has

a stable inverse although C
�
itself is not necessarily

stable. The nominal controller is biproper since C
�
is

proper and C��
�
is stable. In case (d), the controller C

�
is stable if and only if A3M(R) satisfying
��A��(min

�
��D

�
���� is chosen unimodular. In case (b),

where the plants have w'0 blocking-zeros at in"nity
but no zeros at zero, C

�
has a pole at s"0 (and possibly

other U-poles depending on the constants k
�
,2, k

	
).

In particular, when w"1,C
�
"k

�
D

�
(R)#

(	
�
k
�
/s)D

�
(R) is in the form of a proportional-plus-

integral controller. This design with a pole at s"0 in
case (b) provides integral-action in the closed-loop
system. In case (c), where the plants have m'0
blocking-zeros at zero but no zeros at in"nity, C

�
may

have U-poles depending on the choice of X3M(R) and
the constants f

�
,2, f

�
. When w"1, if X is chosen

constant nonsingular, where the eigenvalues of X��

have positive real parts, then the corresponding
C

�
"f��

�
(s#


�
)(sI#X��)��X��D

�
(0) is stable.

(iii) The choice of Q"0 obviously satis"es the
unimodularity conditions on (12), (15), (21) and
I#(D

�
!D

�
)(I#AD

�
)��Q in Proposition 2.3(a)}(d).

With Q"0, the controller C becomes the nominal con-
troller C

�
. Other simple choices satisfying these unim-

odularity conditions include choices for Q3M(R) based
on the small-gain approach as follows: A su$cient condi-
tion for G

�
in (12), GI

�
in (15), GK

�
in (15) unimodular is if

Q3M(R) satis"es

��Q��(��(D�
!D

�
)

�I#C��
�

D
�

�	
���
(s#	

�
)��

���
(s#


�
)

s� �
��

��
��
,

or

��Q��(��(D�
!D

�
)�I#C��

�
D

�

	
�
���

(s#	
�
)�

��

��
��

or

��Q��(��(D�
!D

�
)�I#C��

�
D

�

��
���
(s#


�
)

s� �
��

��
��
,

respectively. A su$cient condition for I#(D
�
!D

�
)

(I#AD
�
)��Q unimodular is if Q3M(R) satis"es

��Q��(��(D
�
!D

�
)(I#AD

�
)������.

(iv) In Proposition 2.3(c), X3M(R) is chosen biproper
in order to guarantee that the designed nominal control-
ler C

�
in (19) is proper. The additional condition

det (f
�
D��

�
(0)X!Q)(R)O0 on Q3M(R) ensures that

the controllerC in (20) is proper. A su$cient condition to
satisfy this constraint is to choose Q3M(R) strictly
proper.

2.5. Example

Consider the class P"�P
�
,P

�
,P

�
H,P

�
F,FP

�
� of

"ve 2�2 plants:

P
�
"�

s
s�#64

!s�
(s�!1)(s!3)

s
(s!2)(s#10)

s
(s#1)(s!2) �,

H"�
(s#4)(s#16)

s�#16
s

(s#1)(s#4)

0
40(s!1)(s!3)
(40s!5)(s!6)�,

P
�
"�

13s
(s!2)(s!8)

!s(s#4)
(s�!4)(s!8)

s(17s#7)
((s#2)�#1)(s#1)

s(5s#16)
(s#1)(s!2)(s#5)�,

F"diag�
3(s!2)

s!3
,
3s#14

s#7 �.
For j3�0, 1,2,4�, each P

�
3P satis"es Assumptions 2.1,

with rankP
�
"2, w"1, m"1. The symmetric positive-

de"nite matrices �
�
"P��

�
(R)P

�
(R)3����, �

�
"

P��
�
(0)P

�
(0)3���� are:

�
�
"I,

�
�
"

1

41�
3 !2

!2 15 �,
�
�
"I, �



"

1

3
�

�
, �

�
"�



, �

�
"I,

�
�
"

1

36�
1 2

2 13�,
�

�
"

1

4
I, �



"

1

2
�

�
, �

�
"�



.

Choosing 	
�
"5, 


�
"10, write each P

�
in the form of

(1); then N"s/(s#5)(s#10). Since w"1, m"1, we
only need to compute the constants k

�
and f

�
satisfying (3)

and (7). Compute max
����	2	�� ��s(��

!D
�
D��

�
(R))��"

31.4075; then choose k
�
"70 satisfying (3). Compute

min
����	2	�� �� s��(�

�
5/70!(I#D

�
D��

�
(R)s/70)��D

�
D��

�
(0) (s#5)/70)����"0.374301; then choose f

�
"0.37
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satisfying (7). By (10), the nominal controller is

C
�
"�

C
��

C
��

C
��

C
��
�

"�
s�

k
�
(s#	

�
)(s#


�
)
D��

�
(R)#

f
�

k
�
(s#


�
)
D��

�
(0)�

��
,

where

C
��

"

70(s#5)(s#10)(s�!9.25s!46.25)

2s�!9.8859s
!52.1035s�!26.7823s!66.8457
,

C
��

"

70(s#5)(s#10)s�

2s�!9.8859s
!52.1035s�!26.7823s!66.8457
,

C
��

"

!70(s#5)(s#10)(s�!0.925s!4.625)

2s�!9.8859s
!52.1035s�!26.7823s!66.8457
,

C
��

"

70(s#5)(s#10)(s�#0.2891s#1.4453)

2s�!9.8859s
!52.1035s�!26.7823s!66.8457
.

Since C��
�

3M(R), an RCF of C
�
is C

�
"I(C��

�
)��.

Using (2), it can be shown that C
�
simultaneously stabil-

izes all P
�
3P since D

�
C��

�
#N":�

�
is unimodular for

j3�0, 1,2,4�. By (11), all simultaneously stabilizing con-
trollers are

C"

(s#5)(s#10)

s

��
s

70
D��

�
(R)#

0.37(s#5)

70s
D��

�
(0)!Q�

��
(I#QD

�
),

where Q3R��� satis"es G
�
.

G
�
"I#(D

�
!D

�
)

��I#�
s

70
D��

�
(R)#

0.37(s#5)

70s
D��

�
(0)�D��

��
Q

is unimodular, j3�1,2,4�.

3. Conclusions

We considered simultaneous stabilization of a class of
LTI, squareMIMO plants that all have the same number
of blocking-zeros at in"nity and/or at zero; these plants
have no other zeros in the region of instability, and
satisfy positive-de"niteness assumptions on the high fre-
quency and the low frequency gain matrices as described
in Assumptions 2.1. We proved that this class of plants
are simultaneously stabilizable and proposed an explicit
design method to "nd a nominal controller. We charac-
terized all simultaneously stabilizing controllers based on
this nominal controller by choosing a controller-param-
eter satisfying additional unimodularity conditions. The
design method was illustrated by an example of a class of

2�2 MIMO plants that all have one blocking-zero at
in"nity and one blocking-zero at zero. As these results
show, although necessary and su$cient conditions are
not available to check simultaneous stabilizability of
a completely general class of more than two plants, it
may be possible to identify classes of three or more plants
for which simultaneously stabilizing controllers exist and
to design controllers explicitly for such classes.

Appendix

Proof of Proposition 2.3. By assumption, P
�
"D��

�
N is

an RCF of P
�
, where

N :"
s�

�	
���
(s#	

�
)��

���
(s#


�
)
I.

Furthermore,D
�
(R)D��

�
(R)"�

�
, andD

�
(0)D��

�
(0)"�

�
.

(a) Choose any k
�
3� satisfying (3). De"ne

=
��
:"

k
�

(s#	
�
)
I#D

�
D��

�
(R)

s

(s#	
�
)

"(k
�
I#D

�
D��

�
(R)s)(s�

�
#k

�
I)��

(s�
�
#k

�
I)

(s#	
�
)

"[I!s(�
�
!D

�
D��

�
(R))(s�

�
#k

�
I)��]

(s�
�
#k

�
I)

(s#	
�
)
,

(22)

for j3�0,2, n�, =
��

3M(R) is unimodular since k
�

satis"es (3), 	
�
'0, �

�
is symmetric, positive de"nite

and D
�
(R)D��

�
(R)"�

�
implies s(�

�
!D

�
D��

�
(R))3

M(R). If w'1, choose any k
�
3� satisfying (4), i.e.,

for j3�0,2, n�, let k
�
'max

�
��s(I!=��

��
D

�
D��

�
(R)s/

(s#	
�
))�� (note that by (22), [I!=��

��
D

�
D��

�
(R)s/

(s#	
�
)]"=��

��
[=

��
!D

�
D��

�
(R)s/(s#	

�
)]"=��

��
k
�

/(s#	
�
)"[I#D

�
D��

�
(R)s/k

�
]��). De"ne

=
��
:"

k
�

(s#	
�
)
I#=��

��
D

�
D��

�
(R)

s

(s#	
�
)

s

(s#	
�
)

"�I!s(I!=��
��

D
�

D��
�
(R)

s

(s#	
�
)
)

1

(s#k
�
)�

�
(s#k

�
)

(s#	
�
)

(23)

for j3�0,2, n�, =
��

3M(R) is unimodular since
k
�
satis"es (4), 	

�
'0, and [=��

��
D

�
D��

�
(R)s(s#	

�
)��]

(R)"I implies s[I!=��
��

D
�
D��

�
(R)s(s#	

�
)��]3

M(R). If w'2, continue similarly for v"3,2,w with
k
�
satisfying (5), i.e., when v"w, for j3�0,2,n�, k

	
satis"es

k
	

'max
�
��s(I#D

�
D��

�
(R)�	��

���
s���l��

1/kl)��(I#D
�

D��
�
(R)�	��

���
s���l��

1/kl )��"max
�
��s(I!(�	��

���
=

��
)��

D
�
D��

�
(R)s	���	��

���
(s#	

�
)��)��"max

�
��=��

�	����
k
	��
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s(s#	
	��

)����. De"ne

=
	�
:"

k
	

(s#	
	
)
I#�

	��
�
���

=
���

��
D

�
D��

�
(R)s	

	
�
���

(s#	
�
)��

"�I!s�I!�
	��
�
���

=
���

��
D

�
D��

�
(R)s	��

	��
�
���

(s#	
�
)���(s#k

	
)���

(s#k
	
)

(s#	
	
)
, (24)

for j3�0,2, n�, =
	�

3M(R) is unimodular since
k
	

satis"es (5), 	
	

'0, and [(�	��
���
=

��
)��

D
�
D��

�
(R)s	���	��

���
(s#	

�
)��](R)"I implies s[I!

(�	��
���
=

��
)��D

�
D��

�
(R)s	���	��

���
(s#	

�
)��]3M(R).

Since =
��
, =

��
are unimodular, (=

��
=

��
)"

[k
�
k
�
I#D

�
D��

�
(R)(sk

�
#s�)](s#	

�
)��(s#	

�
)�� is

unimodular. Similarly,=
�
is unimodular for j3�0,2, n�:

=
�
:"

	
�
���

=
��

"(I#D
�
K)

	
�
���

k
�

(s#	
�
)
. (25)

For simplicity, de"ne 	 :"
	
�
���

	
�
/k

�
. If m'0, choose any

f
�
3� satisfying (7). De"ne

M
��
:"

s

(s#

�
)
I#=��

�
D

�
D��

�
(0)

f
�

(s#

�
)

"(sI#=��
�

D
�
D��

�
(0) f

�
)(sI#	 f

�
�

�
)��
(sI#	 f

�
�

�
)

(s#

�
)

"[I!s��(	�
�
!=��

�
D

�
D��

�
(0)) f

�
s(sI#	 f

�
�

�
)��]

(sI#	 f
�
�

�
)

(s#

�
)
, (26)

for j3�0,2, n�, M
��

3M(R) is unimodular since f
�
satis-

"es (7), 

�
'0, �

�
is symmetric, positive de"nite, and

D
�
(0)D��

�
(0)"�

�
implies s��(�

�
	!=��

�
D

�
D��

�
(0))3

M(R). If m'1, choose any f
�
3� satisfying (8), i.e., for

j3�0,2, n�, let f
�
(min

�
��s��[I!M��

��
=��

�
D

�
D��

�
(0) f

�
(s#


�
)��]��"min

�
��M��

��
(s#


�
)����. De"ne

M
��
:"

s

(s#

�
)
I#M��

��
=��

�
D

�
D��

�
(0)

f
�

(s#

�
)

f
�

(s#

�
)

"�I!s��(I!M��
��
=��

�
D

�
D��

�
(0) f

�
(s#


�
)��)

f
�

s

(s# f
�
)�
(s# f

�
)

(s#

�
)

(27)

for j3�0,2, n�, M
��

3M(R) is unimodular since f
�
satis"es

(8), 

�
'0, and [M��

��
=��

�
D

�
D��

�
(0) f

�
(s#


�
)��](0)"

I implies s��[I!M��
��
=��

�
D

�
D��

�
(0) f

�
(s#


�
)�� ]3

M(R). If m'2, continue similarly for v"3,2,m, with

f
�
satisfying (9). De"ne

M
��
:"

s

(s#

�
)
I#�

���
�
���

M
���

��

�=��
�

D
�
D��

�
(0)

�
�
���

f
�

(s#

�
)

"�I!s���I!�
���
�
���

M
���

��

�=��
�

D
�
D��

�
(0)

���
�
���

f
�

(s#

�
)�

�
f
�
s

(s# f
�
)�
(s# f

�
)

(s#

�
)

(28)

for j3�0,2, n�, M
��

3M(R) is unimodular since f
�

satis"es (9), 

�

'0, and [(����
���

M
��
)��=��

�
D

�
D��

�
(0)

����
���

f
�
(s#


�
)��](0)"I implies s��[I!(����

���
M

��
)��

=��
�

D
�
D��

�
(0)����

���
f
�
(s#


�
)��)3M(R). Since M

��
,

M
��
are unimodular, (M

��
M

��
)"(s�I#=��

�
D

�
D��

�
(0)

(f
�
s#f

�
f
�
))(s#


�
)��(s#


�
)�� is unimodular. Sim-

ilarly, M
�
is unimodular for j3�0,2, n�:

M
�
:"

�
�
���

M
��

"�I#=��
�

D
�
D��

�
(0)

�
�
���

1

s�
�

�
l��

fl�
s�

��
���
(s#


�
)
.

(29)

De"ne C
�
as in (10); C��

�
3M(R) since (1/�	

���
(s#	

�
))�	

���
s�3R and s���

���
1/s�3R. Note that an

RCF C
�
"N


�
D��


�
and an LCF C

�
"DI ��


�
NI


�
are

N

�

"NI

�

"I, D

�

"C��
�

"DI

�

since C��
�

3M(R).
Since =

�
,M

�
are unimodular, and k

�
O0, i"1,2,w,

the product (=
�
M

�
) and �

�
,�I

�
are also unimodular:

=
�
M

�
"(I#D

�
K)

s�

�	
���
(s#	

�
)��

���
(s#


�
)

	
�
���

k
�

#

s�

��
���
(s#


�
)
D

�
D��

�
(0)

	
�
���

1

s�
�

�
l��

fl

"(D
�
C��

�
#N)

	
�
���

k
�
":�

�

	
�
���

k
�
, (30)

�
�
:"D

�
C��

�
#N, �I

�
:"C��

�
D

�
#N. (31)

Note that C��
�

���
�

"�I ��
�

C��
�
, ���

�
D

�
"D

�
�I ��

�
. By

(31), we have the following important identity:

�
C��

�
I

!N D
�
��

D
�
�I ��

�
!���

�
N�I ��

�
C��

�
���

�
�"I. (32)

In (32), P
�
"(N�I ��

�
)(D

�
�I ��

�
)��"(I!C��

�
���

�
D

�
)

(���
�

D
�
)�� is another RCF of P

�
"ND��

�
. By (32), the

controller C stabilizes P
�
if and only if C is given by (11),

whereQ3M(R);C becomesC
�
given in (10) whenQ"0.

An RCF for C can also be obtained from (32) as
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for j3�0,2, n�, M
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�
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(32), the rest of the proof follows similar steps as in part
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are replaced by M

�
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, In

this case, the controller C is proper if and only if
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(d) If m"0, w"0, then N"I, P
�
"D��

�
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