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Abstract
A parametrization of all stabilizing controllers with at
least m integrators achieving type-m integral action is
obtained for linear time-invariant, multi-input multi-
output systems. These controllers are expressed as in-
tegral terms added to any stabilizing controller.

1 Introduction

We consider the problem of designing stabilizing con-
trollers with integral action for linear time-invariant
(LTI), multi-input multi-output (MIMO) systems. The
objective is to achieve closed-loop stability with (at
least) type-m integral action in each output channel so
that polynomial references up to order m—1 applied at
each input would be asymptotically tracked (with zero
steady-state error). The design method developed here
is motivated by the well-known parametrization of all
stabilizing controllers [2]. Robust asymptotic tracking
is achieved by choosing the controller’s poles appro-
priately (in this case at zero) [2], [1]. A parametriza-
tion of all stabilizing controllers with at least m in-
tegrators achieving type-m integral action is obtained
in Theorem 2.3; these controllers are expressed as an
arbitrary stabilizing controller D*lN added to inte-
gral terms involving m constant matrices. An alternate
parametrization using only one constant matrix is given
in Corollary 2.4.

Due to the algebraic framework, the results apply to
continuous-time and discrete-time systems. Although
a continuous-time setting was assumed throughout for
simplicity, all evaluations and discussions involving
poles and zeros at s = 0 should be interpreted at z =1
in the case of discrete-time systems.

Notation and algebraic framework: Let i/ be the
extended closed right-half-plane (for continuous-time
systems) or the complement of the open unit-disk (for
discrete-time systems). The set of real numbers, the set
of proper rational functions that have no poles in the
region of instability ¢, the sets of proper and strictly-
proper rational functions with real coefficients are de-
noted by IR, R, R, Rs, respectively. The set of ma-
trices whose entries are in R is denoted by M(R); M
is called stable iff M € M(R); a stable M is called
unimodular iff M~' € M(R). For M € M(R), the
norm ||-|| is defined as ||M|| = sup, gy T(M(s)), where
o denotes the maximum singular value and OU de-
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notes the boundary of 4. A right-coprime-factorization
(RCF) and a left-coprime-factorization (LCF) of P €
R,"v*™* are denoted by P = ND~! = D~!N, where
N,D,N,D € M(R), D and D are biproper. Let
rankP = r; s, € U is a (transmission) zero of P if
and only if rankN(s,) = rankﬁ(so) < 7 8, is called a
blocking-zero of P iff P(s,) = 0; s, € U is a blocking-
zero of P if and only if N(s,) =0 = N(s,).

2 Main Results
Consider the LTI, MIMO, unity-feedback system,
where P:ep—y,C e yo,e = u~y, ep = yc+up;
P e R,™™ ™ and C € Rp"**™¥ represent the transfer-
functions of the plant and the controller, respectively.
It is assumed that P and C have no hidden modes cor-
responding to eigenvalues in . Let H,, denote the
(input-error) transfer-function from u to e, Hy, de-
note the (input-output) transfer-function from u to y,
H denote the transfer-function from (u, up) to (y,yc)-
2.1. Definitions: a) The system S(P,C) is said
to be stable iff the transfer-function H from (u,up)
to (y,yc) Is stable, i.e., H € M(R). b) The sta-
ble system S(P,C) is said to have integral action in
each output channel iff H,, has blocking-zeros at zero,
le., Heu(0) = 0. The system S(P,C) is said to have
type-m integral action (where m > 1 is an integer)
iff H., has (at least) m blocking-zeros at zero, i.e., if
(s~(m-VH,,)(0) = 0. ¢) The controller C is said to be
a stabilizing controller for the plant P (or C is said to
stabilize P) iff C € M(R;) and the system S(P,C) is
stable. d) The controller C' is said to be a stabilizing
controller with integral action iff C stabilizes P, and
D, has blocking-zeros at zero, where D, € R"¥*"¥ is
the denominator-matrix of any RCF N.DZ! of C. The
controller C is said to be a stabilizing controller with
type-m integral action iff C stabilizes P and D, has (at
least) m blocking-zeros at zero. a

Let P = ND~! = D-!N be any RCF and LCF of
P € R"™ ™. Let C = N.D;! be any RCF of
C € Rp"**"v. The controller C stabilizes P if and
only if (DD, + N N¢) is unimodular [2]. All stablllzmg
controllers for P are C = (U + DR)(V NR)~!

(V- RN)~"Y(U + RD), where R € R™**™ is such that
(V = NR) is biproper (holds for all R € M(R) when
P e M(Rs ) U, v, U, Ve M(R) are such that VD +
UN =1, DV+NU =1,VU = UV. For any stabilizing
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controller C', the corresponding (input-error) transfer-
function Hey = (In, +PC)~' = I,,— PC(In,+ PC)™!
= I,,— N(U + RD) = (V - NR)D. If 8(P,C) is
stable, H¢,(0) = 0 only if rankP = n, < n, and
rankN(0) = ny < n,,. Therefore, in order for the stable
system S(P,C) to have integral action, the necessary
conditions on the plant P are that rankP = n, < n,
and P has no zeros at zero.

In any arbitrary RCF C = N.D ! of a stabilizing con-
troller, D¢(0) = 0 if and only if (V — NR)(0) = 0.
By Definition 2.1, if C is a stabilizing controller with
integral action, then Hu(0) = (V - NR)(O)D(O) =90
and hence, the stable system S(P,C) has integral ac-
tion in each output channel. Although designing the
stabilizing controllers so that D.(0) = 0 is sufficient
for the stable system S(P,C) to have integral action,
it is clearly not necessary since He,(0) = 0 also when
5(0) = 0. However, when P has no poles at zero, and
in particular when P is stable, He,(0) = 0 if and only
if D.(0) = 0; in these cases, the stable system S(P,C)
has integral action if and only if the controller C is a
stabilizing controller with integral action. Similarly, if
(s=(m=VD,)(0) = 0, then H,, has m blocking-zeros
at zero; this is again a sufficient condition for type-m
integral action in §(P,C).

2.2. Lemma: Let G € R"¥*"* where rankG = ny <
ny. There exists a constant controller K; € IR"**"v
that stabilizes _CSE if and only if rankG(0) = ny < ny.
2.3. Theorem: Let P € Rp"¥™"* rankP = ny < ny.
Let P have no zeros at zero. Let P = ND-! = D-'N
be any RCF and LCF. Let U, V, U, V € M(R) satisfy
VD+UN=I,DV+NU =1, VU =UV. Let K, €
IR"**"¥ be any constant controller that stabilizes 5
m, let K,, € R™*<"v

n

3+, where

Let m be an integer; forn = 2,.. .,

be any constant controller that stabilizes
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Under these assumptions, C'is a sta,blhzmg controller
with type-m integral action if and only if
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where Q € R™**™ is such that (V — QN) is biproper
(holds for all @ € M(R) when P € M(Rs)). D
2.4 Corollary: Under the assumptions of Theo-
rem 2.3, C is a stabilizing controller with type-m inte-
gral action if and only if

(1+nELy-1),
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where Q € R"™*"v is such that (V —
{(holds for all Q@ € M(R) when P €
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Comments: a) (Al controllers with type-m inte-
gral action for stable planis): The parametrization
in Theorem 2.3 (similarly in Corollary 2.4) is simpli-

fied for stable plants by substituting N = N = P,
D=1,D=1,V=I,V=I,U=0=U. b)
(Construction of the constant matrices Ky, ..., Ky,):

By Lemma 2.2, for any stable system G € R"v*"«
such that rankG = n, < n,, there exists a con-
stant controller K; € IR™**"¥ that stabilizes s~'G if
and only if rankG(0) = ny. Note that rankX,
ny for any K, that stabilizes s7!N,. A choice for
Ky € R™ " that stabilizes s~ N is K; = BiN(0)!,
where N(0)! denotes any right-inverse of N(0) and
B1 € IR is any positive real constant satisfying 0 <
B < ”s‘l(N(s)N(O)I - I)H_l. Forn=2,...,m,each
N,, € R™*™ in Theorem 2.3 is a stable system such
that N,(0) = I. Since N,(0)! = N,(0)~! = I, a choice
for K, € R"**"¥ that stabilizes s Ny, is Kn = Bnln,,
where B, € IR is any positive real constant satisfy-
ing 0 < B, < "s‘l(Nn(s) - I)“_l. The constant
K; € R™*™ that stabilizes s~!N in Corollary 2.4
can also be chosen as above. c¢) (Observer-based real-
wzation of all stabilizing controllers with type-m inte-
gral action): The parametrization in Theorem 2.3 and
equivalently Corollary 2.4 can also be derived by using
the coprime factorizations of P obtained from a state-
space representation [2]. We state the parametriza-
tion in Corollary 2.4 as a simple algorithm to de-
sign stabilizing controllers with type-m integral action:
Given: A state-space representation (A, B,C, D) of
P(s) = C(sl, — A)"'B + D € R,™*™ n, < n,,
where (4, B) is stabilizable and (C, A) is detectable.
Step 0: If rank [ g D
(P(s) has no zeros at s = 0); else, stop (P(s) has zeros
at s = 0 and hence, stabilizing controllers with integral
action do not exist). Step 1: Choose any K € IR***"
and L € IR**™ such that Ak := (sI, —A+ BK)™ ' €
M(R), A := (s, — A+ LC)~' € M(R). Step 2:
Choose any K; € IR"**"¥ that stabilizes LX—, where
= (C — DK)Ag B+ D. Step 3: The controller C

is a stabilizing controller with integral action if and

= n+ny, then go to step 1

only if C = (1+(K —QC)AL(B - LD) —QD)_1
~ = -\ i1
(KAL+QU-CA D)+ KLy (14 vELY T

where Q € R™**™ is such that det(I — Q(c0)D) # 0.
At step 2, K; can be chosen as K; = BiN(0),
where N(0)! = (D — (C ~ DK)(A - BK)~'B)"; (A—
BK)~?! exists since Ax has no poles at zero; B, satisfies
0< B < |(C—-DK)Ax(A - BK)~"*BN(0)T||~!.
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