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Abstract 
It is shown that a class of linear, time-invariant, multi- 
input multi-output plants that all have zeros at infinity 
or at zero but do not have other unstable poles can be 
simultaneously stabilized. A procedure is proposed to 
design simultaneously stabilizing controllers. All simul- 
taneously stabilizing controllers for these classes are also 
characterized in terms of a parameter matrix that has 
to satisfy a unimodularity condition. 

1 Introduction 
Controller design for simultaneous stabilization is a 
challenging problem. The well-known parametriza- 
tion of all stabilizing controllers in the standard unity- 
feedback system leads to explicit necessary and suffi- 
cient conditions for existence of controllers that simul- 
taneously stabilize two given plants [ 5 ] .  These simple 
conditions require that a pseudo-plant associated with 
the two given plants has the parity-interlacing-property 
(PIP). However, there are no known necessary and suf- 
ficient conditions for existence of simultaneously stabi- 
lizing controllers for a general class of three or more 
arbitrary plants. Conditions restricted to checking the 
real-axis pole-zero locations are not sufficient to guar- 
antee existence of simultaneously stabilizing controllers 
[l, 31. In the absence of necessary and sufficient condi- 
tions applicable to a completely general class of (three or 
more) plants, it may be possible to conclusively answer 
the question of simultaneous stabilizability for some spe- 
cial classes [6, 2, 41. As a special case, we consider the 
class P = {Po, Pi, . . . , P,} of n + 1 linear time-invariant 
(LTI), multi-input multi-output (MIMO) plants that 
have no other zeros in the region of instability except 
at infinity or at zero; the plants all have w blocking- 
zeros at s = 00 and m blocking-zeros at s = 0, where 
w or m are non-negative integers. Although the class 
considered here includes finitely many MIMO plants as 
"centers" and proposes simultaneously stabilizing con- 
troller design that guarantees stabilization of these ten- 
ters, "small" perturbations around these centers are also 
stabilized using the same controller as in standard ro- 
bustness results. The main result (Proposition 2.2) is a 
simple design procedure based on calculating w positive 
real constants ICl, . . . , IC, and m positive real constants 
f i  , . . . , fm that define a simultaneously stabilizing con- 
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troller. All simultaneously stabilizing controllers can 
be obtained from this central controller in terms of a 
stable controller-parameter satisfying a restrictive uni- 
modularity condition. Due to the algebraic framework, 
the results apply to continuous-time as well as discrete- 
time systems. A continuous-time setting was assumed 
throughout for simplicity; in the discrete-time case, all 
evaluations and discussions involving poles and zeros at 
s = 0 should be interpreted at z = 1. 
Notation: Let U be the extended closed right-half-plane 
(for continuous-time systems) or the complement of the 
open unit-disk (for discrete-time systems). The sets of 
real numbers, rational functions (with real coefficients), 
proper and strictly-proper rational functions, proper ra- 
tional functions that have no poles in the region of in- 
stability U are denoted by Et, F, R,, %, R. The set of 
matrices whose entries are in 72. is denoted by M ( R ) ;  M 
is called stable iff M E M ( R ) ;  a square M E M ( R )  is 
called unimodular iff M-l  E M ( R ) .  For M E M ( R ) ,  
llMll := supsEaui?(M(s)), where i? denotes the maxi- 
mum singular value, bU denotes the boundary of U. 

2 Main Results 
Consider the standard LTI, MIMO, unity-feedback sys- 
tem S(Pj ,  C), where Pj : e p  H y, C : e I+ yc, e = r - y ,  
e p  = yc + U ;  Pj E RpnYxn~ and C E RpnYxnu represent 
the transfer-functions of the plant and the controller. It 
is assumed that Pj and C have no hidden modes corre- 
sponding to eigenvalues in U. 
2.1. Assumptions: The plant Pj E Rpnyxny belongs 
to the class P := {Po,  Pi , .  . . , Pn}; for j E (0, 1, . . . , n} ,  
each Pj E P satisfies the following assumptions: z) 
(normal) rankPj = n,; iz) Pj has exactly 20 blocking- 
zeros at 00 and exactly m blocking-zeros at zero (i.e., 

~ - ~ P j ( 0 )  # 0) but it has no other transmission-zeros 
in U ;  w and m are non-negative integers; iii) when 
w # 0, (s"Pj)(w)Aj = ( s " P o ) ( ~ ) ,  for some sym- 
metric positive-definite matrix Aj E ntnyxn,; iv) when 
m # 0, (s-"Pj)(O)Oj = ( S - ~ P ~ ) ( O ) ,  for some symmet- 

cl 
The system S(Pj,  C) is said to be stable iff the transfer- 
function H from ( T , u )  to (y,yc) is stable, i.e., H E 
M ( R ) .  The controller C is said to be a stabiliz- 
ing controller for the plant Pj (or C stabilizes Pj) iff 
C E M(R,) and the system S(Pj ,C)  is stable; C is 

sw-'Pj(0O) = 0, S"Pj(0O) # 0, s-'""Pj(o) = 0, 

ric positive-definite matrix Oj E n t n ~ X n ~ .  
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said to simultaneously stabilize all Pj E P iff the sys- 
tem S(Pj, C) is stable for all Pj E P.  
A simultaneously stabilizing controller design procedure 
for the class P is given in Proposition 2.2. In addition 
to finding one such controller explicitly, all controllers 
can also be characterized based on one of the plants, 
Po, called the nominal plant. The choice of the nominal 
plant in the class P is completely arbitrary. 
2.2. Proposition: Let Pj E RpnYxny belong to the 
class P := {Po, 9,. . . , Pn}. For i = 1 , .  . . , w, let 
-ai E IR\U; for i = 1 , .  . .,m, let -pi E IR\U. For j E 
{0 ,1 ,  ..., n}, define Pj =: DY1 

where Dj E M ( R ) ,  detDj(m)  # 0. Let kl E IR be 

For v = 2 , .  ..,w, let kv E IR be such that k, > 
maxj.s{o,...,n} I I S ( I  + D j R 1 ( m )  Ci=1 s nL,& 1-l 
( I  + DjD;'(m) 
I< := ~ ; ' (m)~y=~s~nZ=,  & E M ( F ) ,  Wj := 
ny=l ( s : k , ) ( I  + DjK)  E M ( R ) .  Choose Xi E M ( R )  
such that Xl(m) is nonsingular. Let f1 E IR be 
such that 0 < f1 < minjE{O,...,n} lis-'( Oj nyZl - 
W;'DjD;'(O)) -WJFIDjD;l(0)X1ll-l. For v = 
2 , .  ..,m, let f,, E IR be such that 0 < f v  < 
minjE~o,...,fl} 11 s-'(I+ D ~ ( K  + ny=l T D ; l ( o ) ( r +  

(st.,) 

D;l(o)(I+sxl) 5 n:=, ft>)ll-l. AH Pj E P can 
be simultaneously stabilized by the controller 

S m  

J n:=l(s+QII) n:"=,s+Pd ' 

such that kl > maxj~{o,...,n} 11 s(Aj - DjD,'(m))II. 

v - 1  i 

si n:=, &)I[. Define 

S X ~ )  $n%=1 fi>)-' ( I  + Dj(K + ny=1 k, 

(1) 
Furthermore, all controllers C that simultaneously sta- 
bilize all Pj E P ,  for j E { 1, . . . , n}, are 

where Q E M ( R )  is such that Gj := I+Q(Do-Dj)(I+ 

Crl Dj r m  )-l is unimodular. cl y=l ( 8  t QI n E ( 8  +Pi 

The stable controller-parameter Q in the simultane- 
ously stabilizing controller characterization (2) must 
be so that G j  is unimodular. This condition is ob- 
viously satisfied for Q = 0, corresponding to the 
central controller CO in (1). Some additional possi- 
ble choices other than Q = 0 satisfying this condi- 
tion can be obtained by choosing Q E M ( R )  'suffi- 
ciently small' as 1 1 Q 1 1  < minjE{l,...,n} - Do)(I + 
C,-'Dj n - S m  -a)-lll-l. The simultane- 
ously stabilizing controller C in (2) is strictly-proper if 
and only if Q E M ( R )  is such that Q(m) = -D;'(m).  

~-,(~+ai)n~ 

In Proposition 2.2, the plants Pj E P all have w 
blocking-zeros at  infinity and m blocking-zeros at  zero. 
If m = 0, then by (l) ,  all Pj E P can be simultaneously 
stabilized by the controller CO = K-' ny=l(s+ai). Fur- 
thermore, all co_ntrolle_rs e that simultaneously stabilize 
all Pj E P are C = (C:' - e Q ) - ' ( I  + QDo), 
where Q E M ( R )  is such that gj := I + Q(Do - 
D j ) ( l  + e l l D j  ny'-"=,s + ai))-' is unimodular, for 
j E (1 ,..., n}. If w = 0, then by (l), all Pj E P 
can be simultaneously stabilized by the controller CO = n-((~ + S X ~ ) C Z ~  $ nZ=, f t ) - l ~ ~ ( o > .  Fur- 

thermore, all controllers C that simultaneously stabilize 

where Q E M ( R )  is such that det(f1Xl - &)(CO) # 0 

and G j  := I +  Q(Do - D j ) ( I +  Cr'Dj n E ~ ~ + ' i ) ) - l  is 
unimodular, for j E ( 1 , .  . . , T I } .  If m = 0 and w = 0, 
then the plants in the class P have no transmission- 
zeros in U .  Using the notation of Proposition 2.2, each 
Pj can be written as Pj = Dj-l, where Dj  E M ( R ) .  In 
this case, all controllers that simultaneously stabilize all 
Pj are C = -Q- l ( I  + &Do), where Q E M ( R )  is such 
that I + &(Do - Dj) is unimodular and det &(a) # 0. 
The simultaneously stabilizing controller design proce- 
dure proposed here applies to a set of MIMO plants 
that have the same number of blocking-zeros at infinity 
or at zero (or both). It may be possible to extend this 
procedure to classes of plants that all have the same 
number of blocking-zeros at  one fixed real-axis loca- 
tion in U. With some minor additional assumptions on 
the plants, existence of simultaneously stabilizing con- 
trollers in such cases can be proved although explicit 
controller design remains an open problem. 

- 

all ~j E P are 6 = (c;' - -Q)-YI + w0), 
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