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Abstract 

Two-stage stabilizing controlIer design methods that 
achieve type-m integral action and diagonal input- 
output transfer-functions are developed for linear, 
time-invariant, multi-input multi-output feedback sys- 
tems. Integral action can be achieved with the pro- 
posed configurations if and only if the given plant is 
full row-rank and has no transmission zeros at zero. 
All stabilizing controllers with at least m integrators 
in each output channel are explicitly characterized. A 
parametrization of all decoupling controllers which also 
achieve type-m integral action is obtained. 

1 Introduction 

The well-known parametrization of all stabilizing con- 
trollers in the standard linear, time-invariant (LTI) 
multi-input multi-output (MIMO) feedback system 
makes it possible to characterize all achievable transfer- 
functions for a given plant [6]. Two-stage controller 
configurations (Fig. 1, Fig. 2) are considered here in- 
stead of the standard system configuration with one 
controller. The advantage is that the given plant P 
is stabilized by the first controller Cf in each of the 
subsystem configurations S(P, Cf) and S(P, Cf); the 
second controller is implemented with m integrators in 
each channel and is used to achieve integral action and 
decoupling. In order to achieve integral action with the 
second controller, the first controller Cf is chosen so 
that the transfer-function from el to y has no (trans- 
mission) zeros at zero; Cj can be designed to satisfy 
this coiidition if and only if P(0) is full row-rank. De- 
coupling can be achieved with these two-stage designs 
if and only if P is full row-rank; therefore, for any 
plant that satisfies the necessary condition for integral 
action, it is possible to  achieve decoupling as well. 

Using the standard one-degree-of-freedom design, it is 
possible to achieve decoupling only for a restricted 
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set of plants; a sufficient condition to  achieve decou- 
pling is that P is full row-rank and has no pole-zero 
coincidences in the region of instability [5]. Various 
parametrizations of all decoupling controllers for plants 
satisfying this sufficient condition are available [2], as 
well as results on necessary and sufficient conditions to 
achieve decoupling in the standard feedback configura- 
tion [3]. Although decoupling is achievable for any full 
row-rank P using two-degrees-of-freedom design as in 
[l], the two-stage design here can also achieve robust 
asymptotic tracking, and type-m integral action [4]. 

Due to the algebraic framework, the results apply to 
continuous-time as well as discrete-time systems; for 
the case of discrete-time systems, all evaluations and 
poles at s = 0 would be interpreted at 1. 

Notation: Let U contain the extended closed right- 
half-plane (for continuous-time systems) or the comple- 
ment of the open unit-disk (for discrete-time systems). 
The sets of real numbers, polynomials, rational func- 
tions, proper rational functions with no poles in the 
region of instability U, proper and strictly proper ra- 
tional functions with real coefficients are denoted by 
IR, IR[s], F, R, R,, &,, respectively. The set of ma- 
trices with entries in R is denoted by M ( R ) ;  M is 
called R-stable iff M E M ( R ) ;  M E M ( R )  is called 
R-unimodular iff M-' E M ( R ) .  A right-coprime- 
factorization (RCF) and a left-coprime-factorization 
(_LCF> of P E Rpnoxn* are denoted by ND-' and 
D-IN, where ,P = ND-l = &l6, N , D 1 6 > E  E 
M ( R ) ,  D and D are biproper. Let rankP = r; so E U 
is called a (transmission) U-zero of P iff rankP(z,) < T ,  

equivalently, rankN(2,) = rankN(z,) < r .  
% 

2 Stability 

Consider the LTI, MIMO control systems S(P, Cj ,  C), 
s^(P, Cf, e) in Fig. 1, Fig. 2; S(P, Cj ,  C) and 
g(P, Cf , e) are well-posed, where the subsystems 
S(P,  C j )  and s^(P, C j )  are also well-posed. The plant 
and the controllers are represented by their transfer- 
functions P E RpnoXns, Cj E Rpnixno, C E Rpnoxno, 

0-7803-3590-2/96 $5.00 0 1996 IEEE 4637 



6 E Rpnoxno,  respectively; P ,  C j ,  6 ,  e have no hid- 
den modes associated with eigenvalues in U. 
2.1 Definitions (R-st  ubi& y ) : 
The system S(P,Cj ,C)  is said to  be R-stable iff 
the transfer-function H from [uT UT to 
[yT yy y:IT in S(P,Cj ,C)  is R-stable. The 
subsystem S ( P , C f )  is said to be R-stable iff the 
transfer-function ~j from [ey  UT^ to [yT y:]' 
is R-stable. The system s^(P,Cj,C) is said to be 
R-stable iff the transfer-function g from [uT UT 
to [yT yT y;lT is R-stable. The subsystem s ( P ,  Cj) 
is said to be R-stable iff the transfer-function gj from 
[e7 U:]' to [yT y:IT is 12-stable. The controller Cj 
is called an R-stabilizing controller for the subsystem 
S(P,Cj)  iff Cj E M(R,) H j  E M ( R ) .  Similarly, Cj 
i? called an R-stabilizing contr,$ler for the subsystem 
S(P,  Cj )  iff Cf E M(R,) and H j  E M ( R ) .  Let Cj be 
an R-stabilizing controller for the subsystem S(P,  Cj ) .  
The controller C is said to be an R-stabilizing con- 
troller for the system S(P, C j ,  C) iff C E M(R,) and 
H E M(R). The R-stabilizing controller C is said 
to achieve type-m integral action iff the input-error 
transfer-function H e ,  from U to e has m blocking zeros 
at s = 0; it is said to achieve decoupling iff the input- 
output transfer-function Hyu from U to y is diagonal 
and nonsingular. Similarly, let Cj be an R-stabilizing 
controller for the subsystem S(P,  Cj ) .  The controller e is :aid to bz an R,stabilizing contrzller for the sys- 
tem S(P, C j ,  C) iff C E M(R,) and H E M ( R ) .  The 
R-stabilizing controller e is said to achieve type-%in- 
tegral action iff the input-error transfer-function H e ,  
from U to e has m blocking zeros at s = 0; it is 
said to achieve decoupling iff the input-output transfer- 
function H,, from U to y is diagonal and nonsingular. 

2.2 Lemma ( C o n d i t i o n s  for R-s tabi l i ty ) :  
Let ND-' be any RCF, E-'fi be any LCF of P E 
RpnoXni;  let k l f i c j  be any LCF of Cj;  NCD;l be 
any RCF of C ,  NCD;l be any RCF of E. 
a) The system S(P, Cj, C) is R-stable if and only if 

C L  h 

The subsystem S(P ,  C j )  is R-stable if and only if 

MJ := (EC,a + N , ~ N )  is R-unimodular. (2) 

S(P,Cj ,C)  and subsystem S(P ,Cj )  are both 
R-stable if and only if M j  is R-unimodular and 

DH := (Dc  + NMT",jNC) is R-unimodular. ( 3 )  

b) The system S(P,  C j ,  E )  is R-stable if and only if 

The subsystem $(P, Cj )  is R-stable if and only if (2) 
holds. g(P,  Cj ,  e) and s ( P ,  C j )  are both R-stable if 
and only if M j  is R-unimodular and 

.-. 
DH := (6c + N M T ' b c j G c )  is R-unimodular. ( 5 )  

c )  The controller Cf E Rpnaxno is an R-stabilizing 
controller for the subsystem S(P,  C j )  (equivalently, for 
the subsystem s^(P, C j )  ) if and only if 

Cj = (V-Qj f i ) - ' (U+QjE)  = (6+DQj)(V-NQj) -1  
(6) 

where V, U,  V ,  V E M ( R )  satisfy 

V D  + U N  = I,, , ov $. Gz = Ino , V @  = UF, (7) 

and Q j  E RnaX"" is such that Cj E M(R,), equiva- 
lently, (V - Qjz) is biproper. If P E M(R,,), then 
Cj E M(R,) is proper for all Q j  E Rnzxno.  
d) The pair (Cj , C) is an R-stabilizing controller pair 
for the subsystem S(P, C j )  and the system S(P,  C j ,  C) 
if and only if Cj is given by (6) and C is given by 

c = (In, - ~ ~ f i ~ ~ 1 - l ~  = Q(L ,  - ~ f i , j ~ ) - ~ ,  (8) 

where Q E Rnoxno is such that C E M(R,), equiv- 
alently, (In, - Q N N c f )  is biproper. If P or Cj is 
strictly-proper, then C E M(R,) for all Q E Rnoxno.  
In (8), f i c j  = (U + Q j E )  for some Q j  E RntXno such 
that (V - Q j f i )  is biproper. 
Similarly, (Cj ,e) is an R-stabilizing controller pair for 
the subsystem $P, C j )  and the system s^(P, Cj ,  6)  if 
and only if Cj is given by (6) and 

- 

is given by 

E = (In, - QNEcf)-l& = @Ino - N'cjQ)-l, (9) 

where 6 E M ( R )  is such that ( In ,  - o N f i c j )  is 
biproper. If P E M(F&,), then e E M(R,) for all 
6 E M(R). In (91, ECj  = (V - Q ~ E )  for some 

0 

In S(P,Cj ,C) ,  the transfer-function from el to  y, 
H y e l  = PCf (1  + PCj)-' E Rnoxno is achiev- 
able using an R-stabilizing controller Cj if and 
only if Hyel = N N c j  = N(U + QjE) .  The 
input-output transfer-function from U to y, Idyu = 

Rnoxno is achievable using an R-stabilizing controller 
pair (Cj ,  C) if and only if 

Q j  E M ( R )  such that ECj is biproper. 

I 

(IS P c ,  + P c f  c1-l P c ,  c = H ~ ~ ~ c ( I + H ~ ~ ~ c ) - ~  E 

Hyu  = NfiCjN, = N ( U  + QjE)  Q ,  (10) 

where Q f  E RnaXnol  Q E Rnoxno are such that (V - 
Q j N )  is biproper and ( Ino - Q N 6 , j )  is biproper. 

In g ( P , C j , e ) ,  the transfer-function from el to y, 
gyel = P ( l  + CjP)-' E Rnoxnn is achievable using 
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an R-stabilizing controller CJ if and only if gyel = 
N6,f = N(V - QfE): The input-output transfer- 
function from U to y, H,, = ( I  + P C ~  + P C ) - ~  PC 
= Hye ,C( I+  EYelC)-' E Rnoxno is achievable using 
an R-stabilizing controller pair (Cf , e) if and only if 

H,, = N E c j Z c  = N ( V  - QjO)G, 

A 

P. 

(In) 

E Rnxxno are such that (V - where Qf E Rntxno ,  
Q j f i )  is biproper and (In, - GN6, j )  i s  biproper. 

3 Type-m integral action 

In this section it is required that the system 
S(P.  Cf , C )  is R-stable and has (at least) type-m in- 
tegral action in each channel, while the subsystem 
S(P,  Cf> is R-stable; equivalently, the input-error 
transfer-function He,  = I - Hg, is required to have 
(at least) m blocking zeros at s = 0, where m 2 1 
is a given integer. Similarly, tlie system S(P,C~,E) 
is required to be R-stable and have (at least) type-m 
iztegral action in each channel, while the subslstem 
S(P ,  Cf) is R-stable; equivalently, H e ,  = I - H,, is 
required to have (at least) m blocking zeros at s = 0. 

Suppose that S( P, Cj C )  and S( P, Cj )  are R-stable. 
The input-error transfer-function He,  = I - N N , j N ,  = 
D, has m zeros at s = 0 if and only if D, = 

D, for some biproper D, E Rnoxno, and some 

-a E IR \ U .  Then the controller C = NCO;' = 
q N c D ; '  =: i w C ,  has no hidden modes 
associated with eigenvalues in U only if C, has no 
U-zeros at s = 0, i.e., rankNc(0) = no. By Lemma 
2.2(a), the system S(P,Cj ,C)  is R-stable if and 
only if (1) holds, which implies rankiV(0) = no and 
rankN,j (0) = no; therefore a necessary condition for 
R-stability of S(P, Cj, C) is that P and Cj have no 
(transmission) zeros at s = 0 and no < n i ~  Further- 
more, S ( P , C f , C )  and S(P,Cj) are both R-stable if 
and only if (2) and (3) hold, i.e., with the controller 
Cj as in (61, D, + ",IN,  = &D, + NGCfNc 
is R-unimodular. Therefore, another necessary con- 
dition for '.%-stability of S(P, C j ,  C )  and S(P,  C j )  is 
rank(Nfi,j)(O) = rank(N(U + &pE))(O)  = no. It 
is shown in Lemma 3.I(a) that there exists Cj = 
fi:ifi,j such that the subsystem S(P, Cj) is R-stable 
and rank(Nfi,j)(O) = no whenever P has no (trans- 
mission) zeros at s = 0 and no < ni. 
Similarly, A when s^(P, CjL6)_ and >(P, Cj)  are 
R-stable, H e ,  = P - ND,fN, = D, has m ze- 
ros at s = 0 if and only if D, = Sm * 

some biproper 6, E Rnoxno. Since C = NCO;' = 
~ ~ c 6 ; 1  Sm =: v 6 3  has no hidden modes 

- 

'" 
( s  + a), 

I 

- 

h 

("+")_m, h for 

associated with eigenvalues in U if and only if e, has 
no U-zeros at s = 0, i.e., rankN,(O) = no. By Lemma 
2.2(b), the system s^(P, Cj ,  e) is 72-stable if and only 
if (4) - holds, which implies rankN(0) = no 5 ni and 
rankD,j(O) = ni; therefore, a necessary condition for 
R-stability of s (̂P, Cj, E) is that P has no (transmis- 
sion) zeros and Cj has no poles at s = 0. Further- 
more, $(P,Cj,e) and g(P,Cj) are both 72-stable 
if and only if (2) and (5) hold, i.e., with Cf as 
in (61, 6, + Nfi,j??, = Sm ss + NE,j??, is 
72-unimodular. TherefoEe, anotker neceyary condi- 
tion for R-stability of S(P,Cj ,C)  and S(P,Cf)  is 
rank(l\iE,f)(O) = rank(N(V - Qjfi))(O) = no. It 
is shown in Lemma 3.l(b) that there exists Cj = 
6:; f i e f  such that the subsystem S( P, Cf ) is R-stable 
and rank(NDcf)(0) = no whenever P has no (trans- 
mission) zeros at s = 0 and no < nd. 
3.1 Lemma ( F d I  rank Hyel and Ifyel): 
Let ND-' be any RCF, z-'z be any RCF of 
P E Rpnoxna; let V, U,  F, 
a) For each so E U, there exists Q j  E M ( R )  such that 
rank(U+Qf6)(so) = min{ no, ni} .  Let rankP = no 5 
azi. Let so E U be such that rankP(s,) = no. There ex- 
ists Q j  E M(72) such that rank N ( U  + Q j z ) ( s o ) )  = 

no and (V - Qff i )  is biproper. 
b) For each so E U, there exists Q j  E M ( R )  such 
that rank(V - QjN)(so) = ni. Let rankP = no 5 ni. 
Let so E U be such that rankP(s,) = no. There exists 
Qf E M ( R )  such that rank (N(V - Qffi)(so)) = no 

0 

Since this condition is necessary for integral action, it 
is assumed that no 5 ni and P has no (transmission) 
zeros at s = 0, i.e., rankP(0) = no. 

3.2 Proposition (Integral action for fized Cj): 
Let P E Rpnoxns, rankP(0) = no. Let ND-' be 
any RCF, 6-Ifi be any LCF of P .  Let V, U,  v 7  6 E 
M ( R )  satisfy (7). 
a) Let Cj = ( V - Q j 8 ) - 1 ( U + Q j 6 ) ,  where Q j  E 
RnBxno is such that rank(Nfi,j)(O) = rank(N(U + 
QjE))(O) = no and (V - Qjf i )  is biproper. Then the 
set S ,  of all R-stabilizing controllers C that achieve 
type-m integral action for the system S(P, Cj, C) is 

- 

h 

E M ( R )  be as in (7). 

( 
I 

and (V - Q j z )  is biproper. 

4639 



'- ' 
b) Let no = na. Let Cj = (V - Q j z ) - l ( U  + Q j D ) ,  
where Q j  E RniXno is such that rank(NEcj)(0) = 
rank(N(V - &jz))(O) no and (V - Q j Z )  i s  
biproper, Then the set S, of all R-stabilizing con- 
trollers that azhieve type-m integral action for the 
system S(P ,  Cj , C) is 

s,= c= - ( S E $  = Q ( I  - NEcjG) - l  I - { sm 

In Proposition 3.2(a), Cj = EG1gcj is designed 
first as any R-stabilizing controller for S(P,  C j )  such 
that N E c j  = N(U + Q j E )  has no (transmis- 
sion) zeros at s = 0. Existence of Q j  E M ( R )  
satisfying this condition is guaranteed by Lemma 
3.l(a). The controller C is implemented as C = 
w , C s ,  where --a E IR \ kl is arbitrary. For 
e = 0, I , ,  . . , m - 1, the Gth coefficient-matrix E 
J p , X n ,  of the polynomial-matrix Q E l R [ ~ ] ~ ~ ~ ~ o  is 

= 0. There- 

fore, I -  NE^^ @ s" Y for some 

biproper Y E Rnoxflo.  Therefore, for all con- 
trollers C E s, in (12), the input-error transfer- 

defined by $( I - N S c j  cp 
(s + a), )Iszo 

- 
function H e ,  = I - NNcf (* + .&Qa) 

- (Y - N f i c j Q s )  has m zeros at s = 0 due 

to the term Sm Note that the integral action 

achieved at all outputs is more than tyke-m whenever 
Q, E M ( R )  is such that Q,(O) = (NNcj)(0)-IY(0) 
since D, = (Y - N G c j Q s )  has additional blocking- 
zeros at s = 0. 

Sm 

- (s+a)" 

(s + a),. 

Similarly, in Proposition 3.2(b), where it is assumed 
that P is square (no = ni) for simplicity so that 
Hyel is square, Cj = DGINcj is designed first as 
any R-stabilizing controller for &P, C,) such that 
N D c j  = N(V - Q j g )  has no (transmission) zeros 
at s = 0. Existence of Q j  E M ( R )  satisfying this 
condition is guaranteed by Lemma 3.1(b). The con- 

troller C is implemented as C = -Es. For P = 

h - -  

- 

- s * a  A 

0,1,  I n ,  m - 1, E Etnaxno of 5 E i s  de- 
6 fined by $( I - N E c j  = 0. Therefore, 

- Sm for some biproper I - N E c j  

? A E Rnnxno. Therefore, for all controllers-e E 
S, in (13), the input-error transfer-function H e ,  = 

(.+U)" - (.+a)" 

- A  

ND,,Qs) has m zeros at s = 0 due to the term 
S" The integral action achieved at all outputs 

i s  more than type-m whenever Gs E M ( R )  is such 
that G s ( 0 )  = (NEcj)(0)-l?(O) ss = (P - N E c j Q ^ s )  
has additional blocking-zeros at s = 0. 

In the case that m = 1, since @ = U ( N ~ ~ ~ ) ( O ) - ~ ,  
the expression in (12) is simplified as follows: With 
Cf = DG'Ncf a fixed 12-stabilizing controller for 
S(19,Cf) such that rank(NGcp)(0) = no, the set SI 
of all R-stabilizing controllers C which achieve type-l 
integral-action in the system S(P,  C j ,  6) is 

w. 

- -  

c= w c s  = Q ( I -  N G ~ ~ Q ) - I  I 

Qs E Rnoxno,  det(1- N E c j Q s ) ( m )  # 0 } . (14) 

Similarly, since 5 = U ( N E , ~ ) ( O ) - ~ ,  the expression in 
(13) is simplified as follows: With Cj = &'fiCj a 
fixed R-stabilizing controller for s^((P, C j )  such that 
rank(NEcj)(0) = no, the set of all R-stabilizing 
controllers C?- which _achieve type-1 integral-action in 
the system S(P,  Cf , C) is 

A 

Gs E Rnoxno7 det(I-  NEcfGs) (cm)  # 0 } ~ (15) 

4 Integral action and decoupling 

In this section it is required that S(P,  C,) is R-stable 
and the system S(P, C j ,  C) is R-stable, has (at least) 
type-m integral action in each channel, and is de- 
coupled, i.e., the input-output transfer-function Hyu 
12 diagoncl and nonsingular. Similarly, the system 
S(P ,  C, , C) is required to have the same properties. 

Consider the system S(P,  C j ,  C): If there exists an 
R-stabilizing controller pair (Cj ,  C) such that Hyu E 
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RnoXno is nonsingular, then by (lo),  N E Rnoxnz,  
Ncj  E RnZXno, Ne E RnoXno must all have (normal) 
rank equal to no, equivalently, rankP = no 5 ni, 
rankCf = no, rankC = no. Furthermore, ( N N , j )  E 
R n o x n o  must also have full rank. Therefore a neces- 
sary condition for decoupling is that rankP = no 5 n f ,  
which is also sufficient with this two-stage design. By 
Lemma 3.1(a), there exists Qj E Rnnxno such that 
rank(Nficj) = rank(U + QjE) = no. For each fixed 
R-stabilizing controller &i = DG1ECf for S(P, &i) 
such that rank(NN,j) = no,  all R-stabilizing con- 
trollers C for the system S( P, Cj , C) such that ffyy is 
diagonal and nonsingular and all corresponding achiev- 
able Hyu are parametrized as follows: 

Let P E Rpnoxna , rankP = no 5 ni. Let ND-' 
be any RCF, E-'fi be any LCF of P .  Choose any 
R-stabilizing controller Cf = E$'Ecj E Rpnzxno for 
the subsystem S(P, C f ) ,  such that rank(Nfi,j) = no. 
For j = 1 , .  ..,no, let S L ~  E R be any greatest- 
com-mon-divisor of all entries in the j-th row of 
( N N c j )  E Rnoxno; define 

- 

- 

AL := diag [ SL ,  9 . . S L ~ ,  ] , A ~ 7 1  := N f i c j .  (16) 

For i, j = 1,. . . , no, write the ij-th entry of 'H-' E 

pair (aij, bjj)  is coprime. Let 6 ~ j  E R be any least- 
common-multiple of the denominators ( b l j  , . . . , b n , j )  
of the j-th column of 71-l; define 

p o x n o  as a..b:.' a, '3 , where ai,, bij E R, bij  # 0 and the 

AR := diag [ 6321 . . . S R ~ ,  ] . (17) 

With the chosen C f ,  the controller C is an 
R-stabilizing controller such that Hvu is diagonal and 
nonsingular if and only if 

c = %-'AR&D(In, - ALAR&D)-', (18) 

and the input-output transfer-function Hyu is achiev- 
able with (Cj ,  C) if and only if 

= ALARQD (19) 

where QD E RnoXno is diagonal, nonsingular, and sat- 
isfies QD(w) # (AL(w)AR(~) ) - ' .  

The controller Cf in this parametrization is any 
R-stabilizing controller given by (6) such that rank% = 
n,,_where Qj E Rnsxno is such that N g c j  = N(U + 
Q j D )  is full normal rank and (V - Qjfi)  is biproper. 
The diagonal matrix AL E Rnoxno in (16) is non- 
singular since rank(Ngcf) = no implies S L ~  # 0; 
this matrix extracts from each row of ( N s c f )  fac- 
tors common to every entry in that row. TJe remain- 
ing matrix 71 is invertible since rank(NNcj) = no 
but 71-l may not be proper. The diagonal matrix 
AR E Rnoxno in (17) is nonsingular since bij # 0 

implies 6 ~ ,  # 0. By construction 'H-~AR E RnoxnO 
and hence, 'H-~ARQD E RnoXn0 is an R-stable ma- 
trix for any QD E M ( R ) .  The controller C in (18) 
is proper if and only if (I - ALARQD) is biproper; if 
P or Cj is strictly proper, equivalently N E M(I&,) 
or Aqcf E M(R,,), then AL E M ( R )  and hence, C 
is proper for all QD E Rnoxno. The controller C is 
strictly-proper if QD E M ( R )  is strictly-proper. 

Similarly, consider the system $(P, Cj ,  e): If there 
exists an R-stabilizing controller pair (Cf I C) such 
that GYu E Rnoxno is nonsingular, then by ( 11) , 
N E Rnoxn*, D,j E Rntxno9 and GC E Rnoxna all 
are rank no 5 ni. Furthermore, ( N E C f )  E RnoXna 
i s  also full row-rank. By Lemma 3.l(b), there ex- 
ists Qj € M ( R )  such that rank(N?j,f) = rank(V - 
Qffi)  =_no. We assume for simplicity that no = ni so 
that (ND,j) is square. For each fixed R-stabilizing 
controller Cj = D$'N,f for $((P,Cj) such that 
rank(N5,f) = no, all R-stabilizing controllers e 
for the system &P,Cf ,@ such that Eyu is diago- 
nal and nonsingular are parametrized following sim- 
ilar steps as in the case of S(P,  C f ,  C) above: Let 
P E Rpnoxno , rankP = no. Choose any R-stabilizing 
controller Cf = &'ficj E Rpnoxflo for the subsystem 
g(P,  C f ) ,  such that rank(Nficj) = no. Define Z L ,  Z R ,  
Ej for ( N 5 , j )  similarly as in (16)-(17). With the 
chosen Cj , the controller 6 is an R-stabilizing con- 
troller such that fiyu is diagonal and nonsingular if 
and only if C = H f  ARQ~(I,,, - ALAR&,)-', and 
the input-output transfer-function H, ,  is achievable 
with ( C j , e )  if and only if H,, = ALARQD, where 
6,  E Rnoxno is diagonal, nonsingular, and satisfies 
O,(W> # ( L ( ~ ) & ( ~ )  I-'. 
In Proposition 4.1, all R-stabilizing controllers that 
achieve type-m integral action- an$ decoupling are 
parametrized for fixed Cf = DG'Ncf , which is de- 
signed so that rank(NN,f)(O) = no. The controller 
C is designed next to achieve type-m integral action 
and diagonal, nonsingular Hyu. The parametrization 
is based on AL, 71, AR defined by (16)-(17) associated 
with N G c f .  The dual parametrization for the system 
g( P, Cj , e) would follow entirely similarly based on 
s ~ ,  E j ,  2~ associated with N E C j ,  where Cf is cho- 
s_en as any 72-stabilizing co$roller for the subsystem 
S(P,  Cj) such that rank(ND,f) = no. 

- 

- -  
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h 

.. A . . . .  

- 

4.1 Proposition (Integral action, decoupling): 
Let P E Rpnoxni,  rankP(0) = no.  Let ND-' be 
any RCF, b-lfi be any LCF of P .  Jet V, U, v> 6-E 
M ( R )  satisfy (7). Let Cf = (V-QfN)- l (U+QjD) ,  
where Q j  E Rnixno is such that rank(Nficf)(0) = 
rank(N(U + QjE))(O) = no and (V - Q j z )  is 
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If C = Q ( I  - N f i c f Q ) - l ,  with Q as in (20), HYu = 

is di- 

agonal and nonsingular for all controllers in Propo- 
sition 4.1. For t = 0, ~. .,m - 1, the Gth co- 
efficient 4 j , e  of the polynomial (pj is defined by 

xj/y3 is the polynomial factorization of ( 6 ~ j 6 , j ) .  
+ The corresponding He,  = I - ALAR 

= ALAR ((. +:)m @ + (. ~m,), Q D )  

(21) as $((S+a)mYj) l  = ~ ( 4 j ~ j ) l s = o l  d‘ where 
s=o 

(s + U P  ’” 
(s + a)m 

ALARQD has m zeros at s = 0. The in- 

tegral action achieved at all outputs may be more than 
type-m for appropriate choices of the diagonal matrix 
QD E MW). 

When m = 1, since q5j = u(ALjARj(0) ) - l ,  with Cf = 
5;’ficf a fixed R-stabilizing controller for S(P ,  Cf) - 
such that rank(NN,j)(O) = no ,  Q in (20) becomes 

5 Conclusions 

We considered two-stage %stabilizing controller design 
methods that achieve integral action and decoupling 
for any full row-rank plant with no (transmission) ze- 
ros at zero. The purpose of the first controller Cf is 
to R-stabilize the given plant P ;  the parametrization 
of all C f  in (6) follows from well-known factorization 
methods. The R-stabilizing controller Cf should be 
chosen so that decoupling and integral action can be ac- 
complished in the second stage. Therefore, Cf  is cho- 
sen so that the closed-loop map transfer-function from 
el  to y has no (transmission) zeros at zero; existence of 

biproper. Let AL, 31, AR be defined by (16)-(17)- 

Then C = w C s  is an R-stabilizing controller 
for the system S( P, C f ,  C )  that achieves type-m inte- 
gral action and is such that Huu is diagonal and non- 
singular if and only if C = Q(I  - NGCfQ)-l ,  where 

in(20), - u E I R \ U ,  QD =diag [q~  . . . q n o ]   ER^"^"", 
qj(m) # ( ~ L ~ ( w ) S R ~ (  
for j = 1, ..., no 4j = 
. . . + 4j,0 E IR[s], where, 
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such Cf is guaranteed by Lemma 3.1. The second con- 
troller is designed to have m poles at zero in order to 
have type-m integral action. The parametrization of all 
R-stabilizing controllers that achieve type-m integral 
action is given in Proposition 3.2 and the parametriza- 
tion of the controllers which also achieve decoupling 
is given in Proposition 4.1. The proposed two-stage 
designs achieve decoupling for any full row-rank plant, 
whereas the standard one-degree-of-freedom design can 
achieve decoupling for a subset of such plants. Design 
for integral action is also simplified by stabilizing the 
given plant in the first stage and applying the second 
controller to a stabilized system. 
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Figure 1: The system S(P,  C j ,  C )  

Figure 2: The system s^((P, C j ,  e) 


