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Abstract

Two-stage stabilizing controlier design methods that
achieve type-m integral action and diagonal input-
output transfer-functions are developed for linear,
time-invariant, multi-input multi-output feedback sys-
tems. Integral action can be achieved with the pro-
posed configurations if and only if the given plant is
full row-rank and has no transmission zeros at zero.
All stabilizing controllers with at least m integrators
in each output channel are explicitly characterized. A
parametrization of all decoupling controllers which also
achieve type-m integral action is obtained.

1 Introduction

The well-known parametrization of all stabilizing con-
trollers in the standard linear, time-invariant (LTT)
multi-input multi-output (MIMO) feedback system
makes it possible to characterize all achievable transfer-
functions for a given plant [6]. Two-stage controller
configurations (Fig. 1, Fig. 2) are considered here in-
stead of the standard system configuration with one
controller. The advantage is that the given plant P
is stabilized by the first controller C in each of the
subsystem configurations S(P,Cy) and S(P Cfy); the
second controller is implemented with m integrators in
each channel and is used to achieve integral action and
decoupling. In order to achieve integral action with the
second controller, the first controller C; is chosen so
that the transfer-function from e; to y has no (trans-
mission) zeros at zero; Cy can be designed to satisfy
this condition if and only if P(0) is full row-rank. De-
coupling can be achieved with these two-stage designs
if and only if P is full row-rank; therefore, for any
plant that satisfies the necessary condition for integral
action, it is possible to achieve decoupling as well.

Using the standard one-degree-of-freedom design, it is
possible to achieve decoupling only for a restricted
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set of plants; a sufficient condition to achieve decou-
pling is that P is full row-rank and has no pole-zero
coincidences in the region of instability [5]. Various
parametrizations of all decoupling controllers for plants
satisfying this sufficient condition are available [2], as
well as results on necessary and sufficient conditions to
achieve decoupling in the standard feedback configura-
tion [3]. Although decoupling is achievable for any full
row-rank P using two-degrees-of-freedom design as in
{1], the two-stage design here can also achieve robust
asymptotic tracking, and type-m integral action [4].

Due to the algebraic framework, the results apply to
continuous-time as well as discrete-time systems; for
the case of discrete-time systems, all evaluations and
poles at s = 0 would be interpreted at 1.

Notation: Let i contain the extended closed right-
half-plane (for continuous-time systems) or the comple-
ment of the open unit-disk (for discrete-time systems).
The sets of real numbers, polynomials, rational func-
tions, proper rational functions with no poles in the
region of instability I/, proper and strictly proper ra-
tional functions with real coefficients are denoted by
R, R[s], F, R, Ry, Rsp, respectively. The set of ma-
trices with entries in R is denoted by M(R); M is
called R-stable if M € M(R); M € M(R) is called
R-unimodular iff M~! € M(R). A right-coprime-
factorization (RCF) and a left- coprime—factorization
(LCF) of P € Rp™ Xi are denoted by ND~! and
D-'N, where P = ND~! = D-'N, N,D,N,D €
M(R), D and D are biproper. Let rankP =r;s, €U
is called a (transmission) U-zero of P iff rankP(z,) < r,
equivalently, rankN(z,) = rank N (z,) < 1.

2 Stability

Consider the LTI, MIMO control systems S(P,Cy, C),
8(P,¢;,C) in Fig. 1, Fig. 2; S(P,Cy,C) and
S(P,Cy,C) are well-posed, where the subsystems

S(P,Cy) and 8(P,Cy) are also well-posed. The plant
and the controllers are represented by their transfer-
functions P € R, ™, C; € Ry™ %™, C € Rp"°*"°,



Ce Rp"°*"°, respectively; P, Cy, C, C have no hid-
den modes associated with eigenvalues in .

2.1 Definitions (R-stability):
The system S(P,C;,C) is said to be R-stable iff

the transfer-function H from [u¥ o uf]¥ to

T o ¥F1T in S(P,Cy,C) is R-stable. The

subsystem S(P,C;) is said to be R-stable iff the
transfer-function H; from [e7 w]T to [y7 oI]7
is R-stable. The system §(P, Cf,é') is said to be
R-stable iff the transfer-function H from [u? of uZ]T
to [T yF yT]¥ is R-stable. The subsystem S(P,C})
is said to be R-stable iff the transfer-function & 7 from
[T wI1T to [yT yF]T is R-stable. The controller C;
is called an R-stabilizing controller for the subsystem
S(P,Cy) iff C; € M(Rp) Hy € M(R). Similarly, C;
is called an R-stabilizing controller for the subsystem
S(p, Cy) it Cy € M(R;) and H; € M(R). Let C; be
an R-stabilizing controller for the subsystem S(P, Cy).
The controller C is said to be an R-stabilizing con-
troller for the system S(P,Cy,C) iff C € M(R;) and
H € M(R). The R-stabilizing controller C is said
to achieve type-m integral action iff the input-error
transfer-function H, from u to e has m blocking zeros
at s = 0; it is said to achieve decoupling iff the input-
output transfer-function Hy, from u to y is diagonal
and nonsingular. Similarly, let C; be an R-stabilizing
controller for the subsystem S(P,C}). The controller
C is said to be an R-stabilizing controller for the sys-
tem S(P,C;,C) iff C € M(Rp) and H € M(R). The
R-stabilizing controller C is said to achieve type-m in-
tegral action iff the input-error transfer-function H .,
from u to e has m blocking zeros at s = 0; it is
said to achieve decoupling iff the input-output transfer-
function Hy, from u to y is diagonal and nonsingular.

2.2 Lemma (Conditions for R-stability):
Let ND™! be any RCF, D-'N be any LCF of P €
Rp™o %™, let D 1ch be any LCF of Cf, N.D;! be

any RCF of C, Nch ! be any RCF of C.
a) The system S(P,Cy,C) is R-stable if and only if

chD+ﬁch "chNc
N D,

The subsystem S(P,Cy) is R-stable if and only if

] is R-unimodular. (1)

M; = (5ch + ﬁch) is R-unimodular. (2)

S(P,Cy,C) and subsystem S(P,Cy) are both
R-stable if and only if M; is R-unimodular and

Dy = (Do + NM; Ny N,) is R-unimodaular. (3)
b) The system §(P, Cy, 6’) is R-stable if and only if

N b, ] is R-unimodular. (4)

The subsystem S(P, Cy) is R-stable if and only if (2)
holds. g(P, C},C) and S(P,C}) are both R-stable if
and only if M; is R-unimodular and

ﬁH = (ﬁc + NMf_lf)cfﬁc) is R-unimodular. (5)

¢) The controller C; € Rp™ "™ is an R-stabilizing
controller for the subsystem S(P, C}) (equivalently, for

the subsystem S(P, C;) ) if and only if

Ct = (V-Q; Ny (U+Q; D) = (r7+DQf)(I7—NQf()6‘)1

where V, U, TN/, Ue M(R) satisfy

VD+UN=1I,,DV+UN=1,,, VU =UV, (7)

and Q; € R™"**™ is such that C; € M(R;), equiva-
lently, (V — Qfﬁ) is biproper. If P € M(Rsp), then
C; € M(Rp) is proper for all @y € R™ ",

d) The pair (C}, C) is an R-stabilizing controller pair
for the subsystem S(P, Cy) and the system S(P, Cy,C)
if and only if C; is given by (6) and C is given by

C = (I, —QNN)'Q=Q(, - NN;Q)™1, (8)

where Q@ € R"°*™ is such that C € M(R;), equiv-
alently, (I, QN]TQ;) is biproper. If P or Cy is
strictly-proper, then C' € M(Ry) for all Q € R™*".

In (8), Noy = U+ Q; D) for some Q; € R™*"* such
that (V — QfN) is biproper.

Similarly, (Cy, C } is an R-stabilizing controller pair for
the subsystem S(P, Cy) and the system S(p, Cy, 6’) if
and only if Cy is given by (6) and C is given by

€ = (In,~ QND.s)"'Q = Q(I., - ND;Q)™*, (9)

where Q € M(R) is such that (In; — QNN;) is
biproper. If P € M(Rsp) then C € M(Rp) for all
@ € M(R). In (9), D = (V — Q4D) for some
Qs € M(R) such that ﬁcf is biproper. O

In S(P,C;,C), the transfer-function from e; to y,
Hy., = PCy(I + PCy)"t € R™*™ is achiev-
able using an 7R-stabilizing controller C; if and
only if Hye, = NN = NU + Q;D). The
input-output transfer-function from u to y, Hy, =

(I +PC;+ PC;C) ' PC4C = Hye,C(I+H,e,C)"t €
R"e*"e ig achievable using an R-stabilizing controller
pair (Cy,C) if and only if

Hyu:Nﬁchc:N(U'*'Qfﬁ)Qa (10)

where Q; € R™*"°, Q € R"**™* are such that (V —
Qs N) is biproper and (I,, — QN N.;) is biproper.

In g(P, C;,é’), the transfer-function from e; to y,
Hy., = P(I4+C;P)~! € R™*™ is achievable using
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an R-stabilizing controller C; if and only if H yer =
N]Bcf = NV — Qfﬁ) The input-output transfer—
function from u to y, Hyy = (I + PC; + PC)~' PC
= Hye,C(I+ Hye,C)~* € R"**"™ is achievable using
an R-stabilizing controller pair {CY, C) if and only if

Hyu = NDeyy N, = N(V —Q; D)@, (11)

where Q5 € R™"°, Q € R™*™ are such that (V -
Qs N) is biproper and (I,, — QN D) is biproper.

3 Type-m integral action

In this section it is required that the system
8(P,C4,C) is R-stable and has (at least) type-m in-
tegral action in each channel, while the subsysiem
S8(P,Cy) is R-stable; equivalently, the input-error
transfer-function Heyw = I — H,, is required to have
(at least) m blocking zeros at s = 0, where m > 1
is a given integer. Similarly, the system S(P,C},C)
is required to be R-stable and have (at least) type-m

integral action in each channel, while the subgystem
S(P Cy) is R-stable; equlvalently, Hew=1- Hy, is

required to have (at least) m blocking zeros at s = 0.

Suppose that S(P,Cy,C) and S(P,Cy) are R-stable.
The input-error transfer-function Hey = I-NN N, =
D, has m zeros at s = 0 if and only if D, =
m
"(;'—‘—T‘EWD& for some biproper D, € R™*"°, and some
—a € R\ U. Then the controller C = N.D;! =
m m

st N, D7t = BT 6, has no hidden modes
associated with eigenvalues in & only if C, has no
U-zeros at s = 0, i.e., rankN;(0) = n,. By Lemma
2.2(a), the system S(P,C;,C) is R-stable if and
only if (1) holds, which implies rankN(0) = n, and
rankN.;(0) = n,; therefore a necessary condition for
R-stability of S(P,Cy,C) is that P and Cj have no
(transmission) zeros at s = 0 and n, < n;. Further-
more, S(P,Cy,C) and S(P, Cf) are both R-stable if
and only if (2) and (3) hold, i.e., w1th the controller
Cy asin (6), D, +NchN (—'—*'TD +NchN
is R-unimodular. Therefore, another necessary con-
dition for R-stability of S(P,Cy,C) and S(P,Cy) is
rank(NNg; )(0) = rank(N(U + Q;D))(0) = n,. It
is shown in Lemma 3.1(a) that there exists C} =

1~);f1 N such that the subsystem S(P, Cy) is R-stable

and rank(N !\~fcf)(0) = n, whenever P has no (trans-
mission) zeros at s = 0 and n, < n;.

Similarly, when S(P Cy, C) and &(P,C;) are
R-stable, Heu = I - NDch = D, has m ze

ros at s = 0 if and only if Dc = KS—'HIT_DS for

some biproper D, € R™*" . Since € = N,D7!
m o m .
L'?——I";WGLNCD;‘I =: K%Q—LC, has no hidden modes
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associated with exgenvalues in U if and only if C, has
no U-zeros at s = 0, ie, rank N, (0) = n,. By Lemma

2.2(b), the system S(P, C’f, C) is R-stable if and only
if (4) holds, which implies rankN(0) = n, < n; and
rankD.s(0) = n;; therefore, a necessary condition for
R-stability of S(P, Cy,C) is that P has no (transmis-
sion) zeros and C’f has no poles at s = 0. Further-
more, 8(P,C;,C) and 8(P,C;) are both R-stable
if and only if (2) and (5) hold, ie., with C; as
N fong ~ <5 m fon ~ -5 o
in (6), D. + NDeyN. = ﬁY—D, + NDgN, is
R-unimodular. Therefore, another necessary condi-
tion for R-stability of S(P C;,C) and S(P, Cy) is
rank(N D.;)(0) = rank(N(V — QNN = n,. 1t
is shown in Lemma 3.1(b) that there exists Cy =
D;lNc 7 such that the subsystem S(P, C}) is R-stable
and rank(Nﬁcf)(O) = n, whenever P has no (trans-
mission) zeros at s =0 and n, < n;.

3.1 Lemma (Full rank Hye, and Hyel)

Let ND~! be any RCF, D-'N be any RCF of
P e R % let V,U,V, T € M(R) be as in (7).

a) For each So eu, there exists Qs € M(R) such that
rank(U—!—Qfﬁ)(so) = min{ n,, n; }. Let rankP = n, <
n;i. Let s, € U be such that rankP(s,) = n,. There ex-
ists @5 € M(R) such that rank (N(U + Q;b)(so)) =
n, and (V — Qf1\~f) is biproper.

b) For each s, € U, there exists Q; € M(R) such
that rank(V — Qs N)(s,) = n;. Let rankP = n, < n;.
Let s, € U be such that rank P(s,) = n,. There exists
Qs € M(R) such that rank (N(V - Qs F)(s,)) = n,

and (V — Qfﬁ) is biproper. O

Since this condition is necessary for integral action, it
is assumed that n, < n; and P has no (transmission)
zeros at s = 0, i.e., rank P(0) = n,.

3.2 Proposition (Integral action for fized C;):
Let P € Rp"*™, rankP(0) = n,. Let ND~! be
any RCF, D-!N be any LCF of P. Let V,U,V,U ¢
M(R) satisfy (7).

a) Let Cy = (V - Qfﬁ)_l(U'f-inj), where Q5 €
R™X" is such that rank(Nch)(O) = rank(N(U +
Q;D))(O) =mn, and (V — Q;N) is biproper. Then the
set S,, of all R-stabilizing controllers C' that achieve
type-m integral action for the system S(P,Cy,C) is

- { c=Ltac - QU-NFLQ |

Q= (s +(I)a)"‘ + (s —'ls-ma)m Qs, —a € R\U,

Q, € R™*", det(I — NN.;Q,)(co0) # 0,

D =@, 15 4+ Bpas™ 4+ By € R[s]Po X",



' =0,£4= 1
dsl ( N f (3 a)m ) s=0 ’ ' " }
(12)

b) Let n, = n;. Let Cf = (V — Q,ﬁ)-l(U+fo))
where ; € R™*" is such that rank(NDcf)(O) =
rank(N(V — QfN))(O) = n, and (V — QfN)

biproper. Then the set S, of all R-stabilizing con-

trollers C that achieve type-m integral action for the
system S(P, Cy, C) is

§m_{ M)_C

~

— 4 ™ A
Q— (s+a)m + (s—is-a)sz’
Qs € R7oXNe det(I NDcfQ,)(oo) #0,

QU - NDy Q)™ |

~

—aeR\U,

‘,I;:@m 1877 ! +¢m 25™ + +q)0 € R[s ]noxno)
d* ~ @
E(I—ND :0,[:0,.,.,m——1},

(13)
O

In Proposition 3.2(a), C; = ﬁ;flﬁcf i1s designed
first as any R-stabilizing controller for S(P,Cy) such
that Nﬁcf = NU + foj) has no (transmis-
sion) zeros at s = 0. Existence of Qf € M(R)
satisfying this condition is guaranteed by Lemma
3.1(a). The controller C' is implemented as C' =

m
gs—}?)—c,, where —a € IR \ U is arbitrary. For

£ =0,1,...,m — 1, the f-th coefficient-matrix ®, €
IR™°*" of the polynomial-matrix ® € IR[s]"°*"° is

defined by ﬁ(raNﬁc,«(s—f—a)ﬁ) = 0. There-
3=0

NN 6] s™
fore, I NchZW WY for some
biproper Y € R"*"°,  Therefore, for all con-
trollers C € S, in (12), the input-error transfer-

function Hey = I — Nﬁcf ((s +®a)m i G j_";)m Qs)
(s+a)m Y - NchQ ) has m zeros at s = 0 due

to the term G—_‘%"—:l—)—ﬂ. Note that the integral action
achieved at all outputs is more than type-m whenever
Qs € M(R) is such that Q,(0) = (Nch)(O) 1y (0)

since D, = (Y — NﬁcfQ,) has additional blocking-

zeros at s = 0.

Similarly, in Proposition 3.2(b), where it is assumed
that P is square (n, = n,) for simplicity so that
Hyel is square, C; = Dcf ch is designed first as

any R-stabilizing controller for S(P, Cy) such that
NDy = N(V - Q;N) has no (transmission) zeros
at s = 0. Existence of Q@ € M(R) satisfying this
condition is guaranteed by Lemma 3.1(b). The con-

m o~
&?—LCS. For ¢ =

troller C is implemented as C =

0,1,...,

s=0
> P _ s™
I=NDsroliay™ = Grap

2 € R" X", Therefore, for all controllersAa €
S; in (13), the input-error transfer-function H., =

m—1, &, € R**" of & € R[s|"**" is de-
= 0. Therefore,

Y for some biproper

I——-Nﬁcf (( +(I)a) +(sia)més>:—(sj_n;jm(?*

NDcst) has m zeros at s = 0 due to the term
mj—— The integral action achieved at all outputs

is more than type-m whenever Q, € M(R) is such
that @,(0) = (NDcf)(O)_IY(O) D, = (Y — ND4Q,)
has additional blocking-zeros at s = 0.

In the case that m = 1, since ® = a(NN,;)(0)"?,
the express1on in (12} is simplified as follows: With
C; = D ch a fixed R-stabilizing controller for

S(P,Cy) such that rank(Nch)(O) = n,, the set S;
of all R-stabilizing controllers C' which achieve type-1
integral-action in the system S(P,Cy,C) is

Slz{C’

a(N Ney)(0)~? s
(s +a) (s+a)Q3’

Qs € R™*"e, det(I — NNeyQy)(00) #0 . (14)

= E+do _gu-NR,Q T |

Q=

—a € R\ U,

Similarly, since & = a(N ﬁcf)(O)‘l the expression in
(13) is simplified as follows: With Cy = D ch a
fixed R-stabilizing controller for S(P, Cy) such that
rank(Nﬁcf)(O) = n,, the set S; of all R- stabilizing

controllers C' which achieve type-1 integral-action in

the system S(P Cf,C) is

v={0=t48, = qu - nD,0 |

w)

A _ a(NDey)(0)t
9= (s+a)

Qs € R™*™ | det(I — NDyyQ,)(00) # 0 } . (15)

+ (s_f_a)és, —aEIR\L(,

4 Integral action and decoupling

In this section it is required that S(P,Cy) is R-stable
and the system S(P,Cy,C) is R-stable, has (at least)
type-m integral action in each channel, and is de-
coupled i.e., the input-output transfer-function Hyu
is diagonal and nonsingular. Similarly, the system
(P Ct,C) is required to have the same properties.

Consider the system S(P,Cy,C): If there exists an
R-stabilizing controller pair (Cy,C) such that Hy, €
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R"™*" is nonsingular, then by (10), N € R"*™,
]\~fcf € R™*™ N, € R™*™ must all have (normal)
rank equal to n,, equivalently, rankP = n, < oy,
rankC; = n,, rankC = n,. Furthermore, (NN.) €
R™ X" must also have full rank. Therefore a neces-
sary condition for decoupling is that rankP = n, < n;,
which is also sufficient with this two-stage design. By
Lemma 3.1(a), there exists @y € R™*™ such that
rank(NN,;) = rank(U + Q;D) = n,. For each fixed
R-stabilizing controller C; = Dcf ch for S(P,Cy)
such that rank(Nch) = n,, all R-stabilizing con-
trollers C for the system S(P, Cy, C) such that Hy, is
diagonal and nonsingular and all corresponding achiev-
able Hyu are parametrized as follows:

Let P € Ry x"‘, rankP = n, < n;. Let ND!
be any RCF, D-!N be any LCF of P. Choose any
R-stabilizing controller Cy = N¢y € Ry X™ for
the subsystem S(P,Cy), such that rank(Nch) = n,.
For j = 1,...,n,, let §1; € R be any greatest-

common-divisor of all entries in the j-th row of
(NN.s) € R"*™; define

AL = diag [5[,1 o 61;,,,0] y AL'H = Nch. (16)
For 7,5 = 1,.. no, write the ij-th entry of H™!
FloXMo as ai]bu , where a;j, bj; € R, bij # 0 and the
pair (ai;, bi;) is coprime. Let 6p; € R be any least-
common-multiple of the denominators (byj,...,bn,;)
of the j-th column of H™1; define

Apg :=diag [6p1 -~ ORn, ] . (17)

With the chosen (', the controller C is an
R-stabilizing controller such that M, is diagonal and
nonsingular if and only if

C=H"'ArQp(In, — ALARQD)™},  (18)

and the input-output transfer-function Hy, is achiev-
able with (C¢, C) if and only if

H,, = ALARQp, (19)

where Qp € R™*"° is diagonal, nonsingular, and sat-
isfies @p(00) # (AL(00)ARr(c0)) L.

The controller € in this parametrization is any
‘R-stabilizing controller given by (6) such that rankH =
no, where @y € R™*"™ is such that Nch =NU+
Qs D) is full normal rank and (V — Q fN ) is blproper
The diagonal matrix A € R™*™ in (16) is non-
singular since rank(Nﬁcf) = n, implies 6r; # 0;
this matrix extracts from each row of (N ﬁcf) fac-
tors common to every entry in that row. The remain-
ing matrix H is invertible since rank(N K’cf) = n,
but ™! may not be proper. The diagonal matrix
Ag € R™*™ in (17) is nonsingular since b;; # 0
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implies ég; # 0 By construction H~!Ap € R"eX"e
and hence, H"'ArQp € R™*™ is an R-stable ma-
trix for any Qp € M(R). The controller C in (18)
is proper if and only if (I — ALArQ@p) is biproper; if
P or C; is strictly proper, equivalently N € M(Rgp)
or Ney € M(Rsp), then Ay € M(R) and hence, C
is proper for all Qp € R™**"°. The controller C is
strictly-proper if Qp € M(R) is strictly-proper.

Similarly, consider the system §(P, C’;,é’): If there
exists an R-stabilizing controller pair (C;,C) such
that ﬁyu € R™*"° is nonsingular, then by (11),
N € R™*™ De; € R**™, and N, € R**" all
are rank n, < n;. Furthermore, (Nﬁcf) € RPeXm
is also full row-rank. By Lemma 3.1(b), there ex-

ists @ € M(R) such that rank(ND.;) = rank(V —
Qs N ) = n,. We assume for simplicity that n, = n; so
that (N l~)cf) is square. For each fixed R-stabilizing
controller Cy = 5&11’\7“ for 8§(P,C ) such that
rank(NDcg) = n,, all R-stabilizing controllers C
for the system .§(P, Cf,é’) such that H yu is diago-
nal and nonsingular are parametrized following sim-

ilar steps as in the case of S(P,Cf,C) above: Let
Pe Rp""x"", rankP = n,. Choose any R-stabilizing

controller Cy = 5; Nej € Rp™*™ for the subsystem
S(P C}), such that rank(NDcf) = n,. Define Ay, Ap,
Hf for (NDcf) similarly as in (16)-(17). With the
chosen C;, the controller C is an R-stabilizing con-
troller such that H yu 1s diagonal and nonsingular if
and only if C = IAII—IZRQD(I"O — ELERQD)‘I, and
the input-output transfer-function i yu is achievable
with (C’;,é’) if and only if ﬁyu = ZLBR@D, where
Q p € R"*" is diagonal, nonsingular, and satisfies

Qp(o0) # (AL(c0)AR(c0))~ 1,

In Proposition 4.1, all R-stabilizing controllers that
achieve type-m mtegral action and decoupling are
parametrized for fixed Cf = Dcf ch, which is de-
signed so that rank(N N,_.f }(0) = n,. The controller
C is designed next to achieve type-m integral action
and diagonal, nonsingular Hyu. The parametrization
is based on A, H, Ag defined by (16)-(17) associated
with NN, of - The dual parametrization for the system
S(P Cf,C) would follow entlrely similarly based on
AL, H 5 AR associated with N Dcf, where C} is cho-
sen as any R-stabilizing controller for the subsystem
S(P, Cy) such that rank(NDcf) = n,.

4.1 Proposition (Integral action, decouph'ng):
Let P € Rp"™*™, rankP(0) = n,. Let ND~! be
any RCF, D-!N be any LCF of P. Let V,U,V, UE
M(R) satisfy (7). Let Cy = (V—Q;N)~ 1(U+QfD),
where Q; € R™*™ is such that rank(Nch)(O)
rank(N(U + Q;D))(0) = n, and (V — Q;N)



Let Az, H, Ar be defined by (16)-(17).
s+a)™

biproper.

Then C = C, is an R-stabilizing controller
for the system S(P,Cy,C) that achieves type-m inte-
gral action and is such that H, is diagonal and non-

singular if and only if C = Q(I — NﬁcfQ)‘l, where

+ (s—f—a)mQD) 5

in (20), —a € R\ U, Qp = diagg: ..

&p
(s+a)m

Q=H'Agr ( (20)

gn.) € RIXM,

g;(00) # (br§(00)6Rj(00))™", ®p = diag[¢r...¢n,};
for j = 1,...,m ¢j:¢j,m—1-‘{' +¢]m 23 2+
..+ ¢; 0 € R[s], where, for £=0,...,m~ 1,
(1 5”63]—-—";—— :o. (21)
d £ ( + )m L
O

If C'= QI - NN.;Q)™!, with Q as in (20), Hy, =

1s di-

NN,Q = ApAgp (2 s

cfQ—— L&R (s+a)m+(s+a)mQD
agonal and nonsingular for all controllers in Propo-
sition 4.1. For £ = 0,...,m — 1, the £&th co-
efficient ¢;, of the polynomial ¢; is defined by
(21) as (s +a)mu)|_ = Ee(dzs)]|
zj/y; is the polynomialnfactorization of _(61,]'633').

, where
0

: = I —%p__
The corresponding H., = I ALAR(s+a)m +
(s+a)mALARQD has m zeros at s = 0. The in-

tegral action achieved at all outputs may be more than
type-m for appropriate choices of the diagonal matrix

Qp € M(R).

When m = 1, since ¢; = a(ArjAgj(0))~1, with Cy =
Dc'f1 N.; a fixed R-stabilizing controller for S(P, Cy)
such that rank(Nﬁcf)(O) = n,, @ in (20) becomes

). (@)

where Qp = diag[q1...qn,] € R"*"°, ¢; € R satis-
fies gj(o0) # (815(00)8Rj(00))™! for j=1,...n,

a(ALAg(0))~*
(s+a)

Q=M TAg (

5 Conclusions

We considered two-stage R-stabilizing controller design
methods that achieve integral action and decoupling
for any full row-rank plant with no (transmission) ze-
ros at zero. The purpose of the first controller C; is
to R-stabilize the given plant P; the parametrization
of all Cy in (6) follows from well-known factorization
methods. The R-stabilizing controller Cy should be
chosen so that decoupling and integral action can be ac-
complished in the second stage. Therefore, C; is cho-
sen so that the closed-loop map transfer-function from
e1 toy has no (transmission) zeros at zero; existence of
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such C; is guaranteed by Lemma 3.1. The second con-
troller is designed to have m poles at zero in order to
have type-m integral action. The parametrization of all
‘R-stabilizing controllers that achieve type-m integral
action is given in Proposition 3.2 and the parametriza-
tion of the controllers which also achieve decoupling
is given in Proposition 4.1. The proposed two-stage
designs achieve decoupling for any full row-rank plant,
whereas the standard one-degree-of-freedom design can
achieve decoupling for a subset of such plants. Design
for integral action is also simplified by stabilizing the
given plant in the first stage and applying the second
controller to a stabilized system.
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Figure 2: The system S(P, Cy, 6’)



