FA6 - 12:15

LINEAR TIME-INVARIANT CONTROLLER DESIGN FOR TWO-CHANNEL DECENTRALIZED CONTROL SYSTEMS

Charles A. Desoer and A. Nazli Gündes

Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory University of California, Berkeley CA 94720 USA

ABSTRACT

This paper analyzes a linear time-invariant 2-channel decentralized control system with a 2x2 strictly proper plant. It presents an algorithm for the algebraic design of a class of decentralized compensators which stabilize the given plant.

INTRODUCTION

It is well known (see for example [Vid.1], [Des.1]) that the set of all stabilizing full-output-feedback compensators that stabilize a given plant P can be parametrized using coprime factorizations of P. If the system has several local control stations and dynamic output-feedback is allowed only from each channel output to the input of that channel, such a parametrization is not available. It was shown in [Wan.1] that a plant P can be stabilized using such decentralized dynamic output-feedback if and only if P has no unstable fixed modes.

In this paper we consider a 2-channel 2x2 strictly proper plant which has no unstable fixed modes. We present an algorithm which constructs a class of proper decentralized compensators which stabilize the plant. We use a factorization approach.

Notation [Lang1]: Let $\mathcal{U} \subset \mathbb{C}_+$ be a closed subset of \mathbb{C} , symmetric about the real axis, and let $\mathbb{C} \setminus \mathcal{U}$ be nonempty. Let $\mathcal{U} := \mathcal{U} \cup \{\infty\}$. Let $R_{\mathcal{U}}(s)$ be the ring of proper scalar rational functions in s (with coefficients in \mathbb{R}) which are analytic in \mathcal{U} . Let l be the (multiplicative) set of elements $f \in R_{\mathcal{U}}$ such that $f(\infty) = a$ nonzero constant; equivalently, $l \subset R_{\mathcal{U}}$ is the set of proper but not strictly proper rational functions which, are analytic in \mathcal{U} . Let $R_{\mathcal{U}}/l$:= $\{n/d : n \in R_{\mathcal{U}}, d \in l$ be the ring of fractions associated with $R_{\mathcal{U}}$; clearly, this ring is the ring of proper rational functions $\mathbb{R}_p(s)$.

Let $\mathbf{R}_{sp}(s)$ be the set of strictly proper rational functions; equivalently $f \in \mathbf{R}_{sp}(s)$ goes to 0 as $s \to \infty$. Let J be the group of units of R_{μ} ; equivalently, $f \in J$ has neither poles nor zeros in $\overline{\mathcal{U}}$. ANALYSIS

Assumptions: Consider the decentralized control system $S(P, C_d)$ shown in figure 1.

(A) Let P and C_d have no hidden \mathcal{U} -unstable modes so that they can be specified by their I/O representations. (B) Let $P \in \mathbb{R}_{-}(s)^{2x^2}$ be a 2-channel plant. Let (N, D) be a right-

(b) Let
$$P \in \mathbb{R}_{p}(s)^{-1}$$
 be a 2-channel plant. Let (N, D) be a right-
coprime fraction representation (r.c.f.r.) of P , where $N = \begin{bmatrix} N_{1} \\ N_{2} \end{bmatrix}$,
 $D = \begin{bmatrix} D_{1} \\ D_{2} \end{bmatrix}$, N_{1} , N_{2} , D_{1} , $D_{2} \in \mathbb{R}_{u}^{1x2}$, det $D \in \hat{l}$, $P = ND^{-1}$.
Let rank $\begin{bmatrix} D_{1}(s) \\ N_{1}(s) \\ C_{1} \end{bmatrix} \ge 1$ and let rank $\begin{bmatrix} D_{2}(s) \\ N_{2}(s) \end{bmatrix} \ge 1$, for all $s \in \tilde{U}$.

(C) Let $C_d = \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} \in \mathbb{R}_p(s)^{2x^2}$ be a decentralized compensator. Let (\tilde{D}', \tilde{N}') be a left-coprime fraction representation of C_d , where $\tilde{D}' = \begin{bmatrix} \tilde{a_1} & 0 \\ 0 & \tilde{a_2'} \end{bmatrix}$, $\tilde{N}' = \begin{bmatrix} \tilde{n_1} & 0 \\ 0 & \tilde{n_2'} \end{bmatrix}$, $\tilde{n_1'}$, $\tilde{n_2'} \in R_u$, $\tilde{d_1'}$, $\tilde{d_2'} \in \dot{l}$, $C_d = \tilde{D}'^{-1}\tilde{N}'$.

Research sponsored by the National Science Foundation Grant ECS-8119763, and NASA Grant NAG2-243. **Comment:** Assumption (B) implies that the plant P has no unstable fixed modes [And.1, Wan.1].

Using the representations of P and C_d as in Assumptions (B) and (C), we redraw the decentralized control system as in figure 2. The system $S(P, C_d)$ is described by equations (1)-(2) below:

$$\begin{bmatrix} 1 & 0 & \vdots & -D_{1} \\ 0 & 1 & \vdots & -D_{2} \\ \vec{a}_{1}^{'} & 0 & \vdots & \vec{n}_{1}^{'}N_{1} \\ 0 & \vec{a}_{2}^{'} & \vdots & \vec{n}_{2}^{'}N_{2} \end{bmatrix} \begin{bmatrix} y_{1}^{'} \\ y_{2}^{'} \\ \vdots \\ \xi_{p} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \vec{n}_{1}^{'} & 0 \\ 0 & 0 & 0 & \vec{n}_{2}^{'} \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2}^{'} \\ u_{1}^{'} \\ u_{2}^{'} \end{bmatrix}$$
(1)
$$\begin{bmatrix} 0 & 0 & \vdots & N_{1} \\ 0 & 0 & \vdots & N_{2} \\ 1 & 0 & \vdots & 0 \\ 0 & 1 & \vdots & 0 \end{bmatrix} \begin{bmatrix} y_{1}^{'} \\ y_{2}^{'} \\ \vdots \\ \xi_{p} \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ y_{1}^{'} \\ y_{2}^{'} \end{bmatrix}$$
(2)

Using obvious notations we write equations (1)-(2) in the form

$$D_H \xi = N_L u \qquad N_R \xi = y$$

where, by inspection, (N_R, D_H) is right-coprime (r.c.) and (D_H, N_L) is left-coprime (l.c.). Let $H_{yu} : u \mapsto y$. If det $D_H \in l$ (equivalently, the system $S(P, C_d)$ is well-posed), then

$$H_{w} = N_R D_H^{-1} N_L \in \mathcal{M}(\mathbb{R}_p(s))$$

Definition: $S(P, C_d)$ is called \mathcal{U} -stable if and only if $H_{y\mu} \in \mathcal{M}(R_{\mu})$.

Theorem: Let Assumptions (A), (B), (C) hold. Then $S(P, C_d)$ is \mathcal{U} -stable if and only if det $D_H \in J$.

Comment : This theorem implies that $S(P, C_d)$ is \mathcal{U} -stable if and $\left| \tilde{d}_1' D_1 + \tilde{n}_1' N_1 \right|$.

y if det
$$D_H = \det \begin{bmatrix} \tilde{d}'_2 D_2 + \tilde{n}'_2 N_2 \end{bmatrix} \in J$$

$$<=> \begin{bmatrix} \tilde{d}'_1 & 0 & \vdots & \tilde{n}'_1 & 0 \\ 0 & \tilde{d}'_2 & \vdots & 0 & \tilde{n}'_2 \end{bmatrix} \begin{bmatrix} D \\ \cdots \\ N \end{bmatrix}$$
 is unimodular

$$<=> \begin{bmatrix} \tilde{d}'_1 & \tilde{n}'_1 & \vdots & 0 & 0 \\ 0 & 0 & \vdots & \tilde{d}'_2 & \tilde{n}'_2 \end{bmatrix} \begin{bmatrix} D \\ \cdots \\ N \end{bmatrix}$$
 is unimodular
SYNTHESIS

Let P satisfy Assumption (B).

Definition: C_d is called a \mathcal{U} -stabilizing decentralized compensator for P (equivalently, C_d \mathcal{U} -stabilizes P) if and only if C_d satisfies Assumption (C), and $S(P, C_d)$ is \mathcal{U} -stable.

We now state an algorithm for finding a decentralized compensator C_d which \mathcal{U} -stabilizes a given strictly proper P.

Algorithm :

onl

Given : $P \in \mathbb{R}_{sp}(s)^{2x^2}$, and a r.c.f.r. (N, D) of P such that Assumption (B) holds.

Find: $C_d \in \mathbb{R}_p(s)^{2c2}$ satisfying Assumption (C) such that the system $S(P, C_d)$ is \mathcal{U}_p stable.

Step 1 : Put $\begin{bmatrix} D_1 \\ N_1 \end{bmatrix}$ into the Smith Form; equivalently, find unimodular $L_1 , R_1 \in R_u^{2x2}$ such that $L_1 \begin{bmatrix} D_1 \\ N_1 \end{bmatrix} R_1 = \begin{bmatrix} 1 & 0 \\ 0 & \lambda_1 \end{bmatrix}$, $\lambda_1 \in R_u$, where λ_1 may be 0. Let $\begin{bmatrix} D_2 \\ N_2 \end{bmatrix} R_1 =: \begin{bmatrix} d_{21} & d_{22} \\ n_{21} & n_{22} \end{bmatrix}$.

Step 2 : Find a unimodular $M_1 \in R_u^{2\times 2}$ such that $M_1 \begin{bmatrix} d_{21} & d_{22} \\ n_{21} & n_{22} \end{bmatrix}$ =: $\begin{bmatrix} \hat{d}_{21} & \lambda_2 \\ \overline{n}_{21} & 0 \end{bmatrix} \in R_u^{2\times 2}$ where $\lambda_2 \neq 0$. Find $r \in R_u$ such that the pair $(\hat{d}_{21} + rn_{21}, \lambda_2) =: (\overline{d}_{21}, \lambda_2)$ is coprime. Let $M_2 =: \begin{bmatrix} 1 & r \\ 0 & 1 \end{bmatrix} M_1$. Then

$$\begin{bmatrix} L_1 & \vdots & 0\\ \cdots & \vdots & \cdots\\ 0 & \vdots & M_2 \end{bmatrix} \begin{bmatrix} D_1\\ N_1\\ D_2\\ N_2 \end{bmatrix} R_1 = \begin{bmatrix} 1 & 0\\ 0 & \lambda_1\\ \overline{d}_{21} & \lambda_2\\ \overline{n}_{21} & 0 \end{bmatrix}, \quad (\overline{d}_{21}, \lambda_2) \text{ coprime.}$$

Step 3: Find a unimodular $T \in R_{\mu}^{2r^2}$ such that $T\begin{bmatrix} \lambda_2 \\ -\lambda_1 \overline{d}_{21} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Step 4: For all $q_1 \in R_{\mu}$, the decentralized compensator numerators and denominators are given by

$$\begin{bmatrix} \vec{a}_{1}^{\prime} & \vec{n}_{1}^{\prime} & \vdots & 0 & 0 \\ 0 & 0 & \vdots & \vec{a}_{2}^{\prime} & \vec{n}_{2}^{\prime} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \vdots & 0 & 0 \\ 0 & 0 & \vdots & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & q_{1} \\ 0 & 1 \end{bmatrix} TL_{1} \vdots & 0 \\ \cdots & \vdots & \cdots \\ 0 & \vdots & M_{2} \end{bmatrix}$$
$$= \begin{bmatrix} (1 & q_{1})TL_{1} & \vdots & 0 \\ \cdots & \vdots & \cdots \\ 0 & \vdots & (1 & 0)M_{2} \end{bmatrix}$$

Comments: 1) In Step 1, $\lambda_1 \neq 1$ because $P \in \mathbb{R}_{sp}(s)^{2s2}$ implies that $N_1 \in \mathbb{R}_{sp}(s)^{1s2}$. Therefore, in Step 2, $\lambda_2 \neq 0$. 2) In Step 2, the pair $(d_{21}+rn_{21}, \lambda_2) = (d_{21}, \lambda_2)$ may be coprime for more than one $r \in R_u$. For each choice of such r, we can find a $T \in R_u^{2s2}$ in Step 3. Then in Step 4, for this T, we find a whole class of compensator parameters $\tilde{d}'_1, \tilde{n}'_1, \tilde{d}'_2, \tilde{n}'_2$, where $C_1 = \tilde{d}'_1 = \tilde{n}'_1$ and $C_2 = \tilde{d}'_2 = \tilde{n}'_2$.

EXAMPLE

We now follow the algorithm above to find a U-stabilizing decentralized compensator for a given strictly proper plant.

$$Given P = \begin{vmatrix} \frac{2(s^3 - 7s^2 + 6s + 2)}{(s+1)^2(s-2)(s-3)} & \frac{-(s-1)}{(s-2)(s-3)} \\ \frac{1}{s-3} & \frac{1}{s-3} \end{vmatrix} \in \mathbb{R}_{sp}(s)^{2s2}$$

and a r.c.f.r. (N, D) of P, where

$$N = \begin{bmatrix} \frac{1}{s+1} & 0\\ \frac{2s-1}{(s+1)^2} & \frac{3s^2-4s-1}{(s+1)^3} \end{bmatrix}, D = \begin{bmatrix} 1 & \frac{s-1}{s+1}\\ \frac{s^2-9s+2}{(s+1)^2} & \frac{2(s^3-7s^2+6s+2)}{(s+1)^3} \end{bmatrix}.$$

Step 1: $L_1 = \begin{bmatrix} 1 & 0\\ \frac{-1}{s+1} & 1 \end{bmatrix}, R_1 = \begin{bmatrix} 1 & \frac{-(s-1)}{s+1}\\ 0 & 1 \end{bmatrix}$ and hence, $\lambda_1 = \frac{-(s-1)}{(s+1)^2}.$

ſ

Then
$$\begin{bmatrix} D_2 \\ N_2 \end{bmatrix} R_1 = \begin{bmatrix} \frac{s^2 - 9s + 2}{(s+1)^2} & \frac{(s-2)(s-3)}{(s+1)^2} \\ \frac{2s-1}{(s+1)^2} & \frac{s-2}{(s+1)^2} \end{bmatrix}$$
.
Step 2: $M_1 = \begin{bmatrix} 1 & 4 \\ \frac{-1}{s+1} & \frac{s-3}{s+1} \end{bmatrix}$. Then $\hat{d}_{21} = \frac{-(s-2)}{s+1}$, $\overline{n}_{21} = \frac{1}{s+1}$.

 $\lambda_2 = \frac{s-2}{s+1}$. Now we can choose any $r \in R_{\mu}$ such that $\hat{d}_{21} + r\bar{n}_{21}$ has no zero at 2 (where λ_2 has a zero). Choose for example r = -1. Then $\bar{d}_{21} = \frac{-(s-1)}{s+1}$ is coprime with λ_2 .

Step 4: For all
$$q_1 \in R_u$$
, $[\vec{a}'_1 \ \vec{n}'_1] = [1 \ q_1] \begin{bmatrix} \frac{s^2 + 5s + 40}{(s+1)^2} & -27\\ \frac{-(s-3)}{(s+1)^3} & \frac{s-2}{s+1} \end{bmatrix}$ and $[\vec{a}'_2 \ \vec{n}'_2] = \begin{bmatrix} \frac{s+2}{s+1} & \frac{3s+7}{s+1} \end{bmatrix}$.

REFERENCES

- [And.1] B. D. O. Anderson, D. J. Clements, Automatica, vol. 17, pp. 703-712, 1981.
- [Cor.1] J. P. Corfmat, A. S. Morse, Automatica, vol. 12, pp. 479-495, 1976.
- [Des.1] C. A. Desoer, C. L. Gustafson, IEEE Trans. Auto. Cont., vol. AC-29, pp. 909-917, 1984.
- [Des.2] C. A. Descer, A. N. Gündeş, Proc. IMSE85 Conf. at Univ. of Texas at Arlington, published as Integral Methods in Science and Engineering, Hemisphere, pp. 85-98, 1986.
- [Guc.1] A. N. Guclu, A. B. Ozguler, Int. Jour. Cont., vol. 43, pp. 965-980, 1986.
- [Lang 1] S. Lang, Algebra, Addison-Wesley, 1971.
- [Lin.1] A. Linnemann, IEEE Trans. Auto. Cont., vol. AC-29, pp. 1052-1054, 1984.
- [Vid.1] M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, 1985.
- [Wan.1] S. H. Wang, E. J. Davison, IEEE Trans. Auto. Cont., vol. AC-18, pp. 473-478, 1973.

1