
Proceedings of the American Control Conference 
San Diego, California June 1999 

Two-channel decentralized controller design with integral act ion' 

Electrical and Computer Engineering, 
gundes0ece.ucdavis.edu 

A. N. Gundes and M. G. Kabuli 
University of California, Davis, CA 95616 

kabuli@ece.ucdavis.edu 

Abstract 
Stabilizing controller design with integral action is con- 
sidered for linear time-invariant, multi-input multi- 
output, two-channel decentralized systems with stable 
plants. Design for reliable stabilization with integral 
action is also considered, where the goal is to maintain 
closed-loop stability and integral action in the active 
channel when both controllers act together and when 
each controller acts alone. 

1 Introduction 
Decentralized stabilizing controller design with inte- 
gral action is considered for linear time-invariant (LTI), 
multi-input multi-output (MIMO), two-channel decen- 
tralized systems. The objective is to achieve closed- 
loop stability with (at least) type-1 integral action in 
each output channel so that step-input references ap- 
plied at each input are asymptotically tracked (with zero 
steady-state error). Reliable stabilization with integral 
action is also considered, where the goal is to maintain 
closed-loop stability when both controllers act together 
and when each controller acts alone. The plant is sta- 
ble. The failure model assumes that a controller that 
fails is replaced by zero; the failure is recognized and 
the corresponding controller is taken out of service (i.e., 
the states in the controller implementation are all set 
to zero, the initial conditions and the outputs of the 
channel that failed are set to zero for all inputs). In- 
tegral action is present in the outputs of the channel 
with the active controller due to its integrators. The 
results apply to continuous-time and discrete-time sys- 
tems. Although a continuous-time setting was assumed 
here for simplicity, all evaluations and discussions in- 
volving poles and zeros at s = 0 should be interpreted 
at z = 1 in the discrete-time case. 
Notation and algebraic framework: Let U be the ex- 
tended closed right-half-plane (for continuous-time sys- 
tems) or the complement of the open unit-disk (for 
discrete-time systems). The sets of real numbers, proper 
rational functions with no poles in the region of instabil- 
ity U ,  proper and strictly-proper rational functions with 
real coefficients are denoted by IR, R, R,, h; M ( R )  
denotes the set of matrices whose entries are in R; M is 
called stable iff M E M ( R ) ;  M E M ( R )  is called uni- 
modular iff M-' E M ( R ) .  The notation diag[N1, Nz] 
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denotes a block-diagonal matrix. For M E M ( R ) ,  
IlMll := supsEau i i (M(s) ) ,  where ii denotes the maxi- 
mum singular value, 8U denotes the boundary of U. 

2 Analysis and Design 

Consider the LTI, MIMO, two-channel decentralized 
feedback system S(P,CD) in Figure 1: S(P,CD) is 

4 1  P12 E R n y x n y ,  cD = well-posed, where P = 

diag[ C1, C2] E Rpnyxnv are the transfer-functions 
of the plant and the decentralized controller, Pjj E 
R n ~ J x n ~ j ,  Cj E RpnyjxnVj, j = 1,2, ny = nyl + ny2, 
nu = nul + nu2. It is assumed that P and CD have 
no hidden modes corresponding to eigenvalues in U. 
When a controller fails, it is set equal to zero; the 
failure is recognized and the corresponding controller 
is taken out of service. When C2 = 0, the system is 
called S(P, Cl); when Cl = 0, it is called S(P,  C2). Let 
He,  denote the (input-error) transfer-function from T 

to e ,  where T := [TT T T ] ~ ,  e := [eT e;]'. Let H de- 

[ PZl p z 2  I 

note the transfer-function from ( T ,  U )  to (y, y,), where 
U := [U? U;]', y := [y: y;IT, ye := [yz yTzlT. In 
S(P, Cl) ,  the outputs ycz of the second control chan- 
nel are not observed; in S(P, C2) , the outputs ycl are 
not observed. For j = 1,2, let Hj denote the transfer- 
function of S(P, Cj) from ( ~ j ,  U) to (y, yc j ) .  

2.1. Definitions [2, 11: The system S(P,CD) is sta- 
ble iff H E M ( R ) .  For j = 1,2, S(P,Cj) is stable iff 
Hj E M ( R ) .  The stable S(P,  CO) has integral action 
in each output channel iff Her(0) = 0. For j = 1,2 ,  
the stable S(P, Cj)  has integral action iff the transfer- 
function from ~j to e , ,  H,j,,.j(O) = 0. The decen- 
tralized controller CD = diag[Cl,Cz] is a stabilizing 
controller for the plant P (or CO is said to stabilize 
P )  iff CD E M(R,) and the system S(P,CD) is sta- 
ble; CD is a stabilizing controller with integral action iff 
CD stabilizes P, and S(P, CO) has integral action, i.e., 
Her(0) = 0; CD is a relaable stabilizing controller with 
integral action iff all three systems S(P,CD), S(P,  CI) 
and S(P, C2) are stable and have integral action. 0 

Let CD = NCDF1 be a right-coprime-factorization 
(RCF) of CD E Rpnuxnw ( N c , D c  E M ( R ) ,  
det D,(co) # 0). The controller CD stabilizes P E 
M ( R )  if and only if (D, + PN,) is unimodularJ21; 
He,  = 0 if and only if Dc(0) = 0. Let NjDY' 
be any RCF of Cj , j = 1 , 2 ;  N, := diag[Nl,N2], 
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D, := diag[bl ,&];  then NCDF1 is an RCF of CO; 
D,(O) = 0 if and only if Dj  = &Dj for some 
Dj E M ( R ) ,  where -a E IR\U. In the stable S(P,  C O ) ,  
H,,(O) = 0 implies rankP(0) = ny 5 nu ; hj(0)  = 0 
implies rankNj(0) = nyj 5 n,j. Since these condi- 
tions are necessary for integral action, it is assumed that 
P E R n y x n u  is full row-rank and has no (transmission) 
zeros at zero (rankP(0) = ny 5 nu), and nyj 5 n,j, 
j = 1,2 .  For j = 1 , 2 ,  S(P,Cj)  is stable and has in- 
tegral action if and only if D H ~  := [ PjjNj -t & Dj ] 
is unimodular; DHj unimodular implies rankDHj (0) = 
rank(PjjNj)(O) = nyj. When S(P,Cj)  is stable in ad- 
dition to S(P, C O ) ,  an additional necessary condition is 
rankPjj (0) = nyj  5 nu,. 
The controller design approaches are divided into two 
cases depending on the rank of Pjj(0). 
Case I: Let at least one of 9 1  or PZZ have no 
transmission-zeros at zero. Without loss of generality, 
rankPll(0) = nyl. Proposition 2.2 presents controllers 
such that S(P,Co) (and also S(P,C1)) is stable and 
has integral action. If rankPZz(0) = nY2,  then stabil- 
ity and integral action may be achievable for S(P,  Cz)as 
well. Lemma 2.3 gives conditions for existence of reli- 
able stabilizing controllers with integral action. 
2.2. Proposition: Let P E R n y x n u ,  rankP(0) = 
ny 5 nu, n,j 5 nuj  , j = 1,2 .  Let rankPll(0) = 
nyl, rank(& - P21P[1P1~)(0) = ny2, where = 
PK(0)(P1l(O)P&(O))-l is a right-inverse of Pll(0). De- 
fine K1 := k 1 P [ ~ ( 0 ) ,  0 < kl < 11 s-l(I - P1lP[l(0))ll-l. 

satisfies det(1- Q1P1l)(m) # 0. For fixed Q1, define 
G := Pzz - Pzi(l+ +Sl,-'(+ + Qi)Piz E M ( R ) ,  
K2 := LzG'(O), 0 < IC:! < 11 s - l ( I  - GG'(O))Il-', 
where G'(0) is any right-inverse of G(0) = (Pzz(0) - 
Pzi(O)P~1(O)Piz(O)). Let Cz = (I- Q&)-l(% +Q2); 
QZ E R n u z x n y z  satisfies det(1- QzG)(m) # 0. With 
CD = diag[Cl,Cz], the system S(P,CD) (and also 
S(P,  C1) ) is stable and has integral action. 
The choice of Q1 = 0, QZ = 0 in Proposition 2.2 corre- 

2.3. Lemma: Let P E Rnyxnu, rankP(0) = ny 5 nu, 
nyj 5 nuj, j = 1,2 .  Let rankPll(0) = nyl and 
rankPZz(0) = ny2. There exist reliable stabilizing 
controllers with integral action if det(G(0)P[z(O)) = 
det(1- P~~(0)P[l(O)P~~(O)P~~(O)') > 0, for some right- 
inverse P:,(O) of P11(0) and P,',(O) of P22(0). When 
PIZ E M ( % )  or PZI E M(R,), or when C1 or Cz is 
designed strictly-proper, then the sufficient condition 
det(G(O)P,',(O)) > 0 is necessary and sufficient. 0 

Explicit controller design such that all three systems 
S(P,  C O ) ,  S(P,  Cl),  S(P,  C2) are stable and have inte- 
gral action is challenging even with det(G(0)Piz(O) > 0. 
A reliable design method is proposed in Corollary 2.4 
under the stronger assumption that G(O)P,',(O) is sym- 

Let c1 = ( I  - Q ~ P ~ ~ ) - ~ ( $  + Q ~ ) ;  Q~ E ~ n * l ~ n y l  

0 

sponds to integral controllers C1 = +-, K C2 = $. K 

metric, positive definite. This assumption is equivalent 
to det(G(0)P~z(O)) > 0 for example: i) when (nYz = 1); 
ii) when Plz(0) = 0 or Pzl(0) = 0. 
2.4. Corollary: Let P(O), P11(0), Pzz(0) satisfy the 
rank assumptions in Lemma 2.3, C1, G and Cz be 
as in Proposition 2.2, G(O)P,'(O) be symmetric, pos- 
itive definite, where P&(O) = P$(O)(PZZ(O)P$(O))-~, 
KZ := kzP&(O), 0 < kz < min{lls-l(I- P z & ~ ( O ) ) ( ( - ~ ,  
Ils-'(G(O) - G)Pi2(0)l\-1}; Qz E M ( R )  satisfies 
I + Pzi(I+ +Pii)-'(+ + Qi)Plz(I + $Pzz)-lQz 
unimodular, det(1 - QzG)(m) # 0. Then CD = 
diag [ C1, C2] is a reliable stabilizing controller with in- 
tegral action. 0 
Case 2: Let both 9 1  and P 2 2  have transmission- 
zeros at zero; let at least one of these sub-blocks has 
blocking-zeros at zero; without loss of generality, let 
P11(0) = 0. Proposition 2.5 presents a class of con- 
trollers such that S(P,CD) is stable and has integral 
action. Since rankPjj(0) < nyj ,  the systems S(P, C1) 
and S(P,Cz) cannot be stable and therefore, reliable 
stabilizing controller design with integral action is not 
attempted in this case. 
2.5. Proposition: Let P E R n Y X n u ,  rankP(0) = ny 5 

rankPz2 < nYz, rankP1z = nYl, and rankPz1 = ny2 = 
nyl. Let -a E R\U. Let C1 = Q ~ ( + I - P ~ ~ Q ~ ) - ~ ;  
Q1 E R n = l X n y l  satisfies Ql(0) = Pll(0) for some right- 
inverse Pil(0) of P21(0), and det(1- P11Ql)(m) # 0. 
For fixed & I ,  define G := ~ P Z Z  - PzlQlPlz, K1 := 
klE'(O),  0 < < I ~ s - ~ ( I - @ ? ( O ) ) ~ ~ - ~ ,  where $(O) = 
-P/z(0) is any right-inverse of E(0)  = -Plz(O). Choose 

LZ E IR, o < & < I I ~ - ~ ( I + E + ) - ~ I I - ~ .  Let c 2 - - ( I -  
Q~G)-~(*) + + Q ~ ) ;  Q~ E ~ n u a x n y a  satisfies 
det(1- QzG)(m) # 0. With CD = diag[Cl,Cz],  the 
system S(P,  CO) is stable and has integral action. 0 
The design methods presented here can be extended to 
multi-channel decentralized control systems that satisfy 
additional rank requirements. 
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Figure 1: Two-channel system S(P,  CO). 
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