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Abstract

It is shown that a class of linear, time-invariant, multi-input–multi-output plants that all have poles at zero but do not
have other unstable poles can be simultaneously stabilized. A procedure is proposed to design a stable and strictly proper
simultaneously stabilizing controller. All simultaneously stabilizing controllers for this class are also characterized in terms
of a parameter matrix that has to satisfy a unimodularity condition. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Controller design for simultaneous stabilization of a set of linear time-invariant (LTI), multi-input–multi-
output (MIMO) plants is a challenging problem. The well-known parametrization of all stabilizing controllers
in the standard unity-feedback system leads to explicit necessary and su�cient conditions for existence of
controllers that simultaneously stabilize two given plants [5]. These remarkably simple conditions require that
a pseudo-plant associated with the two given plants has the parity-interlacing property (PIP), i.e., it has an
even number of poles between consecutive pairs of real-axis zeros in the region of instability. However, there
are no known necessary and su�cient conditions for existence of simultaneously stabilizing controllers for a
class of three or more arbitrary plants. Although it is obviously necessary for all pairs of plants in the given
class to satisfy the PIP, conditions restricted to checking the real-axis pole-zero locations are not su�cient to
guarantee that a single controller can stabilize all of the plants simultaneously [1,3]. However, in the absence
of necessary and su�cient conditions applicable to a completely general class of (three or more) plants, it
may be possible to conclusively answer the question of simultaneous stabilizability for some special classes
[2,4,6,7].
As a special case, we consider the class P = {Po; P1; : : : ; Pn} of n + 1 LTI MIMO plants that have no

other poles in the region of instability except at s = 0; furthermore, for j = 0; : : : ; n; (smPj) have full-rank
DC-gain matrices that are symmetric positive-de�nite multiples of (smPo)(0) (see Assumptions 2:1 for a
formal description of the class P). For the case of single-input–single-output (SISO) systems, this class can
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be described more explicitly: for j = 1; : : : ; n, the plants Pj all have exactly m poles at s = 0 but no other
unstable poles; furthermore, since all (smPj) have the same sign at zero, the lowest order coe�cients of
the numerator and denominator polynomials of (smPj) are of the same sign although the signs of all other
coe�cients can be arbitrary. These plants are simultaneously stabilizable; in fact, there exist stable and strictly
proper simultaneously stabilizing controllers.
A particularly interesting special class of SISO plants was considered in [6] (and extended to discrete-time

systems in [7]), where the SISO plants are all minimum-phase, strictly proper have the same high-frequency
gain sign. It was shown that these plants are simultaneously stabilizable and that the simultaneously stabilizing
controller can be stable and strictly proper. The simultaneous stabilization procedure proposed in the present
paper applies to a rather di�erent class of MIMO plants that are not necessarily minimum-phase or strictly
proper; their relative degrees (in the special SISO case) need not all be the same; however, their unstable
poles are at zero only. Although the class considered here includes �nitely many MIMO plants as “centers”
and proposes simultaneously stabilizing controller design that guarantees stabilization of these centers, “small”
perturbations around these centers are also stabilized using the same controller as in standard robustness
results.
The main result of this paper (Proposition 2:2) is a simple design procedure based on calculating m positive

real constants k1; : : : ; km that de�ne a stable simultaneously stabilizing controller, whose poles can be arbitrarily
pre-assigned. All simultaneously stabilizing controllers can be obtained from this central controller in terms
of a stable controller parameter that satis�es a restrictive unimodularity condition. Following the main result,
two simple examples are included to illustrate the design proposed in Proposition 2:2; the �rst example is for
a class of three SISO plants each with two poles at s=0, and the second example is for a class of ten 2× 2
MIMO plants. The proof of Proposition 2:2 is provided in the appendix.
Due to the algebraic framework described in the following notation, the results apply to continuous-time as

well as discrete-time systems; for the case of discrete-time systems, all evaluations and poles at s= 0 would
be interpreted at z = 1.

Notation. Let U be the extended closed right half-plane (for continuous-time systems) or the complement
of the open unit disk (for discrete-time systems). The sets of real numbers, rational functions (with real
coe�cients), proper and strictly proper rational functions, proper rational functions that have no poles in the
region of instability U are denoted by R; R; Rp; Rs;R, respectively. The set of matrices whose entries are in R
is denoted by M(R); M is called stable i� M ∈M(R) (a notation of the form M ∈Ri×j is used where it is
important to indicate the order of a matrix explicitly); a stable M is called R-unimodular i� M−1 ∈M(R).
For M ∈M(R), the norm ‖·‖ is de�ned as ‖M‖=sups∈ @U ��(M (s)), where �� denotes the maximum singular
value and @U denotes the boundary of U.

2. Main results

Consider the standard LTI, MIMO, unity-feedback system S(Pj; C) (see Fig. 1); S(Pj; C) is a well-posed
system, where Pj ∈Rny×nup and C ∈Rnu×nyp represent the transfer functions of the plant and the controller. It is
assumed that Pj and C have no hidden modes corresponding to eigenvalues in the region of instability U.

Fig. 1. The system S(Pj; C).



A.N. G�unde�s, M.G. Kabuli / Systems & Control Letters 37 (1999) 143–151 145

2.1. Assumption (Assumptions on Pj). The plant Pj ∈Rny×nup belongs to the class P:={Po; P1; : : : ; Pn}; for
j∈{0; 1; : : : ; n}, each Pj ∈P satis�es the following assumptions:

(i) smPj has no poles in U;
(ii) rank(smPj)(0) = rank(smPo)(0) = min{ny; nu};
(iii) if ny6nu, then (smPj)(0)=�j (smPo)(0), for some symmetric, positive-de�nite �j ∈Rny×ny ; if ny ¿nu,

then (smPj)(0) = (smPo)(0)	j, for some symmetric, positive-de�nite 	j ∈Rnu×nu .

Assumption 2:1(i) implies that the only U-poles of Pj are at s=0; Assumption 2:1(ii) implies that each Pj
in the class P has at least one entry that has exactly m poles at s=0; furthermore, Pj has no (transmission)
zeros at s= 0.
In the special case of SISO plants, it is possible to relate Assumptions 2:1 to the assumptions in [6] using a

transformation as follows: 1 Let Pj(s)∈Rp belong to the class P:={Po; P1; : : : ; Pn}. For j= {1; : : : ; n}, de�ne
P̂j ∈Rs as P̂j:=(Pj(1=s))−1; then the plants P̂j in the class P̂:={P̂o; P̂1; : : : ; P̂n} are all strictly proper and
minimum phase (i.e., have no �nite zeros in the region of instability) and have the same high-frequency gain
sign. Therefore, the �nite class P̂ of SISO plants satis�es the assumptions in [6] whenever the class P of
SISO plants satis�es Assumptions 2:1.
We use the following standard stability de�nitions: The system S(Pj; C) is said to be stable i� the

transfer-function H from (r; u) to (y; yC) is stable, i.e., H ∈M(R). The controller C is said to be a sta-
bilizing controller for the plant Pj (or C stabilizes Pj) i� C ∈M(Rp) and the system S(Pj; C) is stable. The
stabilizing controller C is said to simultaneously stabilize all Pj ∈P i� the system S(Pj; C) is stable for all
j∈{0; : : : ; n}.
In Proposition 2:2, we propose a design procedure for controllers that simultaneously stabilize all Pj ∈P.

In addition to �nding one such controller explicitly, all controllers can also be characterized based on one of
the plants, Po, which we call the nominal plant. The choice of the nominal plant in the class P is completely
arbitrary.

2.2. Proposition (Controllers stabilizing Pj ∈P). Let Pj ∈Rny×nup belong to the class P:={Po; P1; : : : ; Pn}
satisfying Assumptions 2:1. For i = 1; : : : ; m, let −�i ∈R \U. For j∈{0; 1; : : : ; n}, de�ne

Nj:=
sm∏m

i=1(s+ �i)
Pj ∈Rny×nu : (1)

(a) If rank(smPo)(0) = ny6nu, let No(0)I be any right-inverse of No(0). Let k1 ∈R be such that
0¡k1¡ min

j∈{0;:::; n}

∥∥s−1(�jI − NjNo(0)I )∥∥−1 : (2)

For �= 2; : : : ; m; let k� ∈R be such that

0¡k�¡ min
j∈{0;:::; n}

∥∥∥∥∥∥s−1
(
I + NjNo(0)I

�−1∑
i=1

1
si

i∏
l=1

kl

)−1(
I + NjNo(0)I

�−2∑
i=1

1
si

i∏
l=1

kl

)∥∥∥∥∥∥
−1

: (3)

All Pj ∈P can be simultaneously stabilized by the stable controller Co ∈Rnu×ny given by

Co =
No(0)I∏m
i=1(s+ �i)

m∑
i=1

sm−i
i∏

l=1

kl: (4)

Furthermore, all controllers C that simultaneously stabilize all Pj ∈P are given by

C = (I − QNo)−1
(

sm∏m
i=1(s+ �i)

Q + Co

)
; (5)

1 This transformation relating Assumptions 2:1 to the assumptions in [6] was pointed out by an anonymous reviewer.
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where Q∈Rnu×ny is such that

Dj:=I + Q(Nj − No)
(
I + No(0)INj

m∑
i=1

1
si

i∏
l=1

kl

)−1
(6)

is R-unimodular; j∈{1; : : : ; n}; and (I−QNo) is biproper (which holds for all Q∈M(R) when Po ∈M(Rs)).
(b) If rank(smPo)(0) = nu ¡ny, let No(0)L be any left-inverse of No(0). Let k̂1 ∈R be such that

0¡k̂1¡ min
j∈{0;:::; n}

‖ s−1(	jI − No(0)LNj) ‖−1 : (7)

For �= 2; : : : ; m; let k̂� ∈R be such that

0¡k̂�¡ min
j∈{0;:::; n}

∥∥∥∥∥∥s−1
(
I + No(0)LNj

�−1∑
i=1

1
si

i∏
l=1

k̂l

)−1(
I + No(0)LNj

�−2∑
i=1

1
si

i∏
l=1

k̂l

)∥∥∥∥∥∥
−1

: (8)

All Pj ∈P can be simultaneously stabilized by the stable controller Ĉo ∈Rnu×ny given by

Ĉo =
No(0)L∏m
i=1(s+ �i)

m∑
i=1

sm−i
i∏

l=1

k̂l: (9)

Furthermore, all controllers C that simultaneously stabilize all Pj ∈P are given by

C =
(

sm∏m
i=1(s+ �i)

Q̂ + Ĉo

)
(I − NoQ̂)−1; (10)

where Q̂∈Rnu×ny is such that

D̂j:=I + Q̂

(
I + NjNo(0)L

m∑
i=1

1
si

i∏
l=1

k̂l

)−1
(Nj − No) (11)

is R-unimodular, j∈{1; : : : ; n}; and (I−NoQ̂) is biproper (which holds for all Q̂∈M(R) when Po ∈M(Rs)).

2.3. Comments. (a) The simultaneously stabilizing controller in (5) for the plant class P is based on the
simple calculation of m scalar constants k1; : : : ; km as de�ned in (2) and (3). For the case of ny6nu, the block
diagram of the system S(Pj; C), where C is given by (5), is shown in Fig. 2; a similar block diagram can
be obtained for the case of nu ¡ny from (10).
(b) The simultaneously stabilizing controller Co proposed in (4) is stable and strictly proper. The m real

poles of the controller Co are pre-assigned to any desired negative real-axis locations with the choice of the
real constants (positive for continuous-time case) �1; : : : ; �m.

Fig. 2. The stable system S(Pj; C), where Pj ∈P; ny6nu, and Q satis�es (6).
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(c) The stable controller-parameter Q in the simultaneously stabilizing controller characterization (5) must
satisfy the unimodularity condition (6). This condition is obviously satis�ed for Q = 0, corresponding to the
central controller Co given in (4). Some additional possible choices for the stable controller-parameter Q
satisfying (6), other than Q = 0, can be obtained as follows: For convenience, de�ne K ∈Rnu×ny as

K :=No(0)I
m∑
i=1

1
si

i∏
l=1

kl: (12)

Since the constants k1; : : : ; km satisfy (2) and (3), the matrix Mj ∈Rny×ny de�ned by

Mj:=
sm∏m

i=1(s+ �i)
(I + NjK) (13)

is R-unimodular, for all j∈{0; : : : ; n}. Therefore, (I +KNj)−1 = I −CoM−1
j Nj is stable. A su�cient condition

to satisfy (6) is to choose Q∈M(R) ‘su�ciently small’, i.e.,

‖ Q ‖¡ min
j∈{1;:::; n}

∥∥(Nj − No)(I + KNj)−1∥∥−1 : (14)

In addition, choosing Q∈M(R) strictly proper is a su�cient condition for (I−QNo) to be biproper; note that
the simultaneously stabilizing controller is strictly proper if and only if Q∈M(R) is strictly proper. Similar
comments apply to the choice of Q̂ satisfying (11) for the case of nu ¡ny.
(d) Using the characterization (5) of all simultaneously stabilizing controllers for the plant class P, we obtain

the following achievable closed-loop transfer functions for the stabilized system S(Pj; C): For j∈{0; : : : ; n},
the (input–output) transfer-function Hyj =PjC(I +PjC)−1 from r to y and the (input-error) transfer-function
Hej = I − Hyj from r to e are achievable using the controllers in (5) if and only if Hyj = Nj(I + KNj +
Q(Nj −No))−1(Q+K) =Nj(I +KNj)−1D−1

j (Q+K); Hej = I −Hyj = (I +Nj(I −QNo)−1(Q+K))−1, where
Q∈Rnu×ny is such that the unimodularity condition (6) on Dj ∈Rnu×nu holds and (I −QNo) is biproper. The
expressions for these transfer functions are simpli�ed for the nominal plant Po as Hyo = (I + NoK)−1No(Q+
K); Heo = (I + NoK)−1(I − NoQ). Note that the stable system S(Pj; C) has integral action, i.e., Hej(0) = 0,
due to the poles of Pj at zero. This guarantees asymptotic tracking of step inputs applied at each channel
of r; in fact, polynomial inputs of order up to m − 1 are tracked asymptotically with zero steady-state error
due to the m plant poles at zero. Additional design goals may be achievable by appropriately selecting the
controller-parameter Q in (5).

In Examples 1 and 2 below, we design simultaneously stabilizing controllers based on Proposition 2:2. Note
that any member of the class P can be chosen as the nominal plant Po.

Example 1. Consider the class P of SISO plants de�ned as

P:=
{
Po =

−120
s2

; P1 =
(5s− 72)(s+ 6)(s+ 10)

s2(s+ 4)(s+ 12)
; P2 =

(2s2 − 49s− 140)(s+ 6)(s+ 10)
s2(7s2 + 36s+ 75)

}
:

The plants Po; P1; P2 ∈P satisfy Assumptions 2:1(i)–(iii), where m = 2; (s2Po)(0) = −120, (s2P1)(0) =
−90; (s2P2)(0)=−112. In this case, �j are positive real constants since ny = nu=1; i.e., �1 = 3

4¿ 0; �2 =
14
15¿ 0. Choosing �1 = 6; �2 = 10, No; N1; N2 ∈R de�ned in (1) are given by

No =
−120

(s+ 6)(s+ 10)
; N1 =

5s− 72
(s+ 4)(s+ 12)

; N2 =
2s2 − 49s− 140
(7s2 + 36s+ 75)

:

With No(0) =−2, we choose k1; k2 ∈R satisfying (2) and (3) as

k1 = 3¡ min
j∈{0;1;2}

∥∥∥∥s−1
(
�j +

1
2
Nj

)∥∥∥∥
−1
; k2 = 1¡ min

j∈{0;1;2}

∥∥∥∥∥s−1
(
1− k1

2s
Nj

)−1∥∥∥∥∥
−1
:
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By (4), the stable, strictly proper simultaneously stabilizing controller Co is

Co =
−3(s+ 1)

2(s+ 6)(s+ 10)

and by (5), all simultaneously stabilizing controllers are given by

C =
(
1 + Q

120
(s+ 6)(s+ 10)

)−1( s2

(s+ 6)(s+ 10)
Q + Co

)
;

where Q∈R is such that Dj in (6) is R- unimodular; note that (1−QNo) is biproper for all Q∈R since Po
is strictly proper in this example.

Example 2. Consider the class P= {Po; P1; P2; P3 =Po�; P4 =P1�; P5 =P2�; P6 =Po+P1; P7 =Po−P2; P8 =
P2 − P1; P9} of ten MIMO plants, where

Po =


 −5
s(s+3)

s−1
s+8

s−1
s(s+4)

2(s−1)
s(s+1)


 ; P1 =


 (s−2)(s+10)

16s(s+1)(s+12)
9
16

(3s2+7s−3)(s+10)
48s(s+5)(s+8)

(s3+5s−4)(s+5)
8s(s+1)2(s+20)


 ;

P2 =


 5s−7
s(s+1)(s+6)

s2

(s+2)2

7(s−1)
4s(s+10)

9s5−7
s(s+5)(s+1)4


 ; �=

[ 1
(s+2)(s+5) 0

5s
s+9

9−s
10(s+9)

]
; P9 =

[ −(s+10)
s 0

−3(s+10)
20s

−6(s+10)
5s

]
:

The plants Pj ∈P satisfy Assumptions 2:1(i)–(iii), where m=1. In this case, the symmetric, positive-de�nite
matrices �j are all diagonal; i.e., (sPj)(0)=�j(sPo)(0) with �j=�jI2 for �1 = 1

16 , �2 =0:7, �3 =0:1, �4 =
1
160 ,

�5 = 0:07, �6 = 17
16 , �7 = 0:3, �8 =

51
80 , �9 = 6. Choosing �1 = 10, No(0)∈R2×2 and its inverse No(0)−1 are

given by

No(0) =
[ −1=6 0
−1=40 −1=5

]
; No(0)−1 =

[ −6 0
3=4 −5

]
:

We choose k1¿ 0 satisfying (2) as

k1 = 0:32¡ min
j∈{0;:::;9}

∥∥s−1(�jI − NjNo(0)−1)∥∥−1 :
By (4), the stable, strictly proper simultaneously stabilizing controller Co is

Co =
k1No(0)−1

s+ �1
=

1
s+ 10

[−1:92 0
0:24 −1:60

]
and all simultaneously stabilizing controllers are given by (5).

Appendix A

Proof of Proposition 2.2. (a) Let ny6nu. For j∈{0; : : : ; n}, Nj(0)=�jNo(0) implies Nj(0)No(0)I =�jI and
hence, s−1(�jI −NjNo(0)I )∈M(R). Choose any positive constant k1 ∈R satisfying (2). De�ne X1j and M1j
as

X1j:=(sI + k1�j)−1sI + (sI + k1�j)−1k1NjNo(0)I = I − (sI + k1�j)−1k1s
(
�jI − NjNo(0)I

s

)
;

M1j:=
(sI + k1�j)
(s+ �1)

X1j =
s

s+ �1
I + NjNo(0)I

k1
s+ �1

: (A.1)

Since k1 satis�es (2) and �j is symmetric, positive de�nite, for j∈{0; : : : ; n}, X1j ∈Rny×ny is R-unimodular,
equivalently, M1j ∈Rny×ny is R-unimodular. If m¿ 1, let k2 ∈R be a positive constant satisfying (3) for �=2.
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For j∈{0; : : : ; n}, ((s+�1)−1M−1
1j NjNo(0)

I k1)(0)=I implies s−1(I−(s+�1)−1M−1
1j NjNo(0)

I k1)∈M(R). De�ne
X2j and M2j as

X2j :=
s

s+ k2
I +

M−1
1j NjNo(0)

I k1k2
(s+ �1)(s+ k2)

= I − k2s
(s+ k2)

[
1
s

(
I − M−1

1j NjNo(0)
I k1

s+ �1

)]

= I − k2sM−1
1j

(s+ k2)(s+ �1)
= I − k2s

(s+ k2)s

(
I + NjNo(0)I

k1
s

)−1
;

M2j :=
(s+ k2)
(s+ �2)

X2j =
s

s+ �2
I +

M−1
1j NjNo(0)

I k1k2
(s+ �1)(s+ �2)

: (A.2)

Since by (3), k2 satis�es 0¡k2¡minj∈{0;:::; n}
∥∥s−1(I + NjNo(0)I s−1k1)−1∥∥−1, for j∈{0; : : : ; n}, X2j ∈Rny×ny

is R-unimodular, equivalently, M2j is R-unimodular.
Continue similarly with k� satisfying (3), for �=3; : : : ; m. For j∈{0; : : : ; n}, (∏m−1

i=1 (s+�i)
−1(
∏m−1
i=1 Mij)

−1

NjNo(0)I
∏m−1
i=1 ki)(0) = I . Since

1
s


I −

(
m−1∏
i=1

Mij

)−1
NjNo(0)I

m−1∏
i=1

ki
(s+ �i)


= M−1

(m−1)j
s+ �(m−1)

=s−1
(
I + NjNo(0)I

m−1∑
i=1

1
si

i∏
‘=1

k‘

)−1(
I + NjNo(0)I

m−2∑
i=1

1
si

i∏
‘=1

k‘

)

and since km satis�es (3) for � = m, it can be shown as in the case of � = 2 above that Mmj ∈Rny×ny is
R-unimodular, where

Mmj:=
s

s+ �m
I +

(
m−1∏
i=1

Mij

)−1
NjNo(0)I

m∏
i=1

ki
(s+ �i)

: (A.3)

By (A.1) and (A.2), since M1j and M2j are R-unimodular, (M1jM2j) is R-unimodular, where

M1jM2j =
s2∏2

i=1(s+ �i)
I +

s2∏2
i=1(s+ �i)

NjNo(0)I
2∑
i=1

1
si

i∏
‘=1

k‘:

Similarly, Mj:=
∏m
i=1Mij is R-unimodular for all j∈{0; : : : ; n}, where

Mj =
sm∏m

i=1(s+ �i)
I +

sm∏m
i=1(s+ �i)

NjNo(0)I
m∑
i=1

1
si

i∏
‘=1

k‘=:
sm∏m

i=1(s+ �i)
(I + NjK): (A.4)

With K and Co related as

sm∏m
i=1(s+ �i)

K =
sm∏m

i=1(s+ �i)
No(0)I

m∑
i=1

1
si

i∏
‘=1

k‘ =
No(0)I∏m
i=1(s+ �i)

m∑
i=1

sm−i
i∏
‘=1

k‘ = Co;

we write Mo:=
∏m
i=1Mio =

sm∏m

i=1
(s+�i)

I + NoCo from (A.4) and obtain


 I Co

−No sm∏m
i=1(s+ �i)

I


[ I − CoM−1

o No −CoM−1
o

M−1
o No M−1

o

]
= Inu+ny : (A.5)

By (A.5), it follows using standard arguments (see for example [5]) that the controller C stabilizes

Po =
(

sm∏m
i=1(s+ �i)

I
)−1

No
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if and only if

C = (I − QNo)−1 sm∏m
i=1(s+ �i)

(Q + K) =
(
CoM−1

o + (I − CoM−1
o No)Q

)
(M−1

o (I − NoQ))−1;

as claimed in (5). This controller stabilizes all

Pj =
(

sm∏m
i=1(s+ �i)

I
)−1

Nj ∈P

in addition to Po if and only if Q∈M(R) is such that

sm∏m
i=1(s+ �i)

M−1
o (I − NoQ) + Nj(CoM−1

o + (I − CoM−1
o No)Q)

=MjM−1
o (I − NoQ +MoM−1

j NjQ)

=MjM−1
o [I + (Nj − No)(I + KNj)−1Q] (A.6)

is R-unimodular, equivalently, [I+(Nj−No)(I+KNj)−1Q] R-unimodular (since MjM−1
o is R-unimodular) as

claimed in (6). Note that (A.6) is unimodular for Q=0 and hence, Co given in (4) simultaneously stabilizes all
Pj ∈P. One last technicality is to choose the controller-parameter Q∈M(R) so that the stabilizing controllers
are proper; the controller C in (5) is proper if and only if (I − NoQ) is biproper, equivalently (I − QNo) is
biproper.
(b) The proof for the case of nu ¡ny is entirely similar, so we brie
y outline the important steps.

For j∈{0; : : : ; n}; Nj(0) = No(0)	j implies No(0)LNj(0) = 	j. If k̂1 ∈R satis�es (7), then M̂ 1j ∈Rnu×nu is
R-unimodular for j∈{0; : : : ; n}, where

M̂ 1j:=
s

s+ �1
I +

k̂1
s+ �1

No(0)LNj: (A.7)

Since k̂m satis�es (8), M̂mj ∈Rnu×nu is R-unimodular for j∈{0; : : : ; n}, where

M̂mj:=
s

s+ �m
I +

(
m−1∏
i=1

M̂ ij

)−1 m∏
i=1

k̂ i
(s+ �i)

No(0)LNj: (A.8)

Continuing as in part (a) above, M̂ j:=
∏m
i=1 M̂ ij is R-unimodular, where

M̂ j =
sm∏m

i=1(s+ �i)
I +

sm∏m
i=1(s+ �i)

(
m∑
i=1

1
si

i∏
‘=1

k̂‘

)
No(0)LNj =:

sm∏m
i=1(s+ �i)

(I + K̂Nj): (A.9)

With K̂ and Ĉo related as

sm∏m
i=1(s+ �i)

K̂ =
sm∏m

i=1(s+ �i)

(
m∑
i=1

1
si

i∏
‘=1

k̂‘

)
No(0)L =

No(0)L∏m
i=1(s+ �i)

m∑
i=1

sm−i
i∏
‘=1

k̂‘ = Ĉo;

we write M̂ o:=
∏m
i=1 M̂ i0 = sm=[

∏m
i=1(s+ �i)]I + ĈoNj from (A.9) and obtain[

M̂
−1
o M̂

−1
o Ĉo

−NoM̂−1
o I − NoM̂−1

o Ĉo

]
 sm∏m

i=1(s+ �i)
I −Ĉo

No I


= Inu+ny : (A.10)

By (A.10), the controller C stabilizes

Po = No

(
sm∏m

i=1(s+ �i)
I
)−1

if and only if

C =
sm∏m

i=1(s+ �i)
(Q̂ + K̂)(I − NoQ̂)−1 = ((I − Q̂No)M̂−1

o )
−1(M̂

−1
o Ĉo + Q̂(I − NoM̂

−1
o Ĉo));
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as claimed in (10). This controller stabilizes all Pj ∈P in addition to Po if and only if

(I − Q̂No)M̂−1
o

sm∏m
i=1(s+ �i)

+ (M̂
−1
o Ĉo + Q̂(I − NoM̂

−1
o Ĉo))Nj

=(I − Q̂No + Q̂NjM̂−1
j M̂ o)M̂

−1
o M̂ j = [I + Q̂(Nj − No)(I + NjK̂)−1]M̂−1

o M̂ j (A.11)

is R-unimodular, equivalently, D̂j in (11) is R-unimodular. Since (A.11) is R-unimodular for Q̂=0, Ĉo given
in (9) simultaneously stabilizes all Pj ∈P. Again, the controller C in (10) is proper if and only if (I − Q̂No)
is biproper.
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