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Abstract 

Reliable stability with type-m integral action is consid- 
ered in the linear, time-invariant, multi-input multi- 
output two-channel decentralized feedback system. 
The objective is to achieve closed-loop stability un- 
der normal operation of both controllers as well as the 
possible failure of either one of the two controllers. 
Necessary and sufficient conditions on the given plant 
are obtained for existence of reliable decentralized con- 
trollers achieving integral action. All reliable decentral- 
ized controllers with integral action are characterized 
using algebraic design methods. 

1 Introduction 

Factorization methods have made it is possible to char- 
acterize all controllers that stabilize a given plant in the 
standard unity-feedback system [9]. We apply these 
methods to the reliable stabilization problem using a 
multi-controller configuration. Since the introduction 
of multi-controller systems in [5], [6], the problem of 
reliable stabilization has been studied in a factoriza- 
tion setting using full-feedback controllers ([SI, [4], [3]) 
and decentralized controllers [7]. In [1], integral action 
in the decentralized configuration was considered with 
scalar channels assuming that the two controllers are 
stable and conditions on the steady-state gain of the 
plant were developed for the case of scalar channels. 

We study reliable stabilization with type-m integral 
action in the linear, time-invariant (LTI), multi-input 
multi-output (MIMO), two-channel decentralized sys- 
tem S(P,  8)? shown in Figure 1. The controllers are 
imdemented with m integrators in each channel. i.e.. 

, I  1 ,  where = (s+a)", with 

-a an arbitrary real number in the region of stability. 
The objective is to develop necessary and sufficient con- 
ditions on the plant P for existence of block-diagonal 
decentralized controllers that ensure reliable stabiliza- 
tion. Once such conditions are established, all decen- 
tralized controller pairs (e1,Gz) = ($Cl, $C2) are 
characterized such that the closed-loop system S(P, e) 
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is stable when C1 and C2 act together (normal opera- 
tion) as well as when each controller acts alone (failure 
mode). Given a plant P ,  it is possible to characterize 
all controllers that stabilize P in the standard unity- 
feedback system configuration. Consider now a pair 
of controllers that stabilize the given plant P when 
both controllers act together and when each of the 
controllers acts alone. 

The controller failure model used here is that a con- 
troller is replaced by zero if it fails. It is assumed 
that the failure of a controller is recognized and the 
controller is taken out of service (i.e., the states in 
the controller implementation are all set to zero, the 
initial conditions and the outputs of the channel that 
failed are set to zero for all inputs). Clearly, stabil- 
ity would be maintained when both controllers are set 
to zero if and only if the open-loop plant is stable. 
The integrators in the controller $C provide type-m 
closed-loop response. These integrators in each of the 
control channels guarantee that the closed-loop system 
achieves asymptotic tracking of (m - 1)-th order poly- 
nomial inputs; in particular, when m = 1, the steady- 
state error due to step inputs is zero. If one controller 
fails, this integral action is still present in the outputs 
of the channel with the active controller. 

Due to the algebraic framework described in the follow- 
ing notation, the results apply to continuous-time and 
as well as discrete-time systems; for the case of discrete- 
time systems, all evaluations and poles at s = 0 would 
be interpreted at 1. 

Notation: Let U contain the extended closed right- 
half-plane (for continuous-time systems) or the com- 
plement of the open unit-disk (for discrete-time sys- 
tems). The set of real numbers, the ring of proper 
rational functions which have no poles in the region 
of instability U, the sets of proper and strictly-proper 
rational functions with real coefficients are denoted by 
IR, R, R,, Rsp, respectively. The set of matrices whose 
entries are in R is denoted by M ( R ) ;  M is called 
R-stable iff M E M ( R ) ;  an R-stable M is called 
R-unimodular iff M - l  E M ( R ) .  A right-coprime- 
factorization (RCF) and a left-coprime-factorization 
(LCF) of P E Rpnoxn* are denoted by ND-' and 
E-'zy where _P = ND-' = 6-lfii Nl D ,  N, E E 
M('R), D and D are biproper. Let rankP = r ;  zo E U 



is called a (transmission) U-zero of P iff rankP'jz,) < T ,  

equivalently, rankN(z,) = rankfi(z,) < T ;  z ,  E U is 
called a blocking U-zero of P iff P(zo )  = 0, equiva- 
lently, N(z , )  = 0 = N ( z o ) ;  s, E U is called a E(-pole 
of P iff it is a pole ,Of some entry of P ,  equivalently, 
det D(so) = 0 = det ,D(s,). 

I 

2 System description 

Consider the LTI, MJMO, two-channel decentraliz5d 
control system S(P,C)  shown in Figure 1: S(P,C) 
is a well-posed system, where P and C represent the 
transfer-functions of the plant and Lhe decentralized 
controller. It is assumed that P and C have no hidden 
modes associated with eigenvalues in U. 

h 

input-error transfer-function from U to e ,  Hyu denote 
the input-output transfer-function from U to y. 

It is required that the system S ( P , e )  is R-stable, 
i.e., the transfer-function H from ( U ,  up) to (y, yc) 
is R-stable, and has (at least) type-m integral action 
in each channel, equivalently, H e ,  = I - Hyu has (at 
least) m blocking zeros at s = 0, where m 2 1 is a 
given integer. Suppose that S ( P , e )  is R-stable. Let 
26-l be any RCE' of 6. The input-error transfer- 
function H e ,  has mi zeros at s = 0 if D = D, for 

some biproper 6, E RnoXno, where 

- m -  

-3- 

q5 := (s + -a)m , --a E IR\u. (1) 

Therefore, S ( P , e )  has type-m integral action if 2 = 
-$Gij;l=: -$c for some c E 

Partition P and E =: $C as 

Cj E RpnwXnoi , 72, = no1+n02, ni = ni1+ni2, j = 1,2. 
(3) 

Let NcjDz; be an RCF and EGjfi~j be an 
LCF of Cj, j = IL,2. Let DC = diag[Dcl,Dcz], 
Nc  = diag[Ncl9N(;2], & = diag [EcI ,&~],  f i ~  = 

diag [Ec~. fic~] ; then NcDC' is an RCF and 6C1fic 
is an ECF of C. 'Then the controller e = f C  = 
$NcD,' has no hidden modes associated with 
eigenvalues in U only if C has no (transmission) zeros 

at zero, i.e., C1 and C:? have no (transmission) zeros 
at  zero; therefore it is assumed that rankNc(0) = no 5 
ni, equivalently, rankN,:j(O) = noj 5 ni, for j = 1,2. 

The failure considered here is the complete failure ,Of 
the j-th channel. When the second channel fails, C2 
is set equal_to zero and the corresponding szstem is 
called S(P,  Cl); when the first channel fails, C1 is set 
equalJo zero and the corresponding system is called 
S(P, Cz). 

2.1 Definitions (R-stability): 
i) The system S(P,(?) is said to be R-stable iff 
the transfer-function 17 from ( u , u p )  to (y,yc) is 
R-stable. Similarly, for j = 1,2,  the system 
S(P, $Cj)  is said to be R-stable iff the transfer- 
function Hj from ( u j ,  up) to (y, ycj) is R-stable. 
ii) The decentralized controller e is said to be an 
R-stakilizing controller for P iff 6 is proper and 
S(P,  C> is R-stable. 
iii) The pair (el, e2) z= (%Cl, $C2) is called a re- 
lzable decentralized controter  pa i r  with t ype -m integral 
action i f f  C1 E M(Rp) ,  C2 E M(R,), and the systems 
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In Lemma 2.2, we give necessary and suffieent con- 
ditions for R-stability of the system S(P,C)  under 
normal operation and under the complete failure of 
one of the controllers. The failure model used here 
assumes that the j-th controller is replaced by zero if 
it fails; if the j-th channel fails, then the output ycj 
of the j-th channel is not measured. We assume that 
the coprime factorizations used are in special canon- 
ical forms. Given any RCF of P ,  the denominator- 
matrix can be put into an upper-triangular (Hermite) 
form by elementary-column-operations; similarly, the 
denominator-matrix of any given LCF of P can be put 
into a lower-triangular (Hermite) form by elementary- 
row-operations [9], [2]. Therefore, without loss of gen- 
erality, it can be assumed that the RCF ND-' and 
the LCF E-'Z of P are given by 

S(P,  e), S(P,  el), S(P, 2 2 )  are all R-stable. 

-1 
p = ND-1 = [ :it N12 ] [ D1l ] N22 D21 0 2 2  

-1 fill 3 1 2  
=D-"=[ - -  Ell 5 1 2  - ] [ - - I .  (4) 

0 2 2  N2l N22 

2.2 Lemma (Decentralized stability): 
i) Let, E-'@ be any LCF of P E Rpnoxn*;  let NcDCl 
be any RCF of C ,  whlere E = $C E RpnSxno. Then 
the system S(P, e) is R-stable if and only if 

[ 7 6 D ~  + i?Nc is 72-unimodular. (5) 

In the case that now=: 3,  let ND-' be any RCF of 
P E Rpnoxao;  let D,;'Nc be any LCF of C. Then 

1 
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the system S(P,  2) is R-stable if and only if 

[ 96. D + zc N ]  is R-unimodular" ( 6 )  

ii) Let the LCF 6j- l f i -of  P be as in (4); let NczDci  
be any RCF of C2, where Cz = f C 2 .  The system 
S(P,  ez) is R-stable if and only if 

A 

- 
Dll is R-unimodular (7) 

m -  - 
and %DzzDcz + N22Nc2 is R-unimodular. (8) 

In the case that nG = _ n r 2 ,  let the RCF ND-' of P 
be as in (4); let D C ~ N C Z  be any LCF of Cz. The 
system S(P,  ez) is R-stable if and only if 

Dll is R-unimodular (9) 

sm - and -Dc2D22 + ficzN22 is R-unimodular. (10) 

iv) Let the LCF 6- 'E of P be as in (4); let NclD,; 
be any RCF of C1, where el = $Cl. The system 
S(P,  el) is R-stable if and only if 

4 

(11) 
In the case th$ n , , ~  = nil ,  let the RCF ND-' of P be 
as in (4); let D,:Ncl be any LCF of C1. The system 
S(P, el) is R-stable if and only if 

0 

2.3 Lemma (Adnaa'ssible plants):  
Let P E RpnoXnz be partitioned as in (2). Let no = ni 

and noj = nijq j = 1,2.  Let C = f C  E Rpnzxno be 
partitioned 'as in (3). 
a) The following conditions hold at s = 0. 
z) If the system S ( P , Z )  is R-stable, then P has no 
(transmission) zeros at s = 0; 
zi) if the system S(P,  (?z) is R-stable, then Pzz has no 
(transmission) zeros at s = 0; 
izz) if the system S ( P , z l )  is R-stable, then P11 has 
no (transmission) zeros at s = 0. 
b) For the system S(P ,  ez), the following three condi- 
tions are equivalent: 
z) There exists a controller = $Cz such that the 
system S(P,  ez) is R-stable; 
zi) Pzz has no (transmission) zeros at s = 0 and P 
has an RCF ND-' and an LCF of the form 

A 

7 Nz1 E where NIP E RnO'xn"s N~~ E Rnolxnza 

are arbitrary R-stable matrices, ( N z z ,  DZZ ) Znoa  x n.1 

is right-coprime, (D22, N z z )  is left-coprime, and 
62, v2 ,  Uz,  ri., E M ( R )  satisfy the identity 

- -  

iiz) P22 has no (transmission) zeros at s = 0 and (Pl l -  
~izD22u2P21) E M ( R ) ,  PizDzz E M ( R ) ,  522P21 E 
M ( R ) ?  where N22DTi is an RCF and 6 ; ; f i z z  is an 
LCF of P22 and U2 satisfies (14). 0 

2.4 Theorem (Staba'liza'ng controllers): 
Let P E RnoXnc , partitioned as in (a ) ,  have no (trans- 
mission) zeros at s = 0, and let Pll and P22 have no 
(transmission) zeros at s = 0. Let P have an RCF 
ND- l  and an LCF of the form given by 
(13). Let no = ni and n,j = naj, j = 1 , 2 .  Let 

e = -$C E Rpntxno be as in (3). 
a) The system S(P,(?z) is R-stable if and only if for 
some LCF &?jfic~, and some RCF NczD,?j of C2, 

?&2Dzz + ficzNzz = I ,  

(15) ~ D z z D c z  sm - + fizzNcz = I .  
h 

The controller Cz = $C2 R-stabilizes the system 
S(P, ez) if and only if 

- 
Cz = 6)ciEcz = (Vz - QzNzz)-'(Uz + ~ & z & z )  

= N ~ ~ D ; ;  = (U2 + $D,,Q,)(R - N ~ ~ Q ~ ) - ~  (16) 

for some Q2 E Rntzxno2 such that (1/2 - Q ~ E z ~ )  is 
biproper. 
b) The system S ( P , e )  and the system S(P ,&)  are 
both R-stable if and only if = $Cz is given by 
(16) and some LCF 6,:ficl of C1 satisfies 

T h  + f i c i (N i i  - 7 N i z Q z f i z i )  = I ,  

equivalently, some RCF NclD,; of C1 satisfies 

T D c i  + (Nil - k N i z Q z f i z i ) N c i  = I .  

(17) 

m 
(18) 

With = $C:, as in (16), -$C1 is a controller 
such that S(P,(?) and S ( P , e z )  are both R-stable if 
and only if C1 is given by 

Ci = 6CiNcl = (Vi - QlfiI1)-'(U1 + 7 9 1 ,  
1912 



c )  The system S ( P , e ) ,  the system S(P,Gz) ,  and 
the system S(P,  61) are all R-stable (equivalently, 

(@17 Cz) = (-$Cl, ' pCz )  is a reliable decentralized 
controller pair with integral action) if and only if 
@2 = EjCific2 = Nc2DCi is given by (16), C1 = 
D,:Ncl = NclD,; is given by (19): and 

A , .  

ST 

- -  

0 2 2  + Nczzz1fic1N12 is R-unlmodular, (21) 

equivalently, - 
0 2 2  -k N z ~ N c I I V I Z ~ C ~  is R-unimodular. (22) 

0 

3 Reliable decentralized stabiliaability 

By conditions (21)-(22) of Theorem 2.4, there exists a 
reliable decentralized controller pair with integral ac- 
tion (ell&) = ($Cl, $A&) if and only if there 
exist R-stable matrices &I,  &2 such that 

m oZ2 + (C2 + ~ D ~ ~ Q ~ ) ~ ~ ~ ( u ~  + F Q ~ ) N ~ ~  
is R-unimodular, (23) 

equivalently, 

is 'R-unimodular. (24) 
Although all reliable decentralized controller pairs are 
characterized by (16), (19), and the equivalent condi- 
tions (21)-(22), this characterization does not explic- 
itly describe how to choose Q1,Q2 E M ( R )  in order 
to satisfy the equivalent conditions (23)-(24). 

Since strong R-stabilizability of pseudosystems related 
to the original plant P play an important role in ex- 
istence of reliable decentralized controller pairs, recall 
the following well-known definitions and facts 191: An 
LTI system P is said to  be strongly R-stabilizable 
iff there is an R-stitble R-stabilizing controller C E 
M ( R )  for (in the standard full-feedback system). 
If U = C+ , P is strongly R-stabilizable if and only if 
it satisfies the parztjy-interlaczng-property , i.e., P has 
an even number of poles between consecutive pairs of 
blocking zeros on the positive real-axis. For the gen- 
eral instability region U, P is strongly R-stabilizable if 
and only if P has an even number of U-poles between 
consecutive pairs of real-axis blocking U-zeros. 

3.1 Theorem (Stabilizubility conditions): 
Let P E Rpnoxni ~ Let no = ni and noj = njj, j = 1,2. 
a) Necessary conditiowr: If there exists a reliable de- 
centralized controller pair (el, e2) = ( $Cl, $432) l 

then the following four necessary conditions 02 P bold: 
z) B has an RCF N I T '  and an LCF D-'N of 
the form given by (13); P has no (transmission) ze- 
ros at s = 0, P2z hats no (transmission) zeros at 
s = 0, P11 has no (transmission) zeros at s = 0 and 
rankNll(0) = rank(Pl1 .- P1262&2P21)(0) = nok 
Z E )  in (13), NlzD;; is an RCF of Pi2 and .&,-;Nzl is 
an LCF of Pzl; 
iiz) Pi2 is strongly R-stabilizable and P21 is strongly 
72-stabilizable; furthermore, det 0 2 2  has the same sign 
the all real blocking U-zeros of P12 and at all real 
blocking U-zeros of Pzl; this sign is the same as the 
sign of det D22(00) when P12 or P21 is strictly-proper; 
iv) the sign of 

det( Dzz(O) + N~l(0) f i~ i (O)N~l(O)Ni~(O)  ) 

is the same as the sign of det D22(00) when Pi2 or P21 
is strictly-proper. 
b) Necessary and suflicient conditions: Let P have 
an RCF ND-l  and an LCF fiW1N of the form given 
by (13); let P ,  P22, 9 1  have no (transmission) zeros 
at s = 0 and let rankNll(0) = nol.  let N12D;i be 
an RCF of Pi2 and f i G ; f i 2 1  be an LCF of P21, where 
P12 or P21 is strictly-proper. With U1 as in (20) and 
NCZ = ( 6 2  + DZZ&Z) by (16), define 

P := $Niz(Dzz + Ncz~z iUiNi z ) - lNcz@zi  

= $rPiz(l+ Ncz~jziUiPiz)-lNczbzzPzi. (26) 

There exist &1,Q2 E M ( R )  satisfying the equiva- 
lent conditions (23)-(24) if and only if P is strongly 
R-stabilizable for some Q 2  E M ( R ) .  When Pi2 or 
P21 is strictly-proper, a reliable decentralized con- 
troller pair ( e l ,  e ~ )  = ($Cl ,  $ 4 ' 2 )  if and only if 
1; is strongly R-stabilizable for some Q2 E M ( R ) .  0 

By Theorem 3.1, a relia,ble decentralized controller pair 
with integral action can be designed if and only if there 
exists an R-stable &2 for which 

P = $P12(1 + (6,2 + $D22Q2)fi21U1P12)-1 

is strongly R-stabilizable. Clearly, there may not exist 
a reliable decentralized controller pair for some plants. 
We now study special plant cases where existence of 
reliable decentralized controller pairs is guaranteed. 
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3.2 Proposition (Stable plants): 
Let P E Rnexnz be R-stable. Let no = ni and noJ = 
ni, j = 1 , 2 .  Let det P(0) # 0 
a) There exists a reliable decentralized controller pair 
with integral action (el,e2) = ($Cl, f C 2 )  if and 
only if 

> 0 (27) 
det P ( 0 )  

det P l l ( 0 )  det F22 ( 0 )  
and iii) 

b) For j = % , 2 ,  let PjJ(0) be nonsingular and (27) 
hold; then there exist Vj, [ J j j  & j  E M ( R )  such that 

s" P12( Uz2-t $Q2)P~l(U11+ ~ Q I )  is R-unimodular 4 4 
cl 

(30) 
and (ej - PjjQj) is biproper. 

3.3 Remark (Block-triangular plants): 
By Theorem 3.1, if there exists reliable decentralized 
controller pair (CllC2) = (-$&C11-$C2)7 then P has 
an RCF ND-l  and an LCF of the form given 
by (U), where NzzD;, is an RCF of PZZ , NIzDF: is 
an RCF of Pl2 and is an LCF of P 2 1 .  Suppose 
that P22 = 0 or P12 = 0 (P is lower block-triangular) 
or P21 = 0 ( P  is upper block-triangular); equivalently, 
N22 = 0 or N I 2  = 0 or N21 = 0 .  With one of these 
numerator matrices equal to zero, the corresponding 
pair (0 ,Dzz)  is right-coprime if and only if 0 2 2  is 
72-unimodular, i.e., P is R-stable. Therefore, when- 
ever any of the sub-blocks P22 , P12 or P2l of the given 
plant is zero, then there exist reliable decentralized con- 
troller pairs if and only if P is R-stable; hence, for any 
of these cases, the parametrization of all reliable de- 
centralized controller pairs (E1 , 8 2 )  = (-$Cl, $Cz) 
is given by (29) of Proposition 3.2, where (30) holds 

0 

A A  

- 

for all & I ,  Q 2  E M ( R )  if P 1 2  or P21 is zero. 

~ 
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3.4 Theorem (Conditions when P22 i s  SISO): 
Let P E Rpnoxnt  where P11 E Rpn0lxnz1 1 - 6 2  E 
RPnoixl P2l E Rp1xn"7 P22 E R, (no2 = nj2 = 1). 
Let P12 or 4 1  be strictly-proper. Let N22D;; = 
E , ; P N 2 2  be a coprime factorization of ~ 2 2 .  Let 

p l  p2, ~ I . , pr (arranged in ascending order) denote the 
distinct real U-poles of P 2 2  and let pj l  pj,, ~ . p j l  
(arranged in ascending order) denote those distinct 
real U-poles of P22  for which the sign of N 2 2 ( p j k )  

is not equal to the sign of N22(pjk+1), P 5 k 5 e. 
There exists a reliable decentralized controller pair 
(21~22) = ($Cl, $C2) if and only if the four nec- 
essary conditions of Theorem 3.l(a) hold, and in addi- 
tion, P22 has an even number of real U-poles in each of 
the intervals ( p j ,  lpjk+l+l)l 1 <_ k 5 e- 1, and (pjtl CO). 
r-7 
U 

3.5 Corollary (Suflcient conditions): 

Rpn0lx1, Pzl E Rplxns l ,  P22 E R, (no2 = ni2 = 1). 
Let N220;: be an RCF ofP22. Let the four necessary 
conditions of Theorem 3.l(a) hold. 
a) There exists a reliable decentralized controller pair 

($Cl, %Cz) if P ~ z  has an even number of real 
U-zeros tfetween any pairs of its real U-poles. 
b) There exists a reliable decentralized controller pair 

Let P E Rpnoxna , where P11 E Rpn0lxna1 I p12  E 

( $Cl, $Cz) if the sign of 0 2 2  is the same at all real 
0 U-zeros of P22 as the sign of DZZ(CO). 

Since the case of SISO channels (i.e., P E Rp2") is a 
special case, exists a reliable decentralized con- 
troller pair (Cl, C2), with Cj E R, for j = 1 , 2 ,  if and 
only if the conditions of Theorem 3.4 hold. 

Note that when P ~ z  E M(R,,), the sufficient condition 
in Corollary 3.5(b) is equivalent to P 2 2  being strongly 
72-stabilizable; when P22 is not strictly-proper, this 
condition implies that 8 2 2  is strongly R-stabilizable. 

3.6 Theorem (Conditions for MIMO channels): 
Let P E Rpnoxnn , Pi1 E RpnolXnal , Pi2 E Rpnolxn*a, 
P21 E Rpnoaxnal P22 E Rpnoaxrsaz. Let the four 
necessary conditions of Theorem 3.l(a) hold. Let 

a) Let either P12 or Pzl be strictly-proper. Let no2 = 
7262 > 1. Let the sign of det 0 2 2  be the same as the sign 
of det 022(00) at all real (transmission) U-zeros of 8 1 2  

coinciding with those of Pzl. If rankP12 = n,2 5 nol ,  

rank& = no2 5 nil, then there exists a reliable de- 
centralized controller pair ($C,, f ~ z ) .  
b) Let either P12  or 8 2 1  be strictly-proper. Let 
P22 E Rspno2Xno2. Let rankP2z = n , ~  = 1262. Let 
rankP12+rankP21 > n02 = ni2. Let the sign of det 0 2 2  

be the same as the sign of det D22(00) at all real (trans- 
mission) U-zeros of Plz and of Pzl. If the number 
of real (transmission) U-zeros of P22 = DglN22 be- 

A A  

(Cl7 CZ) = ($Cl, $CZ). 

- -  



tween any pair of real blocking U-zeros of 6 2 2  is even, 
then there exists a reliable decentralized controller pair 

c )  Let P 2 2  E Rpnoaxnsz , where n02 and nj2 are not 
both equal to 1. If E Rpnolxnaa has an R-stable 
left-inverse pf2 E R‘”’ and if Pzl E Rpnozxn1l 
has an R-stable right-inverse Pil E Rn11Xno2, then 
there exists a reliable decentralized controller pair 

d) Let P21 E Rpnoaxnal have an R-stable right-inverse 
Pis E Rnnlxnoz~ Let Pl1 and Pl2 be strictly-proper. 
Let P 2 2  be strongly ’E-stabilizable. If M12P12 = P a 2  

for some Ml2 E Rnozxnol, then there exists a reliable 
decentralized controller pair ( $Cl, $C2). 
e) Let PI2 E Rpn0lxnsa have an R-stable left-inverse 
P:2 E Rnaaxnol. Let P11 and P 2 1  be strictly-proper. 
Let P 2 2  be strongly R-stabilizable. If P2lM2l = P 2 2  
for some M2l E Rnalxn*a, then there exists a reliable 

f )  Let P 2 2  E &pnoaxn’2 . If M12P12 = P22 for 
some MI2 E Rnoaxnol and P21M21 = P 2 2  for some 
A421 E Rnllxnazs then there exists a reliable decentral- 

0 

The conditions given in Theorem 3.6 are sufficient con- 
ditions for existence of reliable decentralized controllers 
in six cases. Several other cases can be derived from 
these six general cases. For example, under the as- 
sumptions of case (b)? if either P 2 1  has an R-stable 
right-inverse Pil E 7tnalxnoa or P 1 2  has an R-stable 
left-inverse P!2 E R n * a x n o l  then rank42 + rankP2l > 
n02 holds since eithler rankP21 = n02 or rankP12 = 
ni2 = n02 so there exist reliable decentralized con- 
trollers. Note that some of the cases in Theorem 3.6 
assume that the transfer-function P22 is not scalar; the 
case of scalar P 2 2  is treated separately in Theorem 3.4, 
which provides neces,sary and sufficient conditions. 

( $T c1 , f C2). 

&c,, $ c 2 , .  

decentralized controller pair ( p C 1 ,  4 $C2). 

ized controller pair ($Cl, $C2). 

4 Conclusions 

We considered the problem of designing reliable decen- 
tralized controllers which stabilize a given plant when 
both controllers act together and when either one of 
the controllers acts ,alone. The controllers are imple- 
mented with m integrators in each channel to achieve 
(at least) type-m integral action. We showed that there 
exist reliable decentralized controllers only if the sub- 
blocks P12 and Pzl of the given plant P are strongly 
stabilizable. In Thleorem 3.4, we established neces- 
sary and sufficient conditions for existence of reliable 
decentralized controller pairs ($Cl, $C2) when the 
sub-block P22 is SISO and in Tieorem 3.6, we gave suf- 
ficient conditions when all sub-blocks of P are MIMO. 

pairs ($471, g C 2 ) .  These results are crucial in de- 
ciding if a given plant is stabilizable using a decentral- 
ized configuration where each controller must maintain 
stability in case of failure of the other controller. Once 
the plant is found admissible for reliable decentralized 
stabilizability, the controllers are designed using the 
parametrizations (16), (19), where the controller pa- 
rameter matrices Q1 and Q2 are selected to satisfy 
the unimodularity condition (23). 
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Figure 1: The decentralized system S(P, 3) 
We characterized all reliable decentralized controller 
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