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Reliable Decentralized Integral-Action Controller Design

A. N. Gündes¸ and M. G. Kabuli

Abstract—Reliable stabilizing controller design with integral-action is
considered for linear time-invariant, multi-input–multi-output decentral-
ized systems with stable plants. Design methods are proposed to achieve
reliable closed-loop stability with integral-action in each output channel for
asymptotic tracking of step-input references applied at each input. The de-
sign approaches guarantee stability and integral-action in the active chan-
nels when all controllers are operational and when any of the controllers is
set equal to zero due to failure.

Index Terms—Decentralized control, integral action, reliable stabiliza-
tion.

I. INTRODUCTION

Reliable stabilizing controller design with integral-action is
considered for linear time-invariant (LTI), multi-input–multi-output
(MIMO), multichannel decentralized systems with stable plants. The
goal is to achieve closed-loop stability with integral-action in each
output channel so that step-input references applied at each input are
asymptotically tracked (with zero steady-state error). Reliable stabi-
lization with integral-action maintains stability and integral-action
when any of the controllers fail. The model of controller failure used
here assumes that a controller that fails is replaced by zero; the failure
is recognized and the corresponding controller is taken out of service
(i.e., the states in the controller implementation are all set to zero,
the initial conditions and the outputs of the channel that failed are set
to zero for all inputs). Clearly, stability is still maintained when all
controllers are set to zero since the open-loop plant is stable. If some
of the controllers fail, integral-action is still present in the outputs of
the channels with active controllers due to the integrators in those
controllers.

The reliable stabilization problem was introduced in [9] and [10] and
has been studied with full-feedback and decentralized controllers [13],
[14], [6], [11]. Reliable decentralized designs were given in [8] and
[12], which guarantee stability and satisfy performance criteria based
on a givenH1 norm bound despite complete sensor or actuator out-
ages for any subset of a prescribed set of control channels; integral-ac-
tion is not a criterion in these designs. In [7], [2], [1], integral-action
was considered in the decentralized configuration with single-input
single-output (SISO) channels that have gain uncertainty between zero
and one, and conditions on the steady-state gain of the plant were pre-
sented. Although reliable decentralized stabilizability conditions with
integral action were given for two-channel and multichannel decen-
tralized configurations with stable plants (for example, in [4]), explicit
design approaches were not explored in detail.

In this note, the goals are: 1) to present necessary and sufficient con-
ditions that guarantee existence of reliable decentralized integral-ac-
tion controllers, and 2) to propose explicit algebraic design procedures
that actually achieve reliable stability with integral action. Although the
only criteria incorporated into the design approaches developed here

Manuscript received June 14, 1999; revised June 14, 2000. Recommended by
Associate Editor P. Voulgaris. This work was supported by the National Science
Foundation under Grants ECS-9257932 and ECS-9905729.

The authors are with the Electrical and Computer Engineering Department,
the University of California, Davis, CA 95616 (e-mail: {gundes@ece.uc-
davis.edu; kabuli@ece.ucdavis.edu).

Publisher Item Identifier S 0018-9286(01)01020-0.

Fig. 1. Thew-channel decentralized systemS(P; C ).

are stability under possible failure of controllers and integral action,
other performance criteria may be included in the designs due to the
freedom in choosing certain control parameters given in the explicit
design steps. The results are explored in detail for two-, three-, and
four-channel decentralized systems, where the channels are assumed
to be MIMO. Simplifications are also presented for the fully decen-
tralized case with SISO channels. The proposed design methods can
be extended to more than four channels. The main results are the ex-
istence conditions for reliable decentralized integral-action controllers
given in Lemma 1 and the controller design methodology developed
in Proposition 1. Corollary 1 states necessary and sufficient conditions
for existence of pure integral controllers and proposes an explicit de-
sign when all channels except for channel one are restricted to have
a single output, which includes the special case of SISO channels. A
simple example is given to illustrate the design method of Proposition
1 for a three-channel plant with SISO channels.

Due to the algebraic framework, the results apply to continuous-time
and discrete-time systems. A continuous-time setting was assumed
throughout; all evaluations and discussions involving poles and zeros
ats = 0 should be interpreted atz = 1 in the discrete-time case.

1) Notation and Algebraic Framework:The region of instabilityU
is the extended closed right-half plane (for continuous-time systems) or
the complement of the open unit disk (for discrete-time systems). The
sets of real numbers, proper rational functions with noU poles, proper
and strictly-proper rational functions with real coefficients are denoted
by ,R ,Rp, andRs. The set of matrices with entries inR is denoted
byM(R); M is called stable iffM 2 M(R)(M 2 R

n �n indi-
cates the matrix order);M 2 M(R) is called unimodular iffM�1 2

M(R). A block-diagonal matrix whose entries are the matricesNi,
Nj is denoted bydiag [Ni; Nj ]. A right-inverse ofA 2 M( ) is
denoted byAI 2 M( ). ForM 2 M(R), the normk � k is de-
fined askMk = sups2@U �(M(s)), where� denotes the maximum
singular value,@U denotes the boundary ofU . Let P 2 M(R),
whererankP = �; so 2 U is called a (transmission)U -zero ofP iff
rankP (so) < �; so is called a blockingU -zero ofP iff P (so) = 0.

II. A NALYSIS

Consider the LTI, MIMO,w-channel decentralized feedback system
S(P; CD) shown in Fig. 1.P 2 R

n �n
p andCD 2 R

n �n
p repre-

sent the transfer functions of the plant and the decentralized controller,
partitioned as

P =

P11 � � � P1w
...

...
Pw1 � � � Pww

2 Rn �n

CD =diag [C1; . . . ; Cw] 2 R
n �n
p (1)
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wherePii 2 Rn �n , Ci 2 R
n �n
p , i = 1; . . . ; w, ny =

w

i=1
nyi, nu = w

i=1
nui. It is assumed thatS(P; CD) is a well-

posed system (i.e., all closed-loop transfer functions are proper). It is
also assumed thatP andCD have no hidden modes corresponding to
eigenvalues inU . AlthoughP 2 M(R), the decentralized controller
CD is unstable (due to poles at zero for the integral-action requirement
and other possibleU poles). LetHer denote the (input-error) transfer
function fromr to e, wherer := [rT1 . . . rTw ]

T , u := [uT1 . . .uTw]
T ,

e := [eT1 . . . eTw]
T , y := [yT1 . . . yTw ]

T , yc := [yTc1 . . . y
T
cw]

T . A con-
troller that fails is set equal to zero; the failure is recognized and the cor-
responding controller is taken out of service. Whenw = 2, the only
possible failures are due to one controller failure. Whenw = 3, the
failures are due to one or two controller failure. Whenw = 4, the fail-
ures are due to one, two or three controller failure. Fori = 1; . . . ; w,
S(P; Ci) denotes the system with only theith controller active and all
others failed. Forj = 2; . . . ; w, i = 1; . . . ; i� 1, S(P; Ci; Cj) de-
notes the system with theith andjth controllers active and all others
failed. Fork = 3; . . . ; w, j = 2; . . . ; k � 1, i = 1; . . . ; j � 1,
S(P; Ci; Cj ; Ck) denotes the system withith,jth andkth controllers
active and the remaining controller failed. In these systems, the outputs
of the inactive channels are not observed; i.e., for` = 1; . . . ; w, yc`,
` 6= i of S(P; Ci), yc`, ` 6= i, ` 6= j of S(P; Ci; Cj), yc`, ` 6= i,
` 6= j, ` 6= k of S(P; Ci; Cj ; Ck) are not observed.

We use the following standard definitions of stability and integral-
action (see [13] and [7]).

Definitions: (Stability, Reliable Decentralized Integral-Action
Controller): 1) The systemS(P; CD) is stable iff the transfer
function from(r; u) to (y; yc) is stable. The stableS(P; CD) hasin-
tegral-actioniff Her(0) = 0. Fori = 1; . . . ; w, the systemS(P; Ci)
is stable iff the transfer function from(ri; u) to (y; yci) is stable. The
stableS(P; Ci) has integral action iff the transfer function fromri to
ei has blocking zeros at zero. Forj = 2; . . . ; w, i = 1; . . . ; j � 1,
the systemS(P; Ci; Cj) is stable iff the transfer function from
(ri; rj ; u) to (y; yci; ycj) is stable. The stableS(P; Ci; Cj) has
integral-action iff the transfer function from(ri; rj) to (ei; ej) has
blocking zeros at zero. Fork = 3; . . . ; w, j = 2; . . . ; k � 1,
i = 1; . . . ; j � 1, the systemS(P; Ci; Cj ; Ck) is stable iff the
transfer-function from(ri; rj ; rk; u) to (y; yci; ycj ; yck) is stable.
The stableS(P; Ci; Cj ; Ck) has integral-action iff the transfer-func-
tion from (ri; rj ; rk) to (ei; ej ; ek) has blocking-zeros at zero.2)
The controllerCD = diag [C1; . . . ; Cw] is a stabilizing controller
for the plantP (orCD stabilizesP ) iff CD 2M(Rp) and the system
S(P; CD) is stable.3) The controllerCD = diag [C1; . . . ; Cw]
is a reliable decentralized integral-action controlleriff the system
S(P; CD) is stable with integral-action when all controllers are
active and when any subset of the controllers are set equal to zero;
i.e., whenw = 2, all three systemsS(P; CD), S(P; Ci), i = 1; 2,
are stable with integral action, whenw = 3, all seven systems
S(P; CD), S(P; Ci), i = 1; 2; 3 and S(P; Ci; Cj), j = 2; 3,
i = 1; . . . ; j � 1, are stable with integral action, whenw = 4, all
fifteen systemsS(P; CD), S(P; Ci), i = 1; . . . ; 4, S(P; Ci; Cj),
j = 2; . . . ; 4, i = 1; . . . ; j � 1, andS(P; Ci; Cj ; Ck), k = 3; 4,
j = 2; . . . ; k�1, i = 1; . . . ; j�1, are stable with integral-action.

It is well known thatCD 2 R
n �n
p stabilizesP 2 Rn �n if and

only if (D̂c+PNc) is unimodular for any right-coprime-factorization
(RCF)CD = NcD̂

�1

c (Nc; D̂c 2M(R), det D̂c(1) 6= 0) [13], [3].
For any stabilizing controllerCD, the (input-error) transfer-function
Her(0) = (In +PC)�1(0) = D̂c(D̂c+PNc)

�1(0) = 0 if and only
if D̂c(0) = 0. LetNiD̂

�1

i be any RCF ofCi, i = 1; � � � ; w. LetNc :=
diag [N1; � � � ; Nw], D̂c := diag [D̂1; . . . ; D̂w]; thenNcD̂

�1

c is an
RCF ofCD. The denominator̂Dc(0) = diag [D̂1; . . . ; D̂w](0) = 0
if and only if D̂c = (s=(s + �))Dc for someDc 2 M(R), i.e.,
D̂i = (s=(s+ �))Di for someDi 2M(R), where�� 2 nU (i.e.,

� > 0 for the continuous-time case andj�j < 1 for the discrete-time
case). Therefore, the systemS(P; CD) is stable with integral-action if
and only if

� :=PNc +
s

s+ �
Dc

=

P11N1 +
s

s+ �
D1 � � � P1wNw

...
. . .

...
Pw1N1 � � � PwwNw +

s

s+ �
Dw

(2)

is unimodular. Similarly, the systemS(P; Ci) is stable with integral
action if and only if

�i := PiiNi +
s

s+ �
Di (3)

is unimodular. The systemS(P; Ci; Cj) is stable with integral-action
if and only if

�ij :=
Pii Pij
Pji Pjj

diag [Ni; Nj ] +
s

s+ �
diag [Di; Dj ] (4)

is unimodular. The systemS(P; Ci; Cj ; Ck) is stable with integral-
action if and only if�ijk, defined similarly by taking thei; j; kth
rows and columns of�, is unimodular. IfS(P; CD) is stable with
integral action, thenHer(0) = In � PC(In + PC)�1(0) = 0

implies rankP (0) = ny � nu. SinceNiD̂
�1

i is an RCF ofCi, if
D̂i(0) = 0, thenrankNi(0) = nyi � nui. Since these are nec-
essary for stability and integral action inS(P; CD), we assume that
P 2 Rn �n is full row-rank, has no (transmission) zeros at zero
(rankP (0) = ny � nu), and the number of outputs does not exceed
the number of inputs in each channel (nyi � nui, i = 1; . . . ; w). If
S(P; Ci) is stable with integral action,�i 2 Rn �n unimodular
impliesrank (PiiNi)(0) = nyi. Therefore, forS(P; Ci) to be stable
with integral action,rankPii(0) = nyi � nui.

III. D ESIGN

Reliable decentralized integral-action controller design requires that
the systemsS(P; CD), S(P; Ci), S(P; Ci; Cj), S(P; Ci; Cj ; Ck)
are all stable with integral-action. In Lemma 1, we state the conditions
for existence ofw-channel reliable decentralized integral-action con-
trollers forw = 2; 3; 4. In Proposition 1, we propose a reliable de-
centralized integral-action controller design approach. We define the
following to be used in the subsequent results.

For i = 1; . . . ; w, let Ci = Ni(s=(s + �)Di)
�1 be an RCF of

Ci 2 R
n �n
p (Ni; Di 2 M(R), detDi(1) 6= 0), �� 2 nU .

Let P I
ii(0) 2

n �n denote a right-inverse ofPii(0) 2 n �n .
For j = 2; . . . ; w, i = 1; . . . ; j � 1, defineXij 2 Rn �n ,
Xij(0) 2

n �n as (5); withkj to be specified as in Proposition
1, defineWij 2 R

n �n as (6)

Xij :=Pjj�PjiNiPij ; Xij(0) := (Pjj�PjiP
I
iiPij)(0);

(5)

Wij := I + (Xij � Pjj)(I + s�1kjP
I
jj(0)Xij)

�1Qj : (6)

Whenw � 3, for k = 1; . . . ; w � 2, `; m = k + 1; . . . ; w, and
` 6= m, defineY k

`m 2 Rn �n , Y k
`m(0) 2 n �n as (7); for

v = 3; . . . ; w, q = 1; . . . ; v � 2, r = q + 1; . . . ; v � 1, define
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Zq
rv 2 Rn �n , Zq

rv(0) 2
n �n as (8) and (9), andW q

rv 2
Rn �n as (10)

Y k
`m :=P`m � P`kNkPkm

Y k
`m(0) := (P`m � P`kP

I
kkPkm)(0) (7)

Zq
rv :=Xqv � Y q

vrNr(I � PrqNqPqrNr)
�1Y q

rv

=Xqv � Y q
vrNr(I + (Xqr � Prr)Nr)

�1Y q
rv (8)

Zq
rv(0) := (Xqv � Y q

vrP
I
rr(XqrP

I
rr)
�1Y q

rv)(0) (9)

W q
rv := I + (Zq

rv � Pvv)(I + s�1kvP
I
vv(0)Z

q
rv)

�1Qv: (10)

Whenw = 4, defineG 2 Rn �n , G(0) 2 n �n as (11) and
(12),Wg 2 Rn �n as (13):

G :=Z1

24 � (Y 1

43 � Y 1

42N2(I � P21N1P12N2)
�1Y 1

23)N3

� (I + (Z1

23 � P33)N3)
�1

� (Y 1

34 � Y 1

32N2(I � P21N1P12N2)
�1Y 1

24) (11)

G(0) :=Z1

24(0)� (Y 1

43 � Y 1

42P
I
22(X12P

I
22)
�1Y 1

23)P
I
33

� (Z1

23P
I
33)
�1(Y 1

34 � Y 1

32P
I
22(X12P

I
22)
�1Y 1

24)(0) (12)

Wg := I + (G� P44)(I + s�1k4P
I
44(0)G)�1Q4: (13)

Lemma 1 (Existence Conditions for Reliable Decentralized Integral-
Action Controllers): Let P 2 Rn �n be as in (1). LetP I

ii(0) be a
right-inverse ofPii(0) 2 n �n , i = 1; . . . ; w.

a) Necessary Conditions: If there exist reliable decentralized inte-
gral-action controllersCD, then the following conditions hold:
i) rankP (0) = ny, rankPii(0) = nyi, i = 1; . . . ; w, and
ii) det(Xij(0)P

I
jj(0)) 6= 0, for some right-inverseP I

ii(0) of
Pii(0),P I

jj(0) of Pjj(0), j = 2; . . . ; w, i = 1; . . . ; j�1, and
iii) whenw � 3, det(Zq

rv(0)P
I
vv(0)) 6= 0, for some right-in-

verseP I
vv(0) of Pvv(0), P I

rr(0) of Prr(0), v = 3; . . . ; w,
q = 1; . . . ; v� 2, r = q+ 1; . . . ; v� 1, andiv) whenw = 4,
det(G(0)P I

44(0)) 6= 0.
b) Necessary and Sufficient Conditions: i) There exist reliable de-

centralized integral-action controllersCD if 1) the necessary
conditions ina) hold and2) det(Xij(0)P

I
jj(0)) > 0 for some

right-inverseP I
ii(0) of Pii(0),P I

jj(0) of Pjj(0), j = 2; . . . ; w,
i = 1; . . . ; j � 1, and3) whenw � 3, det(Zq

rv(0)P
I
vv(0)) >

0 for some right-inverseP I
vv(0) of Pvv(0), P I

rr(0) of Prr(0),
v = 3; . . . ; w, q = 1; . . . ; v � 2, r = q + 1; . . . ; v � 1,
and 4) whenw = 4, det(G(0)P I

44(0)) > 0. ii) When the
plant’s off-diagonal sub-blocksPij , or Pji, j = 2; . . . ; w,
i = 1; . . . ; j � 1, are strictly-proper, or when anyw � 1 of
thew controllersC1; . . . ; Cw are strictly-proper, or when these
transfer-functions have blockingU -zeros, conditionsi2)–i4) be-
come necessary: In these cases, there exist reliable decentralized
integral-action controllersCD if and only if conditionsi1)–i4)
hold.

c) Sufficient Conditions: There exist reliable decentralized integral-
action controllersCD if 1) the necessary conditions ina) hold,
and 2) Xij(0)P

I
jj(0) is symmetric, positive-definite for some

right-inverseP I
ii(0), P

I
jj(0) of Pii(0), Pjj(0), j = 2; . . . ; w,

i = 1; . . . ; j � 1, and3) whenw � 3, Zq
rv(0)P

I
vv(0) is sym-

metric, positive-definite for some right-inverseP I
vv(0), P

I
rr(0)

of Pvv(0), Prr(0), v = 3; . . . ; w, q = 1; . . . ; v � 2, r =
q + 1; . . . ; v � 1, and4) whenw = 4, G(0)P I

44(0) is sym-
metric, positive-definite.

In some cases, the conditions of Lemma 1-c) and b) are equiva-
lent [for example, when channels 2 throughw each have only a single
output, i.e.,nyj = 1 for j = 2; . . . ; w becauseXij(0)P

I
jj(0) 2 , or

whenPij(0) = 0 orPji(0) = 0, j = 2; . . . ; w, i = 1; . . . ; j � 1].

Proposition 1 (Reliable Decentralized Integral-Action Controller
Design): Let P 2 Rn �n be as in (1). LetrankP (0) = ny � nu;
for i = 1; . . . ; w, let rankPii(0) = nyi � nui. For j = 2; . . . ; w,
i = 1; . . . ; j � 1, let Xij(0)P

I
jj(0) 2 n �n be symmetric,

positive-definite for some right-inverseP I
ii(0) of Pii(0), P I

jj(0)
of Pjj(0). Whenw � 3, for v = 3; . . . ; w, q = 1; . . . ; v � 2,
r = q + 1; . . . ; v � 1, letZq

rv(0)P
I
vv(0) 2

n �n be symmetric,
positive-definite for some right-inverseP I

vv(0) of Pvv(0), P I
rr(0) of

Prr(0). Whenw = 4, let G(0)P I
44(0) 2

n �n be symmetric,
positive-definite. Fori = 1; . . . ; w, define

Ni := (I + s�1kiP
I
ii(0)Pii)

�1

�(s�1kiP
I
ii(0) +Qi) 2 R

n �n :(14)

Under these assumptions,CD = diag [C1; . . . ; Cw] is a reliable de-
centralized integral-action controller, whereCi 2 R

n �n
p , i =

1; . . . ; w, is given by

Ci = (I �QiPii)
�1 kiP

I
ii(0)

s
+Qi (15)

whereki 2 andQi 2 R
n �n are chosen as follows. Letk1 2

be such that

0 < k1 < ks�1(P11(s)P
I
11(0)� I)k�1 (16)

and letQ1 2 Rn �n satisfydet(I � Q1P11)(1) 6= 0. Fix Q1.
Let k2 2 be such that

0 <k2 < minfks�1(P22(s)P
I
22(0)� I)k�1

ks�1(X12(s)�X12(0))P
I
22(0)k

�1g (17)

and letQ2 2 Rn �n satisfydet(I � Q2P22)(1) 6= 0 andW12

is unimodular. Whenw � 3, fix Q2. Let k3 2 be such that, for
i = 1; 2,

0 <k3 < minfks�1(P33(s)P
I
33(0)� I)k�1

ks�1(Xi3(s)�Xi3(0))P
I
33(0)k

�1

ks�1(Z1

23(s)� Z1

23(0))P
I
33(0)k

�1g (18)

and letQ3 2 Rn �n satisfydet(I � Q3P33)(1) 6= 0, Wi3 and
W 1

23 are unimodular. Whenw = 4, fix Q3. Let k4 2 be such that,
for i = 1; 2; 3, q = 1; 2, r = q + 1; . . . ; 3

0 <k4 < minfks�1(P44(s)P
I
44(0)� I)k�1

ks�1(Xi4(s)�Xi4(0))P
I
44(0)k

�1

ks�1(Zq
r4(s)� Zq

r4(0))P
I
44(0)k

�1

ks�1(G(s)�G(0))P I
44(0)k

�1g (19)

and letQ4 2 R
n �n satisfydet(I�Q4P44)(1) 6= 0,Wi4,W q

r4,
Wg are unimodular.

If Qi = 0, thenCi = (Ki=s) is a “pure integral” controller,Ki =
kiP

I
ii(0). By Lemma 1-c), the assumptions of Proposition 1 are suffi-

cient for existence of reliable decentralized integral-action controllers.
Corollary 1 states that these conditions arenecessary andsufficient for
existence of pure integral controllers when channels 2–w each have
only a single output.

Corollary 1 (Pure Integral Controller Design):Let P 2 Rn �n

be as in (1). Letnyi = 1, i = 2; . . . ; w. There exists
a reliable decentralized integral-action controllerCD =
diag [(K1=s); . . . ; (Kw=s)], Ki 2 n �n , i = 1; . . . ; w,
if and only if: 1) rankP (0) = ny , rankPii(0) = nyi, i = 1; . . . ; w,



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 2, FEBRUARY 2001 299

and2) for j = 2; . . . ; w, i = 1; . . . ; j � 1, Xij(0)P
I
jj(0) > 0, for

some right-inverseP I
ii(0) of Pii(0), P I

jj(0) of Pjj(0), and3) when
w � 3, for v = 3; . . . ; w, q = 1; . . . ; v � 2, r = q + 1; . . . ; v � 1,
Zq
rv(0)P

I
vv(0) > 0, for some right-inverseP I

vv(0) of Pvv(0), P I
rr(0)

of Prr(0), and 4) whenw = 4, G(0)P I
44(0) > 0. Furthermore,

s�1Ki can be chosen ass�1kiP I
ii(0), with ki 2 as in (16)–(19) for

i = 1; 2; 3; 4.
In Proposition 1,Qi = 0 satisfies the unimodularity con-

ditions; then CD = diag [(K1=s); . . . ; (Kw=s)], Ki =
kiP

I
ii(0) 2 n �n . If Q2; Q3; Q4 2 M(R) satisfy

kQ2k < k(X12 � P22) (I + s�1k2P
I
22(0)X12)

�1k�1,
kQ3k < minfk(Xi3 � P33) (I + s�1k3P

I
33(0)Xi3)

�1k�1,
k(Z1

23 � P33) (I + s�1k3P
I
33(0)Z

1

23)
�1k�1g, kQ4k <

minfk(Xi4�P44) (I+s
�1k4P

I
44(0)Xi4)

�1k�1,k(Zq
r4�P44) (I+

s�1k4P
I
44(0)Z

q
r4)
�1k�1, k(G� P44) (I + s�1k4P

I
44(0)G)�1k�1g,

thenW12, Wi3, W 1

23, Wi4, W q
r4, Wg are unimodular. The condition

det(I � QiPii)(1) 6= 0 is satisfied for allQi 2 M(R) when
Pii 2 M(Rs); Ci 2 M(Rs) if and only ifQi 2M(R) \M(Rs).

We now apply the reliable decentralized integral-action controller
design procedure in Proposition 1 to a three-channel plant with SISO
channels that was considered in [2].

Example 1 (3-Channel Reliable Decentralized Integral-Action Con-
troller Design): Let

P =

1 0 2

(s+ 1)�1 1 �4(s+ 1)�1

0 4 1

; w = 3; nyi = 1;

nui =1; rankP (0) = 3; rankPii(0) = 1; i = 1; 2; 3:

From (5), (7), (9),X12(0) = 1, X13(0) = 1, X23(0) = 1,
Y 1

32(0) = 4, Y 1

23(0) = �2, Z1

23(0) = 9. The assumptions
hold sinceXij(0)P

�1

jj (0) = 1, j = 2; 3, i = 1; j � 1, and
Z1

23(0)P
�1

33
(0) = 9. By (14),Ni := (s + ki)

�1(ki + sQi); finding
X12, X13, X23, Y 1

32, Y 1

23, Z1

23 from (5), (7), (8), anyk1 > 0,
k2 > 0 satisfy (16), (17);Q1 2 R must satisfyQ1(1) 6= 1, and
W12 = 1 impliesQ2 2 R must satisfyQ2(1) 6= 1. We choose
k1 = 10, k2 = 0:5, Q1 = 0, Q2 = 0. From (18),k3 must satisfy
0 < k3 < 0:1136. Choosingk3 = 0:1,Q3 = 0, the corresponding re-
liable decentralized controllerCD = diag [10=s; 1=2s; 1=10s]
is of the pure integral form; the poles ofS(P; CD) are
f�9:9953; �0:5333 � j0:7432; �0:5381g. For an alternate design,
letk1 = 10,Q1 = ((7:7s3�46s2+13s�14)=(s3+7s2+16s+20));
then (17) and (18) hold for anyk2 > 0, 0 < k3 < 0:1068.
Choosingk2 = 0:5, k3 = 0:1, Q2 = 0, Q3 = 0, we obtain
C1 = (7:7s4�36s3+83s2+146s+200)=s(�6:7s3+53s2+3s+34),
C2 = 1=2s, C3 = 1=10s. The poles ofS(P; CD), are
f�10:1223; �3:36881, �1:0585; �1:0159 � j0:4816,
�1:0093 � j0:9767g. If other design specifications are given,
then the design can be modified to satisfy these requirements by
choosing the controller parametersQ1, Q2, Q3, subject to the
unimodularity constraints.

IV. CONCLUSION

We presented conditions for existence of reliable decentralized in-
tegral-action controllers, and proposed explicit design approaches that
achieve reliablew-channel decentralized stability with integral-action
for w = 2; 3; 4. Although the results explored two-, three-, and four-
channel decentralized systems in detail, the proposed design methods
can be extended to more than four channels by imposing additional
conditions (similar positive-definiteness assumptions) on the dc-gain
matrices of higher-order minors of the plant.

APPENDIX

PROOFS

Proof of Lemma 1: a) i)If S(P; CD) is stable with in-
tegral-action, then� in (2) unimodular for any RCFCD =
Nc((s=(s + �))Dc)

�1 implies det(P (0)Nc(0)) 6= 0,
rankP (0) = ny . If S(P; Ci) is stable with integral-ac-
tion, i = 1; . . . ; w, (3) implies �i = In for some RCF
Ci = Ni((s=(s + �))Di)

�1; therefore,det(Pii(0)Ni(0)) 6= 0
implies rankPii(0) = nyi, Ni(0) = P I

ii(0) for some right-in-
verse P I

ii(0) of Pii(0). ii) If S(P; Ci), i = 1; . . . ; w,
S(P; Ci; Cj), j = 2; . . . ; w, i = 1; . . . ; j � 1, are stable
with integral-action, then�ij in (4) unimodular for some RCF
Ci = Ni((s=(s + �))Di)

�1 satisfying �i = I implies
det(I � PjiNiPijNj) (0) = det(Xij(0)P

I
jj(0)) 6= 0, where

Ni(0) = P I
ii(0), Nj(0) = P I

jj(0). iii) Whenw � 3, if S(P; Ci),
S(P; Ci; Cj),S(P; Cq; Cr; Cv), v = 3; . . . ; w, q = 1; . . . ; v�2,
r = q + 1; . . . ; v � 1, are stable with integral-action, then�qrv uni-
modular impliesdet(Zq

rv(0)P
I
vv(0)) 6= 0, whereNq(0) = P I

qq(0),
Nr(0) = P I

rr(0), Nv(0) = P I
vv(0). iv) Whenw = 4, if S(P; CD)

is also stable with integral-action, thendet(P (0)Nc(0)) 6= 0 implies
det(G(0)P I

44(0)) 6= 0, whereNi(0) = P I
ii(0), i = 1; 2; 3; 4. b) i)

Let the necessary conditions ina) hold. LetKi 2
n �n be such

that

(s+ �)�1sI + Pii(s+ �)�1 Ki =: Mi (20)

is unimodular. DefiningN̂i := (s + �)�1KiM
�1

i , all solutions of
PiiNi + (s=s+ �)Di = I are

Ni := N̂i + (I � N̂iPii)Qi:

= I +
Ki

s
Pii

�1
Ki

s
+Qi (21)

Di =M�1

i (I � PiiQi)

=
(s+ �)

s
I + Pii

Ki

s

�1

(I � PiiQi) (22)

for someQi 2 R
n �n . Therefore,S(P; Ci) is stable with integral-

action if and only ifCi = Ni((s=(s + �))Di)
�1 2 Rpn �n ,

whereNi; Di are given by (21)–(22) andQi is such thatdetDi(1) =
det(I�PiiQi)(1) 6= 0. The systemS(P; Ci; Cj) is also stable with
integral-action if and only if�ij in (4) is unimodular; equivalently

I � PjiNiPijNj = I + (Xij � Pjj)Nj

= I � PjiNiPijN̂j � PjiNiPij(I � N̂jPjj)Qj

(23)

is unimodular for some Qj 2 Rn �n . Since
(I � PjiNiPijN̂j ; �PjiNiPij(I � N̂jPjj)) is left-coprime,
there existsQj such that (23) is unimodular if and only if
det(I � PjiNiPijN̂j) has the same sign at all blockingU -zeros
of PjiNiPij(I � N̂jPjj). This pair is left coprime if and only if
rank [I � PjiNiPijN̂j �PjiNiPij(I � N̂jPjj)] = nyj for all
s 2 U . Equivalently, by (20),rank [(s + �)�1sM�1

j Xij ] = nyj ,
which holds for s 6= 0; it also holds for s = 0 since
det(Xij(0)P

I
jj)(0) 6= 0 implies rankXij(0) = nyj . The only

blocking U -zeros of PjiNiPij(I � N̂jPjj) are at so 2 U
such that(PjiNiPij)(so) = 0 and possibly ats = 0 [note
det(I � N̂jPjj) = det((s + �)�1sM�1

j )]. If so 2 U is a
blocking-zero ofPjiNiPij , thendet(I � PjiNiPijN̂j(so)) = 1.
Therefore,det(I � PjiNiPijN̂j)(0) > 0 is sufficient; if PjiNiPij
has no blockingU -zeros, then the sign ats = 0 does not matter. By
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(20), N̂j(0) = P I
jj(0); hence,det(Xij(0)P

I
jj(0)) > 0 is sufficient

for existence ofQj such that (23) is unimodular. Whenw � 3,
S(P; Cq; Cr; Cv) is also stable with integral-action if and only if
�qrv is unimodular. Equivalently

I + (Zq
rv � Pvv)Nv

= I + (Zq
rv � Pvv)N̂v + (Zq

rv � Pvv)(I � N̂vPvv)Qv

(24)

is unimodular for someQv 2 Rn �n . By similar steps,
det(Zq

rv(0)P
I
vv(0)) > 0 is sufficient for existence ofQv such that

(24) is unimodular. Whenw = 4, S(P; C1; C2; C3; C4) is also
stable with integral-action if and only if� in (2) is also unimodular.
Equivalently

I + (G� P44)N4

= I + (G� P44)N̂4 + (G� P44)(I � N̂4P44)Q4 (25)

is unimodular for someQ4 2 Rn �n . For existence ofQ4

such that (25) is unimodular,det(G(0)P I
44(0)) > 0 is suffi-

cient. Sincedet(Xij(0)P
I
jj(0)) > 0, det(Zq

rv(0)P
I
vv(0)) > 0,

det(G(0)P I
44(0)) > 0 are sufficient for existence ofQj ,Qv ,Q4 such

that (23)–(25) are unimodular, the four conditions of Lemma 1-b)-i)
are sufficient for existence of reliable decentralized integral-action
controllers. ii) Since Ci = Ni((s=(s + �))Di)

�1 is an RCF,
Ci(so) = 0 for so 2 U if and only if Ni(so) = 0. If Pij , or Pji,
j = 2; . . . ; w, i = 1; . . . ; j � 1, or if anyw � 1 of C1; . . . ; Cw

have blockingU -zeros (including infinity), then at suchso 2 U ,
det(I � PjiNiPijNj(so)) = det(I + (Xij � Pjj)Nj(so)) = 1,
det(I + (Zq

rv �Pvv)Nv(so)) = 1, det(I + (G�P44)Nv(so)) = 1.
In the presence of these blockingU -zeros, if (23)–(25) are unimodular,
then these determinants are positive at alls 2 U including s = 0.
Therefore,det(Xij(0)P

I
jj(0)) > 0, det(Zq

rv(0)P
I
vv(0)) > 0,

det(G(0)P I
44(0)) > 0 are necessary.c) The sufficiency follows from

b)-i) since the determinants are positive in this case.
Proof of Proposition 1: Let P I

ii(0) be any right-in-
verse of Pii(0), i = 1; . . . ; w, such that the following are
symmetric, positive-definite:Xij(0)P

I
jj(0), j = 2; . . . ; w,

i = 1; . . . ; j � 1; whenw � 3, Zq
rv(0)P

I
vv(0), v = 3; . . . ; w,

q = 1; . . . ; v � 2, r = q + 1; . . . ; v � 1; when w = 4,
G(0)P I

44(0). Let Ki = kiP
I
ii(0) 2 n �n , where

k1; k2; k3; k4 satisfy (16)–(19). Fori = 1; . . . ; 4, 0 < ki <
ks�1(Pii(s)P

I
ii(0) � I)k�1 implies Mi = (s + �)�1sI + Pii

(s + �)�1kiP
I
ii(0) 2 Rn �n is unimodular. By (17)–(19),

for j = 2; 3; 4, 0 < kj < ks�1(Xij � Xij(0))P
I
jj(0)k

�1

implies Mij := (s + �)�1sI + Xij(s + �)�1kjP
I
jj(0) 2

Rn �n is unimodular. Whenw � 3, by (18), (19), for
v = 3; 4, 0 < kv < ks�1(Zq

rv � Zq
rv(0))P

I
vv(0)k

�1 implies
Mq

rv := (s + �)�1sI + Zq
rv (s + �)�1kvP

I
vv(0) 2 R

n �n is
unimodular. Whenw = 4, G(0)P I

44(0) is symmetric, positive-def-
inite; by (19), 0 < k4 < ks�1(G � G(0))P I

44(0) k
�1 implies

Mg := (s + �)�1sI + G (s + �)�1k4P
I
44(0) 2 Rn �n is

unimodular. As in the proof of Lemma 1-b), sinceMi is unimodular
with Ki = kiP

I
ii(0), all Ci such thatS(P; Ci) is stable with

integral-action areCi = Ni((s=(s + �))Di)
�1 = (I � QiPii)

�1

(s�1Ki + Qi). Defining N̂i = (s + �)�1kiP
I
ii(0)M

�1

i ,
Ni = N̂i + (I � N̂iPii)Qi is given by (21), equivalently (14),
andQi 2 R

n �n is such thatdet(I � PiiQi)(1) 6= 0. Fix N1,
C1 by choosingQ1 (choosingQ1 = 0 satisfies this constraint). In
addition to S(P; Ci), S(P; C1; C2) is stable with integral-action
if and only if (23) is unimodular for someQ2 2 M(R), i.e.,

I + (X12 � P22)N2 = M12M
�1

2
+ (X12 � P22)(I � N̂2P22)Q2

= M12M
�1

2
(I � P22Q2 +M2M

�1

12
X12Q2), equivalently,W12

in (6) are unimodular. FixN2, C2 by choosingQ2 such that
det(I � P22Q2)(1) 6= 0 andW12 is unimodular (Q2 = 0 satisfies
these two constraints). Whenw � 3, S(P; Ci; C3), i = 1; 2, is also
stable with integral-action if and only if (23) is unimodular for some
Q3 2 M(R), i.e., I + (Xi3 � P33)N3 = Mi3M

�1

3
(I � P33Q3

+M3M
�1

i3 Xi3Q3), equivalently,Wi3 in (6) are unimodular,i = 1; 2.
The systemS(P; C1; C2; C3) is also stable with integral-action
if and only if (24) is unimodular for someQ3 2 M(R), i.e.,
I+(Z1

23�P33)N3 =M1

23M
�1

3
(I�P33Q3+M3(M

1

23)
�1Z1

23Q3),
equivalently,W 1

23 in (10) are unimodular. FixN3, C3 by choosing
Q3 such thatdet(I � P33Q3)(1) 6= 0, Wi3, i = 1; 2, W 1

23

are unimodular (Q3 = 0 satisfies these four constraints). When
w = 4, S(P; Ci; C4), i = 1; 2; 3, is also stable with integral-action
if and only if (23) is unimodular for someQ4 2 M(R), i.e.,
I + (Xi4 � P44)N4 = Mi4M

�1

4
(I � P44Q4 +M4M

�1

i4 Xi4Q4),
equivalently,Wi4 in (6) are unimodular,i = 1; 2; 3. The system
S(P; Cq; Cr; C4), q = 1; 2, r = q + 1; 3, is also stable
with integral-action if and only if (24) is unimodular for some
Q4 2 M(R), i.e., I + (Zq

r4 � P44)N4 = Mq
r4M

�1

4
(I � P44Q4

+M4(M
q
r4)
�1Zq

r4Q4), equivalently,W q
r4 in (10) are unimodular.

Finally, S(P; C1; C2; C3; C4) is also stable with integral-action
if and only if (25) is unimodular for someQ4 2 M(R), i.e.,
I + (G � P44)N4 = MgM

�1

4
(I � P44Q4 + M4M

�1

g GQ4),
equivalently,Wg in (13) is unimodular. InC4, Q4 2 M(R) is
chosen such thatdet(I � P44Q4)(1) 6= 0, Wi4, i = 1; 2; 3, W q

r4,
q = 1; 2, r = q + 1; 3, Wg are unimodular (Q4 = 0 satisfies these
eight constraints). WithCi as in (15),CD is a reliable decentralized
integral-action controller.

Proof of Corollary 1: By Lemma 1-b)-ii) , whenCi = (Ki=s) 2
M(Rs), there exist reliable decentralized integral-action controllers if
and only if the conditions of Lemma 1-b)-i) hold, which are equiva-
lent to those of Lemma 1-c) sincenyi = 1, i = 2; . . . ; w. Since
the assumptions of Proposition 1 hold,Ci can be chosen asCi =
s�1kiP

I
ii(0) with Qi = 0.
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Jump Linear Quadratic Regulator with
Controlled Jump Rates

E. K. Boukas and Z. K. Liu

Abstract—This note deals with the class of continuous-time linear sys-
tems with Markovian jumps. We assume that jump rates are controlled.
Our purpose is to study the jump linear quadratic (JLQ) regulator of the
class of systems. The structure of the optimal controller is established. For a
one-dimensional (1-D) system, an algorithm for solving the corresponding
set of coupled Riccati equations of this optimal control problem is provided.
Two numerical examples are given to show the usefulness of our results.

Index Terms—Controlled jump Markov process, dynamic programming,
jump linear quadratic regulator, jump linear system.

I. INTRODUCTION

Since the introduction of the framework of the class of jump linear
system (JLS) by Krasovskii and Lidskii [6], we have seen an increasing
interest for this class of systems. It was used to model different phys-
ical systems, like manufacturing systems, power systems, economics
systems, etc. For more information regarding the use of this class of
systems, we refer the reader to Mariton [7], Sethi and Zhang [8], and
the references therein.

Roughly speaking, a JLS is a hybrid one with state vector that has
two componentsx(t) andr(t). The first one is in general referred to
as the state and the second one is referred to as the mode. In its oper-
ation, the JLS will jump from one mode to another in a random way,
which makes this class of systems a stochastic one. The switching be-
tween the modes is governed by a Markov process with discrete and
finite state space. When the system mode is fixed, the system evolves
like a deterministic linear system. This kind of system can be used to
describe abrupt phenomena, such as component and interconnection
failures. Because of its extensive application, JLS has attracted a lot of
researchers, and therefore, vast literature in this field has appeared (see
Mariton [7], Costa and Boukas [9], and references therein).

The optimal control problem of JLS has been studied by many
authors (see Mariton [7], Costa and Boukas [9], and the references
therein). All of the authors focused on the feedback optimal regulator
of JLS and thus solved it successfully when the jump rates of the
Markov process are not controlled. Boukas and Haurie have proposed
some models in manufacturing systems in which the jumps rates are
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control variables. Boukas and Haurie [1] model the continuous flow
control problem in a manufacturing system by a multimode system
in which the state of the system is modeled by a Markov process.
The production rate and the jump rates (function of the age of the
machines) are determined by minimizing a given criterion. Instead of
using the age of the machines as in [1], Boukas [3] divides the age of
the machine to many regions, between which the state of the machine
switches in a logic sense and the production rate and the jump rate are
optimized at the same time.

The goal of this paper is to study the jump linear quadratic (JLQ)
regulator of the class of JLS with controlled jump rates. We deal with a
one-dimensional (1-D) problem and establish the optimal control law
for this optimization problem.

The paper is organized as follows. In Section II, the optimization
problem is formulated. In Section III, the main results of this paper are
given and two numerical examples are provided to show the usefulness
of the proposed results.

II. PROBLEM STATEMENT

Consider the class of linear systems with Markovian jumps, and let
xi 2

n, t 2 [0; 1) be the dynamic state of our system with mul-
tiple modes taking values in a set denoted byS = f1; 2; . . . ; sg. Let
the dynamics of our system be described by the following differential
equation:

x̂t = A(r(t))xt +B(r(t))ut; x0 given (1)

whereut is the control variable at timet, fr(t); t � 0g, r(t) 2 S , is
a Markov process giving the mode of the system at timet, A(r(t)) 2
n�n, B(r(t)) 2 n�m, 8 r(t) 2 S .
Assume that the Markov processr(t) has a generatorQ(w(t)) =

(qij(w
i
j(t))), i, j 2 S , whereqij(�) are nonnegative and increasing

functions andwi
j(t), j 2 S , wherej 6= i are control variables for each

i. The transition probabilities of the modes are described as follows:

P (r(t+�) = jjr(t) = i)

=
qij(w

i
j(t))�+ o(�); if j 6= i

1 + qi(w
i(t))�+ o(�); otherwise

wherewi(t) = (wi
1(t); . . . ; w

i
i�1(t),w

i
i+1(t); . . . ; w

i
s(t)),w

e
j (t) 2

W (a given set) are control variables.
The optimization problem is to seek a control law,(u(t); w(t)), that

minimizes the following cost function:

J(x0; r0; u(�); w(�))

= E
1

0

x
>

t M(r(t))xt + u
>

t N(r(t))ut

�dt jx(0) = x0; r(0) = r0 (2)

whereM(r(t)) are positive semidefinite andN(r(t)) are positive def-
inite for anyr(t) 2 S .

In the rest of this paper, we assume all of the required classical as-
sumptions for the existence of the solution of the optimization problem
we are dealing with (see Wonham [4]). We will also, for notation sim-
plicity, useAi to representA(i) when the moder(t) is equal toi.

III. M AIN RESULTS

The above optimal control problem falls into the framework of sto-
chastic optimal control. Two ways to solve this problem exist, dynamic

0018–9286/01$10.00 © 2001 IEEE


