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Reliable Decentralized Integral-Action Controller Design _ . R w1
71 er | 1 Yer Y
A. N. Gindesand M. G. Kabuli ' Cy ‘ >

Abstract—Reliable stabilizing controller design with integral-action is

: - :
considered for linear time-invariant, multi-input—-multi-output decentral- ' ) Yeuw % Yw
ized systems with stable plants. Design methods are proposed to achieve —’?—1—» Cuw ' ‘ >

—_ ]

reliable closed-loop stability with integral-action in each output channel for
asymptotic tracking of step-input references applied at each input. The de-
sign approaches guarantee stability and integral-action in the active chan-
nels when all controllers are operational and when any of the controllers is
set equal to zero due to failure.

Fig. 1. Thew-channel decentralized systefiP, C'p).

Index Terms—PDecentralized control, integral action, reliable stabiliza- ) )
tion. are stability under possible failure of controllers and integral action,

other performance criteria may be included in the designs due to the
freedom in choosing certain control parameters given in the explicit
design steps. The results are explored in detail for two-, three-, and

Reliable stabilizing controller design with integral-action ifour-channel decentralized systems, where the channels are assumed
considered for linear time-invariant (LTI), multi-input-multi-outputto be MIMO. Simplifications are also presented for the fully decen-
(MIMO), multichannel decentralized systems with stable plants. Thealized case with SISO channels. The proposed design methods can
goal is to achieve closed-loop stability with integral-action in eadbe extended to more than four channels. The main results are the ex-
output channel so that step-input references applied at each inputistence conditions for reliable decentralized integral-action controllers
asymptotically tracked (with zero steady-state error). Reliable stalgiven in Lemma 1 and the controller design methodology developed
lization with integral-action maintains stability and integral-actiofn Proposition 1. Corollary 1 states necessary and sufficient conditions
when any of the controllers fail. The model of controller failure usefbr existence of pure integral controllers and proposes an explicit de-
here assumes that a controller that fails is replaced by zero; the failgign when all channels except for channel one are restricted to have
is recognized and the corresponding controller is taken out of serviggingle output, which includes the special case of SISO channels. A
(i.e., the states in the controller implementation are all set to zegimple example is given to illustrate the design method of Proposition
the initial conditions and the outputs of the channel that failed are sefor a three-channel plant with SISO channels.
to zero for all inputs). Clearly, stability is still maintained when all Due to the algebraic framework, the results apply to continuous-time
controllers are set to zero since the open-loop plant is stable. If soerel discrete-time systems. A continuous-time setting was assumed
of the controllers fail, integral-action is still present in the outputs ghroughout; all evaluations and discussions involving poles and zeros
the channels with active controllers due to the integrators in thoaes = () should be interpreted at= 1 in the discrete-time case.
controllers. 1) Notation and Algebraic FrameworkThe region of instability/

The reliable stabilization problem was introduced in [9] and [10] anig the extended closed right-half plane (for continuous-time systems) or
has been studied with full-feedback and decentralized controllers [18]e complement of the open unit disk (for discrete-time systems). The
[14], [6], [11]. Reliable decentralized designs were given in [8] angets of real numbers, proper rational functions witlifypoles, proper
[12], which guarantee stability and satisfy performance criteria basard strictly-proper rational functions with real coefficients are denoted
on a givenH ., norm bound despite complete sensor or actuator oldy R, R , R,, andR.. The set of matrices with entries T is denoted
ages for any subset of a prescribed set of control channels; integraldagM (R); M is called stable iffdd € M(R)(M € R"v*™ indi-
tion is not a criterion in these designs. In [7], [2], [1], integral-actiorates the matrix ordery/ € M(R) is called unimodular if\d ' €
was considered in the decentralized configuration with single-inpit(R). A block-diagonal matrix whose entries are the matrides
single-output (SISO) channels that have gain uncertainty between zaipis denoted bydiag [N,, N;]. A right-inverse ofA € M(R) is
and one, and conditions on the steady-state gain of the plant were glenoted byd” € M(R). For M € M(R), the norm|| - || is de-
sented. Although reliable decentralized stabilizability conditions witfined as||M|| = sup,cqy, 7(M(s)), wherez denotes the maximum
integral action were given for two-channel and multichannel decesingular value 9/ denotes the boundary ¢f . Let P € M(R),
tralized configurations with stable plants (for example, in [4]), explicivhererank P = p; s, € I/ is called a (transmissioid)-zero of P iff

|. INTRODUCTION

design approaches were not explored in detail. rank P(s.) < p; s, is called a blocking/-zero of P iff P(s.) = 0.
In this note, the goals are: 1) to present necessary and sufficient con-
ditions that guarantee existence of reliable decentralized integral-ac- Il. ANALYSIS

tion controllers, and 2) to propose explicit algebraic design procedures i h I lized feedback
that actually achieve reliable stability with integral action. Although the Consider the LTI, MIMO;v-channel decentralized feedback system

e ) ; . C'p) shown in Fig. 1.P € Ry* " andCp € Rp“*"™¥ repre-
only criteria incorporated into the design approaches developed hg e ; P P
y P gn app P sent the transfer functions of the plant and the decentralized controller,

partitioned as
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¢ 2 bagi X Mgyq .
where P, € RMvA O € BT

2ima My = 300

1,...,w,ny = « > 0forthe continuous-time case afe < 1 for the discrete-time
i, nui. Itis assumed tha§ (P, Cp) is a well-  case). Therefore, the systefP, Cp) is stable with integral-action if
posed system (i.e., all closed-loop transfer functions are proper). l&isd only if
also assumed thdt andC'p have no hidden modes corresponding to

eigenvalues id/. AlthoughP € M(R), the decentralized controller

Cp is unstable (due to poles at zero for the integral-action requirement

and other possibl& poles). LetH., denote the (input-error) transfer

function fromr to e, wherer := [r{ ...r0]", v := [u] ...ul]",
€ = [6{ .- -ezlu 1 Y = [y{ . 'yff]Tv Ye = [yzj] . 'y(ltw]] . A con-

troller that fails is set equal to zero; the failure is recognized and the cor-

responding controller is taken out of service. Wher= 2, the only
possible failures are due to one controller failure. Wher= 3, the
failures are due to one or two controller failure. When= 4, the fail-
ures are due to one, two or three controller failure.Fer1, ..., w,
S(P, C;) denotes the system with only thth controller active and all
othersfailed. Foj = 2, ..., w,i=1,...,i—1,8(P, C;, C;) de-
notes the system with th¢h and;jth controllers active and all others
failed. Fork = 3, ..., w,j =2,...,k=1,i = 1,..., 57— 1,
S(P, C;, C;, Cy) denotes the system witkh, jth andkth controllers

S
0:=PN.+ ——D.
+

PNy + . D, PNy
s+ «
PN P N+ —>
wl 1 ww LY s + o w

)

is unimodular. Similarly, the systedi(P, C;) is stable with integral
action if and only if

N — - D,

0, =
s+ «

@)

active and the remaining controller failed. In these systems, the outptftsnimodular. The syste®i(P, Ci, C;) is stable with integral-action

of the inactive channels are not observed;i.e.ffer 1, ..., w, y.¢,
t#£iof S(P, Cy), Yer, L # i, L # jof S(P, Ci, Cy), yeo, £ # 4,
{# 7,0 #kof S(P, C;, Cj, Ci) are not observed.

We use the following standard definitions of stability and integral-

action (see [13] and [7]).

if and only if

P P
P P

s

@,’,j = |: :| diag [.N,j7 J\’Tj] + diag [D,j, D‘j] (4)

S a7

Definitions: (Stability, Reliable Decentralized Integral-Actionjs ynimodular. The systeii( P, C:, C;, Cy) is stable with integral-

Controller): 1) The systemS(P, Cp) is stable iff the transfer
function from(r, u) to (y, y.) is stable. The stabl§(P, C',) hasin-
tegral-actioniff H.,.(0) = 0.Fori =1, ..., w, the systen§(P, C})
is stable iff the transfer function froir;, ) to (v, y.:) is stable. The
stableS(P, C;) has integral action iff the transfer function fromto
e; has blocking zeros at zero. Fpr= 2. ..., w,i =1, ..., j — 1,
the systemS(P, C;, C;) is stable iff the transfer function from
(ri, 7j, u) 10 (y, yeis yej) is stable. The stabl&(P, C;, C;) has
integral-action iff the transfer function frorr;, »;) to (e:, e;) has
blocking zeros at zero. Fot 3,..,w, ) = 2,..., k=1,

i = 1,...,j — 1, the systemS(P, C;, C;, Cy) is stable iff the
transfer-function from(»;, r;, ri, u) 10 (¥, Yei, Yej. Yok ) IS Stable.
The stableS(P, C;, C;, Ci) has integral-action iff the transfer-func-
tion from (r4, 75, ri) to (e, ej, er) has blocking-zeros at zer@)
The controllerC';, = diag[C4, ..., Cw] is astabilizing controller
for the plantP (or C', stabilizesP) iff C, € M(R,;,) and the system
S(P, Cp) is stable.3) The controllerCp = diag[Ci, ..., Cu]

action if and only if©,;., defined similarly by taking the, j, kth
rows and columns 08, is unimodular. IfS(P, C'p) is stable with
integral action, therH..(0) = I,, — PC(I,, + PC)"'(0) = 0
impliesrank P(0) = n, < n,. SinceN; D' is an RCF ofC;, if
D;(0) = 0, thenrank N;(0) = n,; < n.;. Since these are nec-
essary for stability and integral action & P, C»), we assume that
P ¢ R™«*™= is full row-rank, has no (transmission) zeros at zero
(rank P(0) = n, < n,), and the number of outputs does not exceed
the number of inputs in each channel( < nu, i = 1, ..., w). If
S(P, C;) is stable with integral actior); € R"¥ *"v¢ unimodular
impliesrank (P;; N;)(0) = n,;. Therefore, foiS( P, C;) to be stable
with integral actionrank P;;(0) = ny; < nui.

Ill. DESIGN

Reliable decentralized integral-action controller design requires that
the systemss(P, Cp), S(P, C;), S(P, C;, C;), S(P, C;, C;, Ci)

is areliable decentralized integral-action controlléff the system are all stable with integral-action. In Lemma 1, we state the conditions
S(P, Cp) is stable with integral-action when all controllers ardor existence ofw-channel reliable decentralized integral-action con-
active and when any subset of the controllers are set equal to zdfgHers forw = 2. 3, 4. In Proposition 1, we propose a reliable de-
i.e., whenw = 2, all three systems(P, C'p), S(P, Ci),i = 1, 2, centralized integral-action controller design approach. We define the
are stable with integral action, when 3, all seven systems following to be used in the subsequent results.
S(P, Cp), S(P,Cy),i = 1,2,3andS(P, C;, C,), j = 2.3, Fori ,7:->1<37'7" w, letC; = N;(s/(s + «) D;)”" be an RCF of
i =1,...,j — 1, are stable with integral action, when = 4, all C: € B,*" " (Ni, Di € M(R), det Di(o0) # 0), —a € R\U.
fifteen systemsS(P, Cp), S(P, Ci),i = 1, ..., 4, S(P, C;, C;), LetP.(0) € R"«*"v denote aright-inverse df,;(0) € R"v X"
J=2....4i=1,...,j—1,andS(P, C;, Cj, C), k = 3, 4, For j 2, ...,w,i =1, ...,5 =1, defineX;;, € R"vi*"uj,
j=2,....,k=1,i=1,..., j—1,are stable with integral-actian. -X;(0) € R"#7*"«/ as (5); withk; to be specified as in Proposition
Itis well known thatC'’» € Rp**"¥ stabilizesP € R"v*"« ifand 1, defineli; € R"+>"+ as (6)
only if (D.. + PN,) is unimodular for any right-coprime-factorization
(RCF)Cp = N.D ' (Ne, Do € M(R),det D.(cc) # 0)[13], [3].
For any stabilizing controlle€n, the (input-error) transfer-function

Xij:==Pjj—P;iN; Py, Xi;(0) == (P;; — P;i P, Pi;)(0);

H..(0) = (I,,+PC)~"(0) = D.(D.+PN.)~"(0) = 0ifand only ) i o » ®)
if D.(0) =0.LetN; D' beanyRCFof;,i =1, ---, w.LetN, := Wij =1+ (Xij = Pi) L+ 57 ki Pj(0)Xi)™ Q. ()
diag [Ny, -+, N, D, := diag|[Ds, ..., D,]; thenN.D7" is an

RCF ofC'. The denominatoDd,.(0) = diag[D,, ..., D,J(0) =0 Whenw > 3,fork =1,....w—2,{,m = k+1,..., w, and
if and only if D. = (s/(s + «))D. for someD. € M(R),ie., (# m,defineY}, € Rrv*"wm Yk (0) € R'weX"wm as (7); for

D; = (s/(s+ a))D, forsomeD; € M(R), where—« € R\U/ (ile., v=3,....,w,¢q=1,...,v—=2,r =g+ 1,...,v — 1, define
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Z3, € RrwwXnwe 74 (0) € R"v»>*"=> as (8) and (9), andil’?, € Proposition 1 (Reliable Decentralized Integral-Action Controller

Rre=X"v as (10) Design): Let P € R™"+*"= be as in (1). Letank P(0) = n, < n.;
fori =1, ..., w, letrank P;;(0) = ny; < nyi. FOry =2, ..., w,

YE i= Pin — Pic N P i =1,...,j—1,let X;;(0)P}(0) € R"v*"vi be symmetric,
Y2, (0) := (Pom — Pu Pl Pem)(0) (7) Positive-definite for some right-invers@;;(0) of P;;(0), P/;(0)
0 iy - N lxrg of P;;(0). Whenw > 3,forv = 3,...,w,q = 1,...,v — 2,

Ziy = Xqo = Y NoI = PrgNoPyr Ni ) Y, r=q4+1,...,v—1,letZ%,(0)PL(0) € R"v**"v* be symmetric,
=Xgo = YIN(I+ (X4 — P )N,) 'Y, (8) positive-definite for some right-inversg!, (0) of P, (0), P/.(0) of

Z2.(0) :=(X,, - YL P (X, P.L) 'Y2)(0) ©) D (0). Whenw = 4, let G(0)P/,(0) € R"#+X"v+ be symmetric,

Wi =T+ (Z%, = Po)(I+ s~ ko PL(0)22,)7 Q.. (10) positive-definite. Foi = 1, ..., w, define

i N; = (I+s '"EPLOYP)™!
Whenw = 4, defineG € R"»+*"=4 G(0) € R"#+*"«4 as (11) and (It (0) i)

(12),W, € R"s4%"u as (13); (5T R PL(0) + Q) € R™ X7 (14)
Gi= 7L, — (Vi = YA No(I = Po Ny PiaNa) Y4 N, Under these assumptionSy = diag[Cy, ..., Cu) is a Lenllablg de-
N R centralized integral-action controller, whe€g¢ € R,* y 1=
(I +(Zz3 — Ps3)Ns) 1,.... w, is given by
: (Ysl4 - Y;;lzNz(I — PN PiaNo) 7'V, (11)
G(0) := Z34(0) — (Vi — Yio Pao (X 12 PJy) ™' Y ) Py, _1 [ kPL(0)
7(0) 1= Zoy Y43 12 Pas (X12Pss) 23) Ps3 Ci={I-Q:Py) + Qi (15)
(ZhPl) T (Vi = Vb PL (X1 PL)T'Y)(0) (12) ’
Wy =1+ (G — Pu)(I +s "k PL(0)G) T Qa. (13) wherek; € RandQ); € R"«*"v are chosen as follows. L& € R
9 Q

be such that
Lemma 1 (Existence Conditions for Reliable Decentralized Integral-
Action Controllers): Let P € R™+*"= be as in (1). LetP(0) be a 0< ki <|ls~"(Pri(s)P(0)=T)|™" (16)
right-inverse ofP%; (0) € R"#:*"wi § = 1,
a) Necessary Conditionsf there exist rellable decentralized inte-and letQ, € R™« "1 satisfydet(I — Q1 P11)(c0) # 0. Fix Q.
gral-action controllers’),, then the following conditions hold: Let*2 € R be such that
i) rank P(0) = ny, rank P;;(0) = ny:, i = 1, ..., w, and

ii) det(X;;(0)P);(0)) # 0, for some right-inversd“fi(o) of 0 <hy < min{|ls™ (Poa(5)P22(0) = D~
P,i(0), PL(0)of P;(0),j =2, ..., w,i=1,..., j—1,and ls ™ (X12(s) — X12(0)) Py (0)|| '} (17)
i) whenw > 3, det(Z2,(0)P],(0)) # 0, for some right-in-
verse P!, (0) of P,.(0), PL.(0) of P..(0),v = 3,...,w, andletQ: € R"=2*"+* satisfydet(] — Q2P22)(c0) # 0 andWis
g=1,...,v—2,r=¢+1,...,v—1,andiv) whenw = 4, is unimodular. Whenv > 3, fix Q2. Let ks € R be such that, for
det(G(0)PJ,(0)) # 0. i=1,2,

b) Necessary and Sufficient Conditiornis There exist reliable de-
centralized integral-action controlletSp if 1) the necessary 0 < ks < min{||s™" (Ps3(s)Pi5(0) — I)|| ™"
conditions ina} hold and2) det( ',,(0) P! ;(0)) > 0 for some |s™" (Xis(s) — Xig(o))p;{s(o)n—i
right-inverseP;; (0) of P;(0), P/} ( ofP“(O) j=2,...,w, 5~ (Zhs(5) = Z25(0)) P (0)| "'} (18)

i=1,...,j—1,and3)whenw > 3, det(Z%, (())P{U(o)) >
0 for some right-inversd{.’l,(o) of P,,(0), PT’T(O) of P..(0), and letQs € R"=#*"v3 satisfydet(I — Q3 Ps3)(oc) # 0, Wiz and

v=3.owg=Lov=2r=gqtl.v=1 page unlmodular When = 4, fix Qs. Letk4 € R be such that,
and4) whenw = 4, det( (0)PL(0)) > 0. ||) When the o, = 1L2.3,¢g=127r=q+1,....

plants off- d|agonal sub-block®;;, or P;;, j = 2,..., w, ’ ’

i =1,...,j5 — 1, are strictly-proper, or when any - 1 of 0<hy < min{||s’1(P44(s)Pf4(()) D!

thew controllersC‘h ..., Cy, are strictly-proper, or when these 1 , , I 1
transfer-functions have blockirig-zeros, conditioni2)—i4) be- [ls7 (Xia(s) = Xia(0) Pra (0)

come necessary: In these cases, there exist reliable decentralized I (28 (s) = ZL,(0) Pia(0)]| "
integral-action controller€’p if and only if conditionsil)—i4) ||,5.*1(G(,5.) — G(O))Pf4(0)||’1} (19)
hold.

c) Sufficient ConditionsThere exist reliable decentralized integraland letQQ, € R™«4*"s4 satisfydet(I — Q4 Pa4)(c0) # 0, Wi, W2,
action controllers”p if 1) the necessary conditions &) hold, W, are unimodular. O
and?2) X,;(0)P/;(0) is symmetric, positive-definite for some |f Q; = 0,thenC; = (K;/s) is a “pure integral” controllers; =
right-inverseP/;(0), P;;(0) of P;;(0), P;;(0),j = 2, .... w, k;PL(0). By Lemma 1-c), the assumptions of Proposition 1 are suffi-

i=1,...,j—1,and3) whenw > 3, Z£,(0)P/,(0) is sym- cient for existence of reliable decentralized integral-action controllers.
metric, positive-definite for some l’ight-invef%’u(()) P/.(0)  Corollary 1 states that these conditions aeeessary andufficient for

of Pu(0), P(0),v = 3,...,w,¢ = 1,...,v = 2,7 = existence of pure integral controllers when channels 2ach have
qg+1,...,v—1,and4) whenw = 4, G(O)P,ﬂ(()) is sym-  only a single output.
metric, positive-definite. O Corollary 1 (Pure Integral Controller Design):Let P € R™v <"«
In some cases, the conditions of Lemma 1-c) and b) are equivee as in (1). Letn,; = 1,7 = 2,...,w. There exists
lent [for example, when channels 2 througheach have only a single a reliable decentralized integral-action controllet’, =
output, i.e.jr,; = 1forj =2, ..., w because\;;(0)P5(0) € R,or  diag[(K1/s), ..., (Ku/s)], K; € R'«*"si i = 1, ..., w,

whenP;;(0)=00rP;;(0)=0,j=2, ..., w,i=1,...,j—1]. if and only if: 1) rank P(0) = n,, rank P;;(0) = nyi,i =1, ..., w,
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and2)forj =2,...,w,i=1,...,j — 1, X;;(0)P5(0) > 0, for APPENDIX
some right-inverseP;; (0) of P;;(0), P/;(0) of P;;(0), and3) when PROOFS
w23 forv=3,....wg=1...v=-2r=q¢+l....v-1 Proof of Lemma 1: a) i)lf S(P, Cp) is stable with in-

Z2,(0)PL,(0) > 0, for some right-inversé’, (0) of P,,(0), P1.(0)
of P..(0), and4) whenw = 4, G(0)P/,(0) > 0. Furthermore,
s~'K; can be chosen as 'k, P.(0), with k; € R as in (16)—(19) for

tegral-action, then® in (2) unimodular for any RCFCp =
N.((s/(s + «)D.)~' implies det(P(0)N.(0)) # 0,

i=1.93 4 0 rank P(0) = ny. If S(P, C;) is stable with integral-ac-
L_In ’Pr;) :)si.tion 1,Q; = 0 satisfies the unimodularity con on, i = L,....w, (3) implies ©; = 1., for some RCF
ditions; §1en Ch = dia (K1 /s) (Kw/s)], K Y OO ¢ = Ni((s/(s + a)) Di)™"; therefore,det(P;(0)N:(0)) # 0
T D SLARL/E) wees wieih B implies rank P (0) = ny;, Ni(0) = Pj(0) for some right-in-
RBu(0) € RUEL M Quy Qs Qo € MIR) salisty oo pligy of PL0). i) If S(P,Ci), i = L....w
1Qall < I(Xi2 = Poo) (I 4 57 RPuOX)7 7 gip e ey 7 2 0 i = 1., j — 1, are stable
. o - _ . —17, s N— — ” 2] DAl - [N ) — 3 ey [l
||st1|| < I;ml”()}?g P_?’fl 1(317 —g Zé1 ]LB]R*_S](O)X’?’? = with integral-action, then®;; in (4) unimodular for some RCF
I(Z2s = Pas) (I 4 s kaPs(0)Zs5)" 17 b MlQall < o "N j((5/(s + a)) Do)~ satisfying ©, = I implies

min{||(Xia — Paa) (I+ s~ " ka P4 (0)Xo0) |7 (22 = Paa) (T4
s a PL(OYZL) T G = Paa) (I + s "k PL(OYG) MY,
thenWia, Wiz, Way, Wi, W, W, are unimodular. The condition
det(I — Q;P;;)(c0) # 0 is satisfied for all); € M(R) when
Pii € M(£,); Ci € M(L,) itand only if Qi € M(R) N M(Bs). 6415 impliesdet(Z2,(0)PL,(0)) # 0, whereN,(0) = P! (0),
We now apply the reliable decentralized integral-action controlle%(o) — P’(0), No(0) = P/,(0).iv) Whenw = 4, if S(P, Cp)

design procedure in Proposition 1 to a three-channel plant with S|$s also stable with integral-action, thet(P(0)N.(0)) # 0 implies
channels that was considered in [2]. X ;

det(G(0) P4 (0)) # 0, whereN;(0) = P/(0),i = 1,2, 3, 4.b) i)

Example_ 1 (3-Channel Reliable Decentralized Integral-Action Cont the necessary conditionsa) hold. Letk; € R™« X"+ be such
troller Design): Let

det(I — P]'iA’viPL'j.N]") (0) = det(XU(O)P]I](O)) ;ﬁ 0, where
Ni(0) = PL(0), N;(0) = P5(0).iii)) Whenw > 3, if S(P, C),
S(P, C;, C;),8(P, Cy, Crr, Co)yv =3, ..., w,q=1, ..., v=2,
r=g¢q+1,...,v—1,are stable with integral-action, thén,,.,, uni-

that
1 0 2 (s+ ou)_1 sI+ Pi(s+ oz)_] K, =: M; (20)
P=|(G+D" 1 -4+ ,w=3ny,=1, X
0 4 1 is unimodular. DefiningV; := (s + a)*lKiMfl, all solutions of
ny; =1, rank P(0) = 3,rank P;;(0) = 1,7 =1, 2, 3. PiNi+(s/s+a)D; = I are

) ) Ni:=Ni4+ I - N:P)Q:
From (5), (7), (9).X12(0) = 1, X13(0) = 1, Xa3(0) = 1, K, (K
Y35(0) = 4, Y5(0) = =2, Z35(0) = 9. The assumptions = <I+ = P,;,;) < ~ +Q,:) (21)

s S

hold sinceX;;(0)P;;'(0) = 1,j = 2,3,i = 1,j — 1, and 1

Z35(0) P53 (0) = 9. By (14), N, := (s + ki) "L (ki + sQ,); finding Di =M; (I - PiQ:)

Xi2, Xus, Xog, Ysh, Yo5, Za5 from (5), (7), (8), anykx > 0, (s+ ) KN\

ko > 0 satisfy (16), (17)1Q1 € R must satisfyQ(oc) # 1, and =T <I+P“ s ) (I = PiQi) (22)

Wiz = 1 implies@: € R must satisfyQ»(oc) # 1. We choose
k1 = 10, ks = 0.5, Qy = 0, Q2 = 0. From (18),k; must S?t'Sfy for someQ, € R"=*"vi ThereforeS(P, C;) is stable with integral-
0 < k3 < 0.1136. Choosings = 0.1, Qs = 0, the corresponding re- action if and only ifC; = N.((s/(s + ) Di)™! € Rpm=*"w,
liable decentralized controlle€’, = diag[10/s, 1/2s, 1/10s]  \yhereN,, D, are given by (21)~(22) ar@, is such thatlet D; () =
'f' of Et‘)e puﬁre.) mtegf«’{! Oform; the poles of(P. Cp) are get(I—P,Q;)(c0) # 0. The systens (P, Ci, C;) is also stable with
{-9.9953, —0.5333 £ j0.7432, ~0.5381}. For an alternate design, integral-action if and only i), in (4) is unimodular; equivalently
letks = 10,Q1 = ((7.75° =465+ 135—14) /(s* + 75> + 165 +20));
then (17) and (18) hold for any, > 0,0 < ks < 0.1068.

: " I—P,N,P;N; =T+ (Xi; - P;;)N;
Choosingks = 0.5, ks = 0.1, Q> = 0, Q3 = 0, we obtain i iN; =T+ (Xi; = Pjj)N;

C) = (775" =365°+8352+1465+200) /5 (—6.75°+ 5357 +35+34), =1 = PjiNiPNj = PjiNiPi;(I = N Pj;)Q;
C, = 1/2s, C3; = 1/10s. The poles of S(P, Cp), are (23)
{-10.1223, —3.368 81, —1.0585, —1.0159 + 70.4816,

—1.0093 £ ;0.9767}. If other design specifications are given,is unimodular for some Q, c RM=35%X"yi  Sjince

then the design can be modified to satisfy these requirements 5y — P;,N;P,; N;, —P;;N;P;;(I — N,P;;)) is left-coprime,
choosing the controller paramete€3:, Q2, @s, subject to the there exists(); such that (23) is unimodular if and only if
unimodularity constraints. O det(I — P;;N;P;;N;) has the same sign at all blockig-zeros
of P;;N;P;;(I — N]-P,;,»). This pair is left coprime if and only if
rank [I - PjiNiPLj_N’j - J','NI'PZ‘]'(I - _/VJ'PJ'J')] = Nyy for all
s € U. Equivalently, by (20)rank [(s + LI)718;7LIJv_1X7;]'] = nyj,
We presented conditions for existence of reliable decentralized Mihich holds fors # 0; it also holds fors = 0 since
tegral-action controllers, and proposed explicit design approaches thett(X:;(0)P;)(0) # 0 implies rank X;;(0) = n,;. The only
achieve reliablev-channel decentralized stability with integral-actiorblocking (-zeros of P;;N;P;;(I — N;P;;) are ats, € U
for w = 2, 3, 4. Although the results explored two-, three-, and foursuch that(P;; N;P;;)(s;) = 0 and possibly ats = 0 [note
channel decentralized systems in detail, the proposed design methbd$! — N,;P;;) = det((s + a)"'sM; ). If 5, € U is a
can be extended to more than four channels by imposing additiobédcking-zero of P;; N, P;;, thendet(I — P;;N;P;;N;(s,)) = 1.
conditions (similar positive-definiteness assumptions) on the dc-gaiherefore det(I — P;; N P;; N,)(0) > 0 is sufficient; if Pj; N, P;;
matrices of higher-order minors of the plant. has no blockind/-zeros, then the sign at= 0 does not matter. By

IV. CONCLUSION
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(20), N;(0) = P},(0); hencedet(X;;(0)PL(0)) > 0 is sufficient
for existence of@); such that (23) is unimodular. When > 3,
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I + (.Xlz — PZZ)J\’Y'_) = 17\.[12./1[2_
A[12Al;1([ - PQQQ'Z

't (X12 — Poo)(I — szzz)Qz
+Mo M5 X 12Q), equivalently, Wis

S(p, C,, C., C,) is also stable with integral-action if and only ifin (6) are unimodular. FixN>, C: by choosing@- such that

Oy IS Unimodular. Equivalently

I+ (2% — P.,)N,
- I + (ZI v PUU)-Z\ATU + (Zgu - -Z\A/YUPU’L’)Q’U

(24)

va)(I -

is unimodular for some@, € WR"« X" By similar steps,
det(22,(0)PL,(0)) > 0 is sufficient for existence of), such that
(24) is unimodular. Whenv = 4, S(P, Ci, Cs, Cs, C4) is also
stable with integral-action if and only # in (2) is also unimodular.

Equivalently

4+ (G — Paa)N4

:I+(G— P44)IV4 + (G—P44)(I— I\A/Y4P44>Q4 (25)

is unimodular for some), € R"=*"v4, For existence ofQ,
such that (25) is unimodularlet(G(0)P/(0)) > 0 is suffi-
cient. Sincedet(X,;(0)P5(0)) > 0, det(Z2,(0)PL,(0)) > 0,
det(G(0)PL,(0)) > 0 are sufficient for existence @@;, Q., Q4 such
that (23)—(25) are unimodular, the four conditions of Lemma-1}-b)
are sufficient for existence of reliable decentralized integral-acti

controllers.ii) Since C; = N;((s/(s + a))D;)"" is an RCF,
Ci(s,) = 0fors, € U ifand only if N;(s,) = 0. If P, or P;;,
j=2,...,w,i=1...,5—1orifanyw —10of Cy, ..., Cy

have blockingl/-zeros (including infinity), then at such, € U,
det(I - PﬁA’vin]'_NJ'(SO)) = det(I —+ (Xvi]' - ij)Nj(so)) =1,
det(I +(Z}, — Puu)Nu(s0)) = 1,det(I 4+ (G — Pas)Ny(s0)) = 1.
In the presence of these blockitigzeros, if (23)—(25) are unimodular,
then these determinants are positive atsalf I/ includings = 0.
Therefore, det( X;5(0)P(0) > 0, det(ZZ,(0)PL,(0)) > 0,
det(G(0)PL(0)) >0 are necessarg) The sufficiency follows from
b)-i) since the determinants are positive in this case. O
Proof of Proposition 1:Let P.(0) be any right-in-
verse of P;(0), i = 1, w, such that the following are
symmetric, positive-definite: X; J(O)PI 0), j 2,
i =1,...,j — 1;whenw > 3, ZZ,(0)PL(0), v = 3,
q 1,...,1'—2,r g+ 1,. ,1v—1,when11,)
G(0)PL,(0). Let K; kini(O) € RrwiXnui
k1, ko, ks, ks satisfy (16)—(19). For 1,...,4,0 < ki <
lls=" (Pu(s)PL(0) — D)||~" implies M; (s + )7 'sI + P;
(s + &) 'k PL(0) € R"» X" is unimodular. By (17)—(19),
for j = 2,3,4,0 < kj < [ls7"(Xi; — Xi5(0)P5(0)] 7!
implies M;; = (s + a)7'sI + X;(s + o)™ 'k; ]](0) €
R™»i*"vi is unimodular. Whenw > 3, by (18), (19), for
v o= 3,40 < ky ls~*(Z28, — Z%,(0))PL(0)|~* implies
M7, (s + ) 'sI + 2%, (s+ a) "k, P, (0) € RMvv*"vv s
unimodular. Whenv = 4, G(0)P/,(0) is symmetric, positive-def-
inite; by (19),0 < ki < |[|s (G — G(0)PL(0) ||* implies
M, = (s+ ) 'sI + G (s + a) k4P, (0) € R"#*X"s* is
unimodular. As in the proof of Lemma 1-b), sindé; is unimodular
with K; = kPZL(0), all C; such thatS(P, O) is stable with
integral-action are”; = N;((s/(s + a)) D)™ = (I — Q:;P;)™"
(s'K: + (). Defining N; (s + ) "kPL0)M ",
N = N + (I - NiPii)Qi is given by (21), equivalently (14),
and@, € R"+*™vi js such thatlet(I — P;;Q;)(c0) # 0. Fix Ny,
C1 by choosing@: (choosing@: = 0 satisfies this constraint). In
addition to S(P, C;), S(P, C1, C,) is stable with integral-action
if and only if (23) is unimodular for som&). € M(R), i.e.,

...,w,

4,
where

det(I — Py2Q2)(c0) # 0 andWiz is unimodular Q2 = 0 satisfies
these two constraints). When > 3, S(P, C;, C3),i = 1, 2, is also
stable with integral-action if and only if (23) is unimodular for some
Qs € M(R),ie, T+ (X — Ps3)Ns = MisMy ' (I — Py3Qs

+ M3 M,  X:3Qs), equivalentlyl¥;s in (6) are unimodular, = 1, 2.
The systemS(P, Cy, C2, Cs) is also stable with integral-action
if and only if (24) is unimodular for som&); € M(R), i.e,
T+(Zs5— Pog) N3 = Moz My " (I— P33Qs+ Ms(Mas) ™" Z35Q3),
equivalently, W55 in (10) are unimodular. FixVs, Cs by choosing
Q;g such thatdet(I — PJJQJ)(QC) # 0, Wis, ¢ ]., 2, ‘/I/Y«_ylg
are unimodular @5 0 satisfies these four constraints). When
w=4,8(P, C;, C4),1 =1, 2, 3, is also stable with integral-action
if and only if (23) is unimodular for som&)s € M(R), i.e
I+ (X4 — Puu)Ny = M';,4AM471(I — PuQ4 +AM4M';1X714Q4),
equivalently,W;4 in (6) are unimodular; = 1, 2, 3. The system
S(P, Cq, Cr, C4), ¢ 1,2, r g + 1,3, is also stable
with integral-action if and only if (24) is unimodular for some
Qs € M(R), e, I+ (2%, — Puy)Ny = MLM; (T — PuaQa
+My (M) 22,Q.), equivalently, W2 in (10) are unimodular.
Finally, S(P, C4, Cs, C3, C4) is also stable with integral-action
if and only if (25) is unimodular for somé&)s € M(R), i.e
I+ (G — Pu)Ny = M,M7' (I — PuQa + MaM;'GQ4),

gquivalently, W, in (13) is unimodular. InCa, Qa € M(R) is

chosen such thatet(I — PssQ4)(o0) # 0, Wia, i = 1, 2, 3, W7,
qg=12,r=¢q+1, 3, W, are unimodular@, = 0 satisfies these
eight constraints). Witl; as in (15),C» is a reliable decentralized
integral-action controller. O
Proof of Corollary 1: By Lemma 1-bjii), whenC; = (K;/s) €
M(R.,), there exist reliable decentralized integral-action controllers if
and only if the conditions of Lemma 1) hold, which are equiva-
lent to those of Lemma 1-c) since,; = 1,¢ = 2, ..., w. Since
the assumptions of Proposition 1 hold; can be chosen a§; =
s 1k PA(0) with Q; = 0. O
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The goal of this paper is to study the jump linear quadratic (JLQ)

regulator of the class of JLS with controlled jump rates. We deal with a

. . . one-dimensional (1-D) problem and establish the optimal control law

Jump Linear Quadratic Regulator with for this optimization problem.

Controlled Jump Rates The paper is organized as follows. In Section Il, the optimization
problem is formulated. In Section IIl, the main results of this paper are
given and two numerical examples are provided to show the usefulness
of the proposed results.

Abstract—This note deals with the class of continuous-time linear sys-
tems with Markovian jumps. We assume that jump rates are controlled. Il. PROBLEM STATEMENT

Our purpose is to study the jump linear quadratic (JLQ) regulator of the . . . L
class of systems. The structure of the optimal controller is established. Fora ~ Consider the class of linear systems with Markovian jumps, and let

one-dimensional (1-D) system, an algorithm for solving the corresponding z; € R", ¢ € [0, oo) be the dynamic state of our system with mul-
set of coupled Riccati equations of this optimal control problem is provided.  tiple modes taking values in a set denotedSose {1, 2, ..., s}. Let
Two numerical examples are given to show the usefulness of our results. the dynamics of our system be described by the following differential

Index Terms—Controlled jump Markov process, dynamic programming,  equation:
jump linear quadratic regulator, jump linear system.

E. K. Boukas and Z. K. Liu

e = A(r(t))xe + B(r(¥))us, z0 given Q)
| INTRODUCTION whereu, is the control variable at timg {r(¢), t > 0},r(t) € S, is
Since the introduction of the framework of the class of jump linea Markov process giving the mode of the system at #mé(»(¢)) €
system (JLS) by Krasovskii and Lidskii [6], we have seen an increasif®f *", B(r(t)) € R**™,Vr(t) € S.
interest for this class of systems. It was used to model different phys-Assume that the Markov proces&t) has a generato(w(t)) =
ical systems, like manufacturing systems, power systems, econontigg(w’(t))), i, j € S, whereg;,(-) are nonnegative and increasing
systems, etc. For more information regarding the use of this classfefictions andv; (¢), j € S, wherej # ¢ are control variables for each
systems, we refer the reader to Mariton [7], Sethi and Zhang [8], ahdThe transition probabilities of the modes are described as follows:
the references therein.

Roughly speaking, a JLS is a hybrid one with state vector that has Pr(t+A) =jlr(t) =1i)
two components:(¢) andr(t). The first one is in general referred to [ ai(wiE)A 4 o(A), ifj#£1i
as the state and the second one is referred to as the mode. In its oper- T 114+ q,.(wi(t‘))g +o(A), otherwise

ation, the JLS will jump from one mode to another in a random way,

which makes this class of systems a stochastic one. The switching Waerew’ (t) = (wi(t). ..., wi_y(t),wi 1 (t), ..., wi(t)),wj(t) €
tween the modes is governed by a Markov process with discrete dftd(a given set) are control variables.

finite state space. When the system mode is fixed, the system evolveShe optimization problem is to seek a control law(¢), w(t)), that
like a deterministic linear system. This kind of system can be usedrtonimizes the following cost function:

describe abrupt phenomena, such as component and interconnection

failures. Because of its extensive application, JLS has attracted a lot of J(wo, 1o, u(-), w(-))
researchers, and therefore, vast literature in this field has appeared (see o Ty
Mariton [7], Costa and Boukas [9], and references therein). =k {/D [‘/”’ M(r(t)we +up N ("(t))“f]
The optimal control problem of JLS has been studied by many
authors (see Mariton [7], Costa and Boukas [9], and the references «dt |x(0) = o, 7(0) = 7‘0:| %)
therein). All of the authors focused on the feedback optimal regulator

of JLS and thus solved it successfully when the jump rates of the

Markov process are not controlled. Boukas and Haurie have propoddfreM (r(?)) are positive semidefinite anti(r(#)) are positive def-
some models in manufacturing systems in which the jumps rates e for anyr (1) 6 S. ) .
In the rest of this paper, we assume all of the required classical as-
sumptions for the existence of the solution of the optimization problem
Manuscript received November 10, 1998; revised March 1, 1999. Rege are dealing with (see Wonham [4]). We will also, for notation sim-
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