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and the lemma follows from standard results on ARE’s (see [6, p.
263 and Appendix B]). o [L
Proof of Proposition 2.3: Consider in (5)Y = Y > Y. From

Lemma A.2, if (v'/2A, B) is stabilizable andC,»*/?A) is de-
tectable, then there exists a unique positive semidefinite soltiion
to (5), and it is such that'/2(4 + BR) is stable, wherel” is as
in (A1) with X = X andY = Y. If we now setY = ¥ we can
conclude similarly the existence of a unique semipositive solution

of (5) and akl’ given by (Al) withX = X andY = Y. After some
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algebraic manipulation, we get that

(X -X)-

and thus

and it follows from stability ofv'/2(A + BEK) that X — X > 0. O

(A+BE)(Y +vX) = (Y +vX))(A+ BE) A. N. Glnde

= (Is" - B’) (D D+ B (Y+u)£)B (Ix’ - Ix’)

Abstract— Reliable stabilization of linear time-invariant multi-
input/multi-output plants is considered using a two-channel decentralized
controller configuration. Necessary and sufficient conditions are obtained
for existence of reliable controllers that maintain stability under the
possible failure of either one of the two controllers. All decentralized
controllers that achieve reliable stabilization are characterized.

(X - X)—v(A+ BE)(X — X)(A+ BK)
= (A+ BEK) (Y - Y)(A + BK)
+(K - K)D'D+ B (Y +vX)B) (K - K)
Index Terms—Controller design, decentralized control, reliable stabi-
lization.

For a general account on the positive semidefinite partial ordering
of maximal solutions of discrete-time ARE'’s, see [16].
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Fig. 2. The systenS(P, C1).

Fig. 1. The decentralized systef{P,Cp). upy

uc1 yP1
of an associated system and states that strong stabilizability of two 4, Yo P
of the subblocks of the plant is necessary. Proposition 1 gives a C, >
parameterization of all reliable decentralized controllers for stable + ++ % yp2

plants, and Theorem 3 establishes explicit existence conditions when -
one channel is single-input/single-output (SISO). Theorem 4 gives
important sufficient conditions when all channels are MIMO. The fol-

lowing notation is used throughout; due to the input—output approadtig- 3. The systen(P, Cs).
the setting can be continuous-time or discrete-time.

Notation: Let I/ denote the region of instabilityy contains the by (3); a similar description can be obtained 8¢tP, Cs). The
extended closed right half-plane (for continuous-time systems) stemS(P, Cs) is described aDpsfs = Nrous, N’Jézfz =y
the complement of the open unit-disk (for discrete-time systems). (4):; the'description forS(P, ) is similar. For j _ 1,2,
Let i, (Ik,) denote proper (strictly proper) rational functions withye transfer function ofS(P, ij from (wp, uc;) 10 (yp. yo;) is
real coefficients;jR denotes proper rational functions with no poleg;. _ Np; DNy = Nbe—lNL. i i
in U; M(R) denotes the set of matrices with entriesi M is g JDT IR
calledR-stable iff M € M(R); andM € M(R) is calledR-stable

U pp

unimodular iff M ! € M(R). A right-coprime factorization (RCF), (DoD + NoN)ép =[Do Ne| {UP}
a left-coprime factorization (LCF), and a bicoprime factorization we
(BCF) of P € M(R,) are denoted by> = ND~' = D™'N = N Er + 0 Oflupr|_ [vr @)
Nu Dy 'Nut + Gy; N, D, N, D, Ny, Dy, Nyi, Gy, € M(R), D, D =I 0][uc yo
D, andD,, are biproper. LetankP = r; s, € U{ is called al{-zero
(blocking L/-zero) of P iff rankP(s,) < 7(P(s,) = 0); the poles
of P in U are called itd/-poles. ForAl € M(R), the norm|| - || - _I i
is defined ag|M|| = sup ,cz,0(M(s)); @ denotes the maximum D (;1} &p
singular value andi/ denotes the boundary éf. [Nei O]N Do Lyc1
I 0 ,
Il. MAN RESULTS = {0 &h} Ll”:l}

Consider the LTI, MIMO, and two-channel decentralized control N o £ -
systemS(P, Cp) shown in Fig. 1. The plant and the decentralized 0 I } {ym} = ij )
controller are represented by their transfer functidhsand Cp, - it
respectively

_ Py P neXn; . NojXNij ~ ~ 0
P= |:P21 Pw} €R,°*"M, P ER, D -N {NC?} {gyp }
- C2
Cp = Ci 0 € R;ixno’ C‘,' € R;ijxnoj (1) [0 InNOZ] Dco
0 C B {N 0 HUP}

Ny = No1+MNo2, Ni = N41+n42. It IS assumed thaP andCp have no 0 L., | |uce
hidden modes corresponding to eigenvalue¥ iand thatS(P, Cp) I 0 yp | yp
is well-posed. The failure of thgth controller channel is represented 0 Neooll|€e2| ™ lyee | )

by setting(C'; = 0; the correspondingth channel outpuyc; is also

set to zero. When the second (first) channel fails, the system is calleiReliable Stability: The systensS(P, Cp) is said to beR-stable iff

S(P. C1) shown in Fig. 2 §(P, C2) shown in Fig. 3). H € M(R); similarly, S(P, C;) is R-stable iff H; € M(R). The
Using any RCFP = ND ™', any LCFC; = D_'N.;, j = 1,2, decentralized controllef'> is said to be arR-stabilizing controller

bc = diag[bcq, DCQ], N'O = diag[ﬂ’ 71, NTCQ], DEP = ep, for Piff Cp is proper andS‘(P, C]_)) is R-stable. The pai(C'l, Cz)

Nép =yp, up = [uprups]’, ue = [ugquss]’, yp = [ybi1ybs]’, s called areliable decentralized controller paiff C, C» are proper
yo = [yEuss]", ep = [ehiehs]”, the systemS(P, Cp) is and the system8(P, Cp), S(P, C1), S(P, Ca) are allR-stable.
described in (2) aDpép = Nru, Nrép + Gu = y; S(P, Cp) Lemma 1 gives necessary and sufficient conditionsiestability

is well-posed, i.e., the transfer-functidh = N D' N, + G from  of S(P, Cp) under normal operation and under the complete failure
(up, uc) to (yp, yo) is proper, if and only ifDp is biproper. The of one of the controllers. We assume that the coprime factorizations
description ofS(P, C'1) asDpié1 = Nriui, Nri& = y1 is given are in canonical forms; the denominator-matrix of any RCF, LCF can
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be put into upper (lower) triangular Hermite forms by elementargquivalently (14), andD¢ 1, D

column (row) operations [9], [1]. Without loss of generality, it is

assumed that the RCF and LGF= ND~! = D~'N are given by

1 _ [N Ne][Dn o0 ]!
P=ND"'=| i
: |:]\’21 —“’22:| |:D21 D22:|
s R Dn [)12 -! Nn Nm
=D N = { 0 DQJ [Nzl NZJ' ®)
Lemma 1—Decentralized Stabilitj:et ND~! = D™'N be any

RCF, LCF of P € RI'**"i; let D;;' N¢ = N¢Dg' be any LCF,
RCF of C s D(} = diag[bcl, D(}Q], NY() = diag[ﬂ’m, _NT(;Q],
N¢ = diag[Ne¢1, Nes|, De diag[Dc1, Dc2]. The system
S(P, Cp) is R-stable if and only ifDp := (DcD + N( V)
is R-unimodular. Let the RCF and LCP = ND~! = D7!N
be as in (5);S(P. Cp) is R-stable if and only if (6) holds. Let
Cy = DilNeos = NeoDgl be any LCF, RCF; the systefi{ P, Cs)
is R-stable if and only if (7) holds. Let', = D} Now = Noy D}
be any LCF and RCRS(P, 1) is R-stable if and only if (8) holds

. N’Y()l 17\71~2
DecyDoy + NoaNay

Dchu + Ac 1 V11

is R-unimodular
DcoDay + NeoNo *

(6)
Dy is R-unimodular,
and (Dc2 Doy + New Na)  is R-unimodular @)
DerDu + NeaNu - Nea M is R-unimodular ~ (8)
D24 Dao
O

To obtain a parameterization of all reliable decentralized controller

pairs, we use the following characterization of atimissible plants
for stability using one controllef1], [3]: Let P € R,;°*"¢ be
partitioned as in (1). There exists a decentralized contraller =
diag[C, C2] such thatS(P, C'p) andS(P, C5) areR-stable if and
only if P has an RCF and LCPP = ND~! = D' N of the form

. N N[ L, 077
N S
P=ND [V Nay NZJ {—UQN2l DQJ
_retw [T =Nl )7 [N N
=DN= { 0 D } Noo N | O

where Ni; € R et*™it N, € RNMPorXniz _erl € RrezXmit
(Noz, Doy) is right-coprime, (Ds2, Nay) is left-coprime, and
Uz, Vo, U2, Vo € M(R) satisfy (10); equivalently, P, —
PiaD2lUsPor € M(R), Pi2D2z € M(R), D22 Po1 € M(R),
where No, D7, is an RCF andDZ,' Nu» is an LCF of Py andUs

satisfies (10)
Yz D22 _ In7-2 0
—Nag Noo 10 L,

Theorem 1—Stabilizing ControllersLet P € R"°*"¢ have an
RCF and LCFP = ND~! = D™'N satisfying (9). The system
S(P, Cy) is R-stable if and only ifC, is given by (11),Q> €
R"i2%"02 is such thatDc- is biproper [holds for allQ. € M(R)
when P2 € M(R,)]; S(P, Cp) andS(P, C>) are bothR-stable
if and only if C> and C; are given by (11) and (12), an@; €
R"i1*"e s such thatDc; is biproper [holds for allQ, € M(R)
when (N1 — N12Q2N21) € M(R)]; S(P, Cp), S(P, C2), and
S(P, C1) are allR-stable (i.e.(C1, C2) is a reliable decentralized
controller pair) if and only ifC'> andC\ are given by (11) and (12),
where @, € R"i1*"e1 Q. € R"2*"2 gatisfy condition (13), or

;3

U,

Doy (10)

1735
are biproper
02 = DE%.NYCQ
=(V7 — Q2N22)71(U2 + QzDzz)
=NeoDgl
= (U2 + D22Q2)(Va — N22Q2) ™" (11)
Ci=DgiNeyw = (I = Qi(Nii = Ni2Q2Not)) ' Q1 - (12)
Doo + (ﬁQ =+ DQQQQ)JVQ] Q] Nio is R-unimodular (13)
D22 + IV'N Q] Ni2 (sz + Q2D22> is R-unimodular (14)
O

Conditions (13) and (14) lead to the conditions tFamust satisfy
for the existence of reliable decentralized controller pairs as stated
in Theorem 2. StrongR-stabilizability of pseudo-systems related to
P are important for existence of reliable decentralized controllers.
The following are well known [9]: An LTI systemf’ is said to
be stronglyR-stabilizable iff an’R-stable R-stabilizing controller
C exists for P. In the standard full-feedback systef{P. '), P
is strongly R-stabilizable if and only if it has an even number of
U-poles between consecutlve palrs of real blockidezeros. Let
P = N,D;! D 'N, = Ny, D, ' Ny + G, be any RCF, LCF,
and BCF of P; let C D7'N. be any LCF;C € M(R) if and
only if D, is unimodular. ThereforeP is strongly R-stabilizable
if and only if X € M(R) exists such thatD, + X7\p is R-
unimodular; equivalentlyX € M(R) exists such thaD, + N, X
is R-unimodular; equivalentlyX;, € M(R) exists such that

I+ XvGy
— Ny

X b l\/vb,«

is R-unimodular
Dy

Lemma 2—Coprime Factorizations and Strong Stabilizabilityt
P € Ry°*"¢, partitioned as in (1), have an RCF and LGF =
ND' = DN of the form (9). Let Ni»D3,' be an RCF,
Y’glf’lg be an LCF ofPys; let D' No; be an LCF and¥, Y, ?
be an RCF Ofpgl. Definef’ = Plz(isz =+ DQQQQ)DQQPQl =
Pi2D2y(Us + Q2D22) Poy.

1) NieD3 (U2 4 D2Q2)Nay is a BCF, Nip(U» +
QQDQQ))&N 271 is an RCF, ancY1§1X12(Ug =+ DQQQQ);\Q]
is an LCF of P.

2) Pis stronglyR-stabilizable if and only iflet D, has the same
sign at all real blocking/-zeros of N15(Us + Q2D22)Xo1,
equivalently,det D25 has the same sign at all real blocking
U{-zeros Of)zlz(é"z =+ DQQQQ)NTQL O
Theorem 2—Conditions for Reliable Decentralized Stabilizability:
Let P € Ry°*" be partitioned as in (1).

1) If there exists a reliable decentralized controller géir, C),
then the following four necessary conditions hold: B)has
an RCF and LCEND ™! = D 'N satisfying (9); 2) in (9),
NioD3,' is an RCF ofPr2, D3, Ny is an LCF of Py ; 3) Pia,
P», are stronglyR-stabilizable; and 4) the sign dfet D» is
the same at all real blockinty-zeros of P, and at all real
blocking ¢/-zeros of P»;.
Let P have an RCF and LCEVD‘
let N2 D3, be an RCF ofPys, D

2) = D'\ satisfying (9);

2) ;\21 be an LCF Ofpgl

a) There existQ:, Q2 € M(R) satisfying (13), or
equivalently (14), if and only ifP = Pi»2(U> +
D22Q2) D22 Psy PioDax(Us + Q2D22)Poy is

strongly R-stabilizable for somé&). € M(R).
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b) Let P, € M(R,) and let Pi» or P»; be strictly stabilizable; whenP., ¢ M(R,), this conditionimplies P» is
proper. There exists a reliable decentralized controlletrongly R-stabilizable.
pair(Cy, C) if and only if P is stronglyR-stabilizable Theorem 4—Conditions for MIMO Channeléet P € R}o*",
for some(): € M(R). O Py € Ryot™™it, Py € Rpet ™2, Pyy € Rpe2*"it, Py €

. N " Rpe2*™iz et the four necessary conditions of Theorem 2-1) hold.
Condition 4) of Theorem 2-1) implies 3); the two conditions are

equivalent whenPs, P € M(R.). By Theorem 2, if a reliable  +) L&t [1z € MUEs) or Py € M(R.). Let noz = nix > 1,
decentralized controller pair exists, th€h € M(R) exists such let the sign ofdet D,, be the same at all common rdak
thatP = Pro(Uz 4 D22Q2) Doy Po1 is stronglyR-stabilizable. When zeros of Pi» and P as the sign ofdet D”(_Oé)f Rel-able
P € M(R,), strongR stabilizability of P becomes necessary and decentralized controller pairs existifnkP2 = niz < no1,

- . . . f ank Py = ngye < ny
sufficient for existence of reliable decentralized controller pairs. We _, 75221 o2 = Tl B
parameterize all reliable decentralized controller pairs/Restable 2) Let Py € M(Rs) or Po1 € M(R.). Let Poz € RS ;
let rank Pos = no2 = 4o, rankPis + rankPo1 > oo = 142

plants in Proposition 1. Explicit necessary and sufficient conditions
for existence of reliable decentralized controller pairs are stated in
Theorem 3 for the important special case when at least one control
channel has only one input and one output.

Proposition 1—Reliable Decentralized Stabilization for Stable
Plants: Let P € R"°*" be R-stable. Then there exists a reliable
decentralized controller pair. Furthermore, all reliable decentralized
controller pairs(C,, C>) are parameterized by (15), whe€& is
proper if and only ifQ; € M(R) is such that(I — Q;P;;) is
biproper, which holds for ali); € M(R) whenP;; € M(R,)

let the sign ofdet D, be the same at all real (transmission)

U-zeros of P and of P»; as the sign ofdet Daa(oc0).

Reliable decentralized controller pairs exist if the number of

real (transmission)(-zeros of Py, = Duy ' Nuu between any

pair of real blocking//-zeros of D5 is even.

3) Let P, € Rp°2*™2 where n,, and n;; are not both
equal to one. Reliable decentralized controller pairs exist if
Py € Rper*™i2 has ariR-stable left-inverse?, € R™i2*" e
and if P, € Rj°2*"i1 has anR-stable right-inversePy, ¢

Rl X Moz
4 . . 4) Let P»; € R,***"4 have anR-stable right-inverseP); €
{(Ch, C)IC =T =Q;Py;)” Q4. @ EM(R), j=1,2, RrivXme2 et Py, € M(Rs), P € M(R,). Let Py, be
I — Qi Pi2Q2P>  is R-unimodulaj. (15) strongly R-stabilizable. Reliable decentralized controller pairs
exist if LPi» = Py for someL € RezX"et,
O 5) Let P € R;°'*"2 have anR-stable left-inverseP, €
By Theorem 2, if reliable decentralized controllers exist, then Rrizxnel et Py € M(Rs), Pz € M(R;). Let P> be
has an RCF and LCF satisfying (92 = N2»DJ,' is an RCF, strongly R-stabilizable. Reliable decentralized controller pairs
P2 = N12D,;' is an RCF, and?; = Dg,' N2y is an LCF. Suppose exist if P21 It = P, for somelz € R™"*"2.
Poo =0,0rPa =00r Py = 0;i.e., Noo = 0 0r Ny2 = 0 or 6) Let P2 € RIe2XMiz, Reliable decentralized controller pairs
Ny = 0. The pair(0, Dss) is right-coprime if and only ifDys is existif LPi» = P»» for somel € R"e2*"t andPo1 R = Pa»
R-unimodular, i.e.,> € M(R). So whenPy, P12, or Py, is zero, for somelz € R™i "2, o

reliable decentralized controllers exist if and onlyAfis R-stable Other sufficient conditions for existence of reliable decentralized

and the parameterization of all reliable decentralized controller pagsntrollers can be derived from the six general cases in Theorem 4.

is given by (15), wherél — Q1 P12Q)-> P1) is R-unimodular for all For example, under the assumptions of case 2), reliable decentralized

Q1, Q2 € M(R) if P12 or Py is zero. controllers exist if either?; has anRR-stable right-inverse of -
Theorem 3—Necessary and Sufficient Conditions WHRenlIs has anR-stable left-inverse sinceankP»1 = no2 or rankPis =

SISO: Let P € R;"X"i, P, € R;"IX"“, P € R;Ole, Nia = Moo iIMplies rank Pio + rank Poy > neo.

Pyy € RY*™', Pay € Ry, (i.8.,102 = niz = 1). Let Pay = Noy D3

be any coprime factorization. L&, or P»; be strictly proper. Let 11l. CONCLUSIONS

p1. p2, -+, po (arranged in ascending order) denote the distinct real\ye ¢onsidered the design of reliable decentralized controllers that
U-zero poles of» and letp;, . pj,. -~ . p;, (@rranged in ascending giapiize & given plant? when both controllers act together and
otder) denote those distinct rédtpoles of %, for which the sign of -\, e either one of the controllers acts alone. We showed that reliable
N2a2(pjy ) is not equal to the sign ooz (pj,+1), 1 <k < (. There  yocanralized controllers exist only if the subblodks and P,; of
exists a reliable decentralized controller paih, C2) if and only if  p 46 strongly stabilizable. We established necessary and sufficient
the four necessary conditions of Theorem 2-1) hold &dhas an  .,hitions for existence of reliable decentralized controllers when
even number of redl-poles in each of the intervalg;,.. pj...+1),  p,, is SISO and gave sufficient conditions when all subblock®of
l1<k<t-1,and (_/’iw 00). i . are MIMO. We characterized all reliable decentralized controllers in
Corollary 1—Sufficient Conditions Whet. is SISO: Let P € 4,0 harameterizations (11), (12). Extensions to decentralized systems

Mo X 15 Mol X1 ner X1 11Xy . R N - N
Ry ’YP“ _61 Rper™"it, P € _RP T Pf“ G Ry e let with more than two channels would require additional constraints on
Py = N2y D5, € R, be any coprime factorization. Let the fourthe plant

conditions of Theorem 2-1) hold: 1) Let the sign &f. at the
real blockingl/-zeros of P and I, be the same as the sign of
Dy»(o0). Reliable decentralized controllers exist %, has even
number ofl{-zeros between any pairs of its réalpoles; 2) Reliable

decentralized controllers exist if the sign bk, is the same at all A. Proofs
reall{-zeros of Py, as the sign ofDaz (o). O The proof of Lemma 1 follows from (2)—(4) using standard

In Corollary 1-1), if Pio or Py is strictly proper, then the sign arguments. The proof of Theorem 1 follows by Lemma 1 from the
of D, at the real blocking/-zeros of Pio and of P, being the assumption thaf> has an RCEVD ™" of the form (9).
same as the sign db,»(oc) follows from the necessary conditions ~ Proof of Lemma 2:
3) and 4) of Theorem 2-1). Whef,: € M(R,), the sufficient 1) By (10), (D22, N¢2) is left-coprime. By assumption,
condition in Corollary 1-2) is equivalent t&. being stronglyR- (Dgz, N*u) is left-coprime, (X21, Y1) is right-coprime,

APPENDIX



IEEE

|

2)

1)

2)

TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 12, DECEMBER 1998 1737

and Vi, Uz, Vo [21 € M(R) exist such thafin, Y2, + Proof of Proposntlon 1:By Lemma 1, (7) and (8) hold if
UnXor = 1, Dqul + NoyUsy = I, VarUsy = Ui Ver, and only if C; = ch ij is an R-stabilizing controller for
No1Ya, = Dy Xy, Hence P;;, j = 1, 2. Therefore, allCy, C> are given by (15). By
B (6), S(P, Cp) is also R-stable if and only ifl — Q1 P12Q2Po;
{Vzl + U21 D2 Nay 127211\722:| is R-unimodular. The controllers are proper if and onlyfh‘cj
—N¢aNay D»» is biproper. We give a solution fo); € M(R) such that
You —Uyy Now I — Q1P12Q2 P is R-unimodular and(I — Q;P;;) is biproper.
[chle Dco + chyﬂj\n} ChooseQ:, Q. € M(R) strictly proper; letQ; = a«~'Q,, where

a € R, |a| > ||QiPi2Q2Po||; choosing strictly propefd:, Q-
implies (Ds», Ne 2 Nsy ) is left-coprime for allQs € M(R). is sufficient to make(I — Q;P;;) biproper, and choosing: that

Let P := PisNeo Das Poy; since(Nia, Dao) is nght coprime guaranteesja ™ Q1 PaQ2 P || < 1 is sufficient to satisfy (6).
and (Daa, NeoNoy) is left- coprlme P = N12D3; Neo Noy This shows existence of reliable decentralized controllers for any

is a BCF. ForPi, = NwD3 = Y121X1)’ there are R-Stable P. The exp[ession foCy in (15) is equivalent to (12)
Viz, Uiz, Vie, Uiy € M(R) such thatVy, Dy + Ura Ny = BY (12, €1 = (I = Q1P = Pia@aD1))~ 'Q1; by 13).@:

I, X12Uia + Y12Via = I, ViaUio = Ui2Via. Hence (I + Q1P12Q2P1) is R-unimodular. With@, = &~ 'Qu, Cl =

I+ Qi1 P2Q2Poy — Q1P11)71Q1 =(I- (1)71(1211—’11) lp- Ql

Vor + U1 (Do + \27‘/12A\02)\21 L’TZIJ\TZZLTIZ:| is equivalent to (15) andd ™' = (I — & 'Q1P12Q2Po1) is

— X19NcoNoy Yio R-unimodular if and only ifl — Q1 P12Q2 1 is R-unimodular.

Y, _0211%2012 Proof of Theorem 3:Since P, = NnDQ?; = Dy'Nos is

|:—’7VIZNTCZX21 V~'12+NH(DC> NeaVor Noo)Uia } =1 scalar, Na2, Naa2, D2o, and D2; are used interchangeably. By

Theorem 2,1, Q2 € M(R) satisfying (13) and (14) exist if
and only if P = Pi3DyyNeo Py is strongly R-stabilizable for
some(@: € R, ie., Dss has the same sign at all real blocking
U-zeros of Nio NeooXar by Lemma 2-2). Since the onli/-zeros
of Py € R™1*! and P»; € R'*" are their blocking/-zeros,
s, € U is a blockingl{-zero of Py New Xo1 if and only if it is a
bIockingZ/{ zero of Piy, i.e., N12(s,) = 0, or of Ny or of Pyy, iLe.,
21(s.) = 0. The four conditions of Theorem 2-1) are necessary
he existence of reliable decentralized controllers. Zfhgoles of
P, are thel{-zeros of Dz;. By (10), the signs ol/> and Nz, are
Proof of Theorem 2: the same at all red¥-zeros ofDs.. Suppos€{j1, - -, je} is empty.
If reliable decentralized controllers exist, Condition 1) hold¥hen Q. € R exists such thatl, + QQDQ)) has nol{-zeros [9].
by (9). By Theorem 1, (13) and (14) hold; (13) and (14pince the only blocking/-zeros of N2 (U +Q2D22)Xﬂ are those
imply (N2, Ds2) is right-coprime, and Do, No1) is left-  of P, andP,y, the conditions of Theorem 2-1) are sufficient for (13).
coprime. By (9), Condition 2) holds sincBi> = Ni2D3', If P € M(R.), then (V3 — QZN 22) is biproper. If Ny, oo) £0,
Py, = D3,'No;. Conditions 3) and 4) are shown as followslet ), := Q2 + 0>, Qz € R, Qz 00) # (Vo — QaNan )N (0),
Py is stronegR -stabilizable if and only if for any RCF [|Q.|| < || Ds2(Us + Q2Ds3) ||, Then D¢y is blproper ie.,
Py = NiD3', X € M(R) exists such thatDs> + (- € M(R ), and N¢2 is a unit |nR Since Pi» € M(R,) or
X N1y is R-unimodular; withX = N¢»No1Q1, (13) implies Py, € M(R,), @ satisfying (13) can be chosen strictly proper
P, is strongly R-stabilizable. Similarly,Pz; is stronegR— so that[)m is biproper. Therefore, the conditions of Theorem 2-1)
stabilizable if and only if for any LCH%: = D3, Noi, X € are sufficient for the existence of reliable decentralized controllers.
M(R) exists such thaD,» + No1 X is R-unimodular; with  Suppose{ji, -+, j¢} is not empty; thenVa; has an odd number
X = Qi Ni2Neo, (14) implies P, is stronglyR-stabilizable. of zeros in each intervalp;,, pj,+1), 1 < k < (. By (10),
Since (13) implieslet ( D22+ N2 N21 Q1 N12) has nd/-zeros, Ac)(p“)/\zz(p,k) = 1 at theld-zerosp;, of Day; hence,_\cz =
det D32(212) has the same sign @t Dy (22:) for all real (U + Q2D»2) has an odd number of zeros becadée. has even
Z12, 721 € U, Ni2(z12) = 0 and Nz1(z21) = 0. number of zeros inp;,, pj.+1), 1 < k < (. Note thatp;, is the
a) By Lemma 2,P = NuDr_;;NGsz is a BCF; firstzero of D immediately to the left of the reaf-zero of New in
therefore, P’ is strongly R-stabilizable if and only if (pji. pj,+1) andpj, 1 is the first zero ofD., immediately to the
X € M(R) exists such thatD.s + NeaNay X Ni2)  right of the real{-zero of Noo in (pj, 1+ pjpyy 1) If Q2 € M(R)
is R-unimodular, equivalently (13) holds. exists such thab has the same sign at all réaizeros of V¢, then
b) By Theorem 1-3), reliable decentralized controllers exig?22 must have an even number of zeros betwegnandp;, , +1
if and only if @1, Q2 € M(R) exist satisfying (13), sinceN¢: has at least one redkzero in each of these intervals. Since
such thatDe,, De are biproper. It was shown thateither Pio(oc) = 0 or Py () = 0, the sign ofD,, at thel{-zero
Q1, Q2 € M(R) satisfying (13) exist if and only if of Neo in the last intervakp;,, p;,+1) must agree with the sign of
P is strongly R-stabilizable. SinceP,, € M(R.), Daz(o0); hence,Dy, must have even number of zeros(im, . o).
(Vo — Q2N»») is biproper. If P, € M(R,) or This proves necessity. For afy, €R, the minimum number of{-
P € M(BS) thenP = PiuDsoNeoPor € M(R,); zeros ofNe- is ¢, which is the number of intervals whefé: has an
hence, P is strongly R-stabilizable if and only if odd number of zeros between réaizeros ofD». There isQ:> € R
for any —a € R\U, (s + a)” Pis strongly R-  such thatU>+()2 D2-) has exactly reall{-zeros, with exactly one in
stabilizable, equwalentl;@l € M(R) exists such that each of(p;, , pj,+1), 1 < k < {, becausél, + Q> D.2) has an odd
Doy + VCZAZI(,g. +a)"'Q1 N12 is R-unimodular. Let number of zeros in each of these intervalsDIf; has even number of
Q1 = (s+a)"'Q1 € M(R,); then (13) holds and reall{-zeros in each oqp“ pJHlH) 1< k< (-1,and(pj,, o),
De, is biproper. O thenP = Pi2Dys(Us + Q2Ds2) Py, is stronglyR-stabilizable. Let

implies  (N12No2Xo1, Ya1) is  right-coprime, (Y1,

XHAU_\H) is left- coprlme

Since MgA\pQ)xm},] = 1/1,1)“2‘\@21%1 is an RCF and
LCF of P becausePog = Z\/QODQZ = ch, ;\2'7, Pf)l =

Dr)z \21 = _’(71}71 s P = ]\qur,r) = 112 ){12, P is

strongly R-stabilizable if and only ifdet Y21, equivalently
det V1o, det Dp or det D, has the same sign at all realfort
U-zeros ofNis Neo Xo1, equivalently, 0fX 12 Nea Noy O
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Q1 € /Vl(R) be such thaff; := Dgg—i—[\w/vr)]Q] Vm(U)-FQQDQ)) is
R-unimodular;@), can be chosen strictly proper Moo (- oc) # 0, let
Q2 := Q2 + Q2, Q2 € R, Qa(00) # (Vo — NaaQa)(00) V' (),
1Qall < ||D2odi ' Noy Qi Nio|| =t ThenDcz, Dc¢ are biproper,
i.e., C1, Cy are proper. SinceDyy + NoyQiN1oNeo = My +
N1 Q1 N12Q2Dss is R-unimodular, (Cy, Cs) is a reliable decen-
tralized controller pair. O
Proof of Corollary 1:

1) If P22 has an even number of réd}zeros between consecutive
real l{-poles, the sign ofN:; is the same at all real(-
zeros of Dy,. Since { {j1, ---, je} is empty,Q2 € R exists
such thatN¢» has nolf-zeros (the only blocking/-zeros of
Ni2Neo2 X3, are those ofPs, P,;) and D¢ is biproper,
i.e.,, Cy is proper. For thisQ)., P = Pi3DyNeuPyy is
strongly R-stabilizable. Since(s + a) 'P is strongly R-
stabilizable for any-a € R\U, Q1 € M(R) exists such that
Doo + ((}2 + DzzQz);VQl(S + (L)71Q117V12 is R-unimodular;
Qi = (s+a)~'Q, satisfies (13) and)c is biproper.

By assumption, the sign dp.. is the same at all re@l-zeros
of Pi2, P»1, and P, as the sign ofDs:(oc); hence, s is
strongly R-stabilizable. LetQ> € R be such thatDc» is R-
unimodular, thenD, has the same sign at all reiftzeros
of NeoNao. The sign of Do, at the reall/-zeros of N¢ is
the same as that dDss(o0); hence,P = PisDssNeo Pay iS
strongly R-stabilizable. As in the proof of 1)s + a)"'Pis
also stronglyR-stabilizable, since); can be chosen strictly
proper, the controllers are proper. O

Proof of Theorem 4:Let Py, € Rp2 ™2, rankPyy =: r,

A = diag[As ---X,], and ¥ := diag[¢y ---1),]; there existR-

unimodularL € R"e2*"e2 R ¢ R"2X"i2 satisfying (16), where

Aj. ©; € R, vy is biproper,(}\;, ¢;) is coprime, i.e.,u;, v; € R

exist satisfyingv;v; + u;jA\; = 1,5 =1, -+, r; A; divides Aj41,

Y41 dividesyj, j =1, ---, r —1 (see [9], Smith—McMillan form).

By (16), any RCF and LCPys = Ny Doy} = Doy ' Nas are given

in (17) and (18) for som&-unimodulard, M € M(R);letUp :=

diag[uy - - - ur], Vp = diag[vr ---vr]; then(Vp U 4+ UpA) = I;;

Uz, V> in (9) are given by (19), wherel € R™i2 %oz

1)

2)

2)

PZZ :Ldidg[f\, [)(7702—7‘)><(n7-2—7‘)] diag[\II719 I(n,z-z—r)]R

= Ldiag[¥~", I,,,,— ] diag[A, O]R (16)
(JVQQ, D'}Q) = (L diag["xv 0(7102—V')X(VLiz—T’)]‘n/Tﬂ
R™'diag[¥, I, M) (17)
(D2, Noz) = (Mdiag[¥, I, , L,
Mdiag[A, O(n,—r)x(nsm—m)]R) (18)
o =M™ diag[Un, O(n.p—ryx(nos—m]L ™" + ADa2s
Vo = M~ diag[Vi, I(n,,—r)]R — ANao. (19)

Let Q11 € R™™" be any upper- triangular matrix whose nondiagonal
entries qu ;é 0 are constants, fof, j = 1, ", J > i. For
j =1, ,r, chooseq;; € R as foIIows Let Zu, Zo1 be
the sets of all real/-zeros of Pi» and of P>y, respectively; let
Z = 312 UZQL = {Zl, Z(}. Let ZJ' = {Zjl, Z’jgj} C zZ
be such thatu;(z) # 0 for = € Z;. Defineq;; € R asq¢;; =
05(00) I (s = 2)(s + @) ' —a € R\, g;5(>) € R\{0}
is such that(v; — ¢;;A;)(c0) # 0; this holds for allg;;(oc) when
Aj € R,;when); ¢ R, takeq;;(o0) # vjA; ' (oc). If Z; is empty,
theng;; = ¢;5(o0) € IR. With this¢;; € R, (u; + ¢;;¢;) does not
have zeros at any of the rddlzeros of P2 or P»y. If u; = 0, then
¥; is aunitinR and ifu; = 0, then Py € M(R).

3)
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Choose
QIZ

22

Q2=
Q2 € R™X(e271) 1 Qyy € RMez=m)X(ne2=7) has no real
blockingi{-zeros and no zeros at any réélzeros of P;» and
P»;; obvious choices fof),. are anyR-unimodular matrix or
the identityl,, , ... By constructionN¢» = (Ua+Q2D22) has
no real blocking/-zeros and né/-zeros coinciding with any
reall(-zeros of eithe;» or I%;. SincerankPio = nis = N2,
z, € U is all-zero of Py = Np;»D3,' if and only if
rankN12(z,) < ny2. Similarly, z, € U is ald-zero of P, =
XY, ifand only ifrank X1 (2,) < n.2. By Lemma 2,P is
stronglyR-stabilizable if and only iflet D, has the same sign
at all real blocking//-zeros ofN > N2 X1, which are the real
blockingl{-zeros of P2, of P,; and possibly some of the real
U-zeros common td”, and P»,. We prove that no other real
blockingl/-zeros exist by contradiction: Supposec IRN/ is
such thaLNTLQNT(_"Q‘Yzl(ZU) =0 but [\'712(20) ;ﬁ 0, ){21(30) #
0, andz, is not a common zero aP, and P»1; sincez, may
be a zero of one of?», or P, there are two cases: 1) If
Pio(z0) # 0, Pa1(2,) # 0, thenrankNi5(2,) = 050 = N2,
rank X1 (2,) = no2; hence,Ni2(z,) € IR"°1*"i2 has a left-
inverse Ni» and X»,(z,) € IR"*2*"i1 has a right-inverse
Xs,. Therefore, N s Noo Xo1(2,) = 0 implies Noo(z,) = 0,
which is a contradiction; and 2) I, is a zero of eitherP;
or %, then 1‘ankﬁcg(20) = Nos. Either Xy € Rt X"ez
exists such thaﬁgl(zu )le =17 (If le(ylo) # 0) or [Vlg €
IR"2%"ot exists such thalVis Ni2(z,) = I (if Pia(z,) # 0).
Therefore, N1 Ny Xo1(2,) = 0 implies eitherNi,(z,) = 0,
or X21(z,) = 0; again we have a contradiction. Sindg.
or P is strictly proper, the sign oflet D2, is the same at
all of these real blocking/-zeros as the sign afet D22(cc);
thereforel := P13 D2y Neo Poy is stronglyR-stabilizable. By
(16) and (19),Dc¢» in (11) is biproper, i.e..C, is proper
sincedet (Vi — Q11A)(o0) # 0. Since P € M(R,) or
P,y € M(R.), Q1 € M(R) satisfying (13) can be chosen
strictly proper so that’; is proper.

If rank Py = rank(Nngz_zl) = N2 = ny2, thenrank Ny =
n.2. By (10), det U> anddet N2o have the same sign at all
real blockingl/-zeros of D2,. By (16), the real blocking/-
zeros of Dy, are those of its smallest invariant facter, .
Since thel{-zeros of P,; are those ofdet N»2, the sign of
det Nao is the same at all redl/-zeros of, . Therefore,
¢ € R exists such that{det Us + ¢¢,,) is a unit of R
implies Q2 € M(R) exists such thafVes is R-unimodular
[9]. We show that sinceéVe is R-unimodular, the only real
blocking Z/-zeros of N1 Neo» Xo are the blocking/-zeros of
P4, or P»; and possibly some of the redlzeros ofP, or of
Py If z, € RNU is such thath(zu) ;é 0, le(,zo) #
0, then rankNi2(z,) + rankX21(z,) — no2 > 0. There-
fore,rankngNchgl(zo) > rankNi2(z,) +rankXo1(z,) —
nez > 0 implies N1o NeoXa1(2,) # 0. Since the signs of
det D3, anddet Dyz(o0) are the same at all reéd-zeros of
Py, and P21, by Lemma 2,7 is stronglyR-stabilizable. Since

—A+M? [QO“ }M*l

P, € M(R,;), the existence of proper controllers follows
from Theorem 2-2)-b).
First we show thatP,» = Ni»,Dj' has anR-stable left

inverse if and only ifN1» € R"°1*"i2 has anR-stable left
inverse Ni, € R =Xmo1: if Pl € R"2X"el exists such
that P112P1'_7 = I, thenP112ng = D»o. Since(ng, Dgz) is
right-coprime, (Vi Ply + Ui2) N1y = I implies (Vio Py +
Uiz) € M(R) is a left-inverse ofV,». Conversely, ifN7, €
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R™2%"el exists such thalN{, Nia = I, thenN{, P = D3}
implies Doz Nis Py = I; hence,Dax Nis € M(R) is a left-
inverse of P,». It can be shown similarly tha,, = DZ,' N,
has anR-stable right-inverse if and only ilVo; € R™e2X"t
has a right-inverseV4, € R"i1*"=2_ Construct();; € R"*"
with ¢;; chosen as above; sincewmnkPi,(s) = n;2 and
rankP21(s) = noe for all s € U, P2 and P»1 have no

U-zeros. Therefore).:, is chosen so that the nondiagonal [5]

entries¢;; # 0 are constants, and;; € R are such that
(v; — q;j\;)(0c) # 0. To guarantee thalVc» has no real
blocking ¢{-zeros, let
2 i1 Qi Q2

Q2=—-A+M |:Q21 O
Q. € R 9, e RO, €
R(moz=m*(n02=7) can be arbitrary if bothn,, > 1 and
niz > 1 if niz = 1, let Q2 € R'*("2=1 pe nonzero
real; if nos = 1, let Qu1 € R™="V*! pe nonzero
real. Let Q; := N/ 01N/, € M(R). Since Nco has
no real blockingl{-zeros, Q1 € M(R) exists such that
Dy + IVN7214N72’1Q1N1T2N12NC*2 = Ds + Qﬂvcz is R-
unimodular, i.e., (14) holds. Sinc®¢- is biproper, Cs is
proper. There isQ; € M(R) such thatDss + Q) New
is R-unimodular if and only ifQ; € M(R) exists such
that Doy + (s 4+ a) *Q1Neo is R-unimodular; choosing
Q1= (s+a)"'Q, € M(R,) implies C; is proper.
Let Cs be any R-stable R-stabilizing controller for Pss.
Without loss of generality, let the RCR2 = N2»Dj,)' satisfy
D22 + CSZVQQ = I, hence,JngDgg = (I - JTVZZCS)JVQQ.
Then Uy, = Cs + T(I — ZVQQCS'), Vo =1 — TJ\'TQQ, Z:N72 =
Cs + DyuT, Vo = I — NouT, T € M(R) satisfy (10). By
assumption,”,; = D7,' N, implies Nu; has a right-inverse
4&72[1 € ./M(R) AlSO, £P12 = E]\’T12D;21 = Py = J\’TQQD;;
implies LN12 = Nao. Let C1, C» be given by (11) and
(12), Q1 = NLL € R*"'*me1, Q, = —T. Then (13)
becomesDs; + CsNa2z = I. Since Piy, P12 € M(R,),
(N1 — N12Q2Nay) € M(R,) implies D, is biproper, i.e.,
Ci1 € M(Rp). SinceCy = Cs € M(R), (C1, Cy) is a
reliable decentralized controller pair.
Let Cs be as in 4); letD2; + Cs N2 = I. By assumption,
Py = Ny D3 implies N1, has a left-inverseVi, € M(R).
AlSO, leé = D;;NTQlé = Py = lN)_lZ\N/vQQ Implles
NotR = Nay = Nuy. Let Cy, C, be given by (11) and (12),
Q. = RN/, € R"i1*"e1 (), = —T. The conclusion follows
as in 4).
ChooseCys as in 4). By assumptionL P = P, implies
ivam = [VQQ, and Pmé = P22 lmplles NYQ]PL =
JVQQ Noo. Let QQ —T, Ql fi(jli, le
S L rmk " (CsNax)™ 2Cy; k is any integer such
that & > ||CsN22| and r, are the binomial coeffi-
cients. By (13) ng =+ CS'IVQQC21NQQ I — CF;ZVQQ =+
S kT (Cs Nag)™ (I — k~'CsNao)* is R-
unimodular. ThenC;, € M(R.) since @i, Q1 € M(R,).
Since(; = Cs is proper,(Cy, C2) is a reliable decentralize
controller pair. O

}M*l € RrizXnoz

4)

5)

6)
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Useful Nonlinearities and Global Stabilization of
Bifurcations in a Model of Jet Engine Surge and Stall

Miroslav Krstic, Dan Fontaine, Petar V. Kokotdyi
and James D. Paduano

Abstract—Compressor stall and surge are complex nonlinear insta-
bilities that reduce the performance and can cause failure of aircraft
engines. We design a feedback controller that globally stabilizes a broad
range of possible equilibria in a nonlinear compressor model. With a
novel backstepping design we retain the system’s useful nonlinearities
which would be cancelled in a feedback linearizing design. The design
control law is simple and, moreover, it is optimal with respect to a
meaningful nonquadratic cost functional. As in a previous bifurcation-
theoretic design, we change the character of the bifurcation at the stall
inception point from subcritical to supercritical. However, since we do not
approach bifurcation control using a normal form but using Lyapunov
tools, our controller achieves not only local but also global stability. The
controller requires minimal modeling information (bounds on the slope
of the stall characteristic and the B-parameter) and simpler sensing
(rotating stall is stabilized without measuring its amplitude).

Index Terms—Axial flow compressors, backstepping, bifurcation con-
trol, jet engines, rotating stall, surge.

I. INTRODUCTION

In control engineering the importance of qualitative low-order
nonlinear models is twofold. First, they can capture the dominant
dynamic phenomena; second, they are testbeds which help refine
new nonlinear design methods. One such model, the Moore-Greitzer
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