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ABSTRACT
This paper analyzes a linear dme-invariant 2-channel decentralized

control system with a 2x2 strictly proper planL It presents an algonthm
for the algebraic design of a class of decentalized compensators which
stabilize the given pLaL

INTODUCTION
It is well known (see for exanple [Vid.1, [Des.1]) tat the set of

all stabilizing full-output-feedback compensators that stabi a given
plant P can be parameid using copime fncizations of P. If the sys-
tem has sever local control stations and dynanic output-feedbck is
allowed only fom each channl output to the input of that channel, such
a parametrization is not available. It was shown in [Wand1] that a plant
P can be stabilized using such decentalized dynamic output-feedback if
and only if P has no unstable fiwd modes.

In this paper we consider a 2-channel 2x2 strictly proper plant
which has no unstable fixed modes. We present an algorithm which con-
struts a class of prope decentalized compensators which stabilize the
plant We use a fatorization approh.
Notaton [Lngl]: Let U c C+ be a closed subset of C, symmetric
about the real axis, and let C \ U be nonempty. Let t := U j (axn).
Let Ru(s) be the ring of proper scalar rational functions in s (with
coefficients in R) which are analytic in U. Let I be the (multiplica-
tive) set of elements f e Ru such that f (oo) = a nonzero constant;
equivalently, I c Ru is the set of proper but not strictly proper rational
funcdons which . are analytic in U . Let Ru II := f nid:
n e Ru , d e I be the ring of fractions associated with Ru; clearly,
this ring is the ring of proper rational functions Rp (s ).
Let RP (s) be the set of strictly proper ratipnal functions; equivalently
f R ,p(s) goes to 0 as s - oo. LetJ be the group of units of
Ru; equivalently, f a J has neithe poles nor zeros in fi.

ANALYSIS
Assumptions Consider the decentralized control system S (F, Cd)
shown in figure 1.
(A) Let P and Cd have no hidden U -unstable modes so that they can
be specified by teir I/O representations.
(B) Let P e Rp(s)2x2 be a 2-channel plant Let (N, D) be righ-

N
coprime fration representation (r.c.fr.) of P, where N = N1J

DI
D = D N, N2, D ,D2 Ruxz, detD E I, P =ND-'.

V fs) D[ (s)
Let ranAx N Is) >1 and let rank N2(s) >1, for a s a it

(C) Let C [ C2J a Rp(s)22 be a decentalized conpensator.
Lst (1), N) be a Ifc ie fration representation of Cd, wherem =

[
° 24M n2 5 E Ruk,d ., d2 E I ,Cd=t
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Comment: Assumption (B) implies that the plant P
fixed modes (And.1, Wan.11.

has no unstable

Using the representations of P and Cd as in Assumpions (B) and
(C), we redraw the decentralized control system as in figure 2. The sys-
tem S (P, Cd) is described by equations (l)-(2) below:
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Using obvious notations we write equations (I)-(2) in te form

DH = NLU NRj = Y

where, by inspection, (NR, DH) is right-coprime (r.c and (D11, NL) is
left-coprime (IO). Let Hy,: u I- y. If detDH E I (equivalently, the
system S (P, Cd) is well-posed), then

Hy, =NRDH'NL E m(Rp(s))
Definition: S(P, Cd) is calW U-stable if and onlY if
H e m (R u).
Theorem: Let Assumptions (A), (B), (C) hold. Then S (P, Cd) is
U-stable if and only if detDH ]J .

Comment: This threm ies tli$S(P, CO is U-able ifand

only if detDH = det dD2+ N2j C]

idl-I n1 0 D
c= d2§ iO 4 ... ]is unimodular

L° ° d2n2| L N ism da

SYNTHIESIS
Let P satisfy Assumption (B).
Definition: Cd is called a U -stabilizing decentralized conmensator for
P (equivalently, Cd U-stabilizes P) if and only if Cd satisfies
Assumption (C), and S (P, C4) is U-stable.

We now state an algorithm for finding a decentralized compensator
Cd which Ua-stbilizes a given strictly proper P.
Algorthm:
Given : P R(s 2, and a r.c.fr. (N, D) of P such that Assump-
tion (B) holds.
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Find: Cde R/s saisfying Assaumpt (C) such that the system
S(P, Cd) is t .

Step 1 : Put [ND] into the Smith Forrn equivalently, find unmodtdar

kI mayLet[N2 4dnXImyb 0.LetN2 jRI=: L'2' [d2dr±
Step 2 Find a wzimodular Ml e Ru2W such that MlL, nnJ

d:[n ] Rda where 20* . Find r e Ru such thatthe pai

(d21+rn2l, X0 =: (d2l, X1) is coprime. Let M2 =: [ 1 Ml-Then

0 N, 0 , MX.The...

°2* a2l )6|X2 '(d2A,) coprime.

Step 3: Find a unimodudar Tn Rj' sch ftat T [4

Step 4: For all q1 E Ru, th decentlized compeatr numerators and
denominators are given by
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ni:O 01 I0OO
0 d2 Jn2J= L°
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CommentS 1) In Step 1, XI * I because P E R,^(s)W implies that
N4 Rp(s)iyt. Therefore, in Step 2, X2* 0. 2) In Step 2, the pir
(d21+rn2l , X) = (4i2 , X2) may be copime for moe thian one r E RU.
For each choice of such r, we can find a T a Ru2j in Step 3. Then in
Step 4, for this T, we find a whole class of cmqpensator pammaeters

;, a,d2 , n2, where C1 = n and C2 = n2.

EXAMPL
We now follow the algorthm above to find a sbilizing decen-

talized cmpao for a given strictdy prei plant
2(s3-7s2+6s+2) &s-1)
(s+l)2(s-2)(s-3) (s-2Xs-3) R S()2Z2

GivenP =1 1 r1 Rp
s-3 s-3 J

and a r.c.f.r. (N, D) of P, where

s+ 2

Then [N JRI = 2s-1

(31)2

Step 2: M1 = s.-3 .

+l s+l

Then d4=I(s2)=!2 s+1 ' n21 ,+
= -j . Now we can choose any r E RU such that d21+rin2 has no

zero at 2 (where X2 has a zero). Choose for example r = -1. Then

=2I= ) is coprime withX2.s+1 ~ ~ ~~~~~r91
-27

s-2 and

s+lI
Step 4:Fcrallq1e Ru, [J; WI]=[1

r2 S+l S+l
]
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Figure 2


