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Abstract

Reliable stability with type-m integral action is consid-
ered in the linear, time-invariant, multi-input multi-
output two-channel decentralized feedback system.
The objective is to achieve closed-loop stability un-
der normal operation of both controllers as well as the
possible failure of either one of the two controllers.
Necessary and sufficient conditions on the given plant
are obtained for existence of reliable decentralized con-
trollers achieving integral action. All reliable decentral-
ized controllers with integral action are characterized
using algebraic design methods.

1 Introduction

Factorization methods have made it is possible to char-
acterize all controllers that stabilize a given plant in the
standard unity-feedback system [9]. We apply these
methods to the reliable stabilization problem using a
multi-controller configuration. Since the introduction
of multi-controller systems in [5], [6], the problem of
reliable stabilization has been studied in a factoriza-
tion setting using full-feedback controllers ([8], [4], [3])
and decentralized controllers {7]. In [1], integral action
in the decentralized configuration was considered with
scalar channels assuming that the two controllers are
stable and conditions on the steady-state gain of the
plant were developed for the case of scalar channels.

We study reliable stabilization with type-m integral
action in the linear, time-invariant (LTI), multi-input
multi-output (MIMO), two-channel decentralized sys-
tem S(P, 6’) shown in Figure 1. The controllers are
implemented with m integrators in each channel, i.e.,
C = ;%—C = ;%—[ C(;l C(')z ],Where ¢ = (s+a)™, with
—a an arbitrary real number in the region of stability.
The objective is to develop necessary and sufficient con-
ditions on the plant P for existence of block-diagonal
decentralized controllers that ensure reliable stabiliza-
tion. Once such conditions are established, all decen-

tralized controller pairs (Cy, Cy) = (5%-01, g‘ﬁr@) are
characterized such that the closed-loop system S(P, C )
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is stable when C; and Cy act together (normal opera-
tion) as well as when each controller acts alone (failure
mode). Given a plant P, it is possible to characterize
all controllers that stabilize P in the standard unity-
feedback system configuration. Consider now a pair
of controllers that stabilize the given plant P when
both controllers act together and when each of the
controllers acts alone.

The controller failure model used here is that a con-
troller is replaced by zero if it fails. It is assumed
that the failure of a controller is recognized and the
controller is taken out of service (i.e., the states in
the controller implementation are all set to zero, the
initial conditions and the outputs of the channel that
failed are set to zero for all inputs). Clearly, stabil-
ity would be maintained when both controllers are set
to zero if and only if the open-loop plant is stable.

The integrators in the controller %C provide type-m
closed-loop response. These integrators in each of the
control channels guarantee that the closed-loop system
achieves asymptotic tracking of (m — 1)-th order poly-
nomial inputs; in particular, when m = 1, the steady-
state error due to step inputs is zero. If one controller
fails, this integral action is still present in the outputs
of the channel with the active controller.

Due to the algebraic framework described in the follow-
ing notation, the results apply to continuous-time and
as well as discrete-time systems; for the case of discrete-
time systems, all evaluations and poles at s = 0 would
be interpreted at 1.

Notation: Let i contain the extended closed right-
half-plane (for continuous-time systems) or the com-
plement of the open unit-disk (for discrete-time sys-
tems). The set of real numbers, the ring of proper
rational functions which have no poles in the region
of instability &/, the sets of proper and strictly-proper
rational functions with real coefficients are denoted by
IR, R, Ry, Rgp, respectively. The set of matrices whose
entries are in R is denoted by M(R); M is called
R-stable iff M € M(R); an R-stable M is called
R-unimodular iff M~ € M(R). A right-coprime-
factorization (RCF) and a left-coprime-factorization
(LCF) of P € R,"™™ are denoted by ND~! and
ﬁ"lﬁy where P = ND™ ! = 5_1ﬁ5 N,D.,]V,E €
M(R), D and D are biproper. Let rankP =r; z, € U



is called a (transmission) U-zero of P iff rankP(z,) < r,
equivalently, rankN(z,) = rankN(z,) < 7; 2, € U is
called a blocking U-zero of P iff P(z,) = 0, equiva-
lently, N(z,) = 0 = N(z,); s, € U is called a U-pole
of P iff it is a pole of some entry of P, equivalently,
det D(s,) = 0 = det D(s,).

2 System description

Consider the LTI, MIMO, two-channel decentralized
control system S(P C) shown in Figure 1. s(p,C)
i1s a well-posed system, where P and C represent the
transfer-functions of the plant and the decentralized
controller. Tt is assumed that P and C have no hidden
modes associated with eigenvalues in U.

Let u —[ul upl u=[] yi]", e=[e ef]7 up=
B, ub,)T, yo = [yE, yZ,]T. Let H,, denote the
input-error transfer-function from u to e, H yu denote
the input-output transfer-function from u to y.

It is required that the system S(P, 5') is R-stable,
l.e., the transfer-function H from (u,up) to (y,yc)
is R-stable, and has (at least) type-m integral action
in each channel, equivalently, H,, = I — Hyu has (at
least) m blocking zeros at s = 0, where m > 1 is a
given integer. Suppose that S(P, C) is R-stable. Let
ND-1 be any RCF of C. The 1nput~error transfer—
function H,., has m zeros at s = 0 if D= —a—Ds for

some biproper D, € R™**"° where
¢ = (1)

Therefore, S(P, C) has type-m integral action if C =
—%ND" : %C’ for some C € Ry™*"°.

Partition P and € =: E%—C as

(s+a)™, —a€ R\ U.

p=[Fi P e pyerymos, (o)

o 61 0 %Cl 0 nixXn

C — - e Rp [ o’
0 C, 0 Eﬁrcz

Cj € Rp™777™7 ny = no1tnoz, ni = nyy+nig, j = 1,2,

(3)
Let N¢;jDj; be an RCF and DglNc; be an
LCF of Cj, j = 1,2. Let D¢ = dlag[DCl,Dcz]

N¢ = diag[Nc1, Nea), De = diag [Dancz}, Ne =
diag [1‘701’ K’CZ] ; then No D' is an RCF and D' Ne
is an LCF of C. Then the controller € = C =

;%Nc DZ' has no hidden modes associated with
eigenvalues in & only if C has no (transmission) zeros
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at zero, i.e., C1 and C, have no (transmission) zeros
at zero; therefore it is assumed that rankN¢(0) = n, <
n;, equivalently, rank Nc;(0) = no; < ny; for j =1,2.

The failure considered here is the complete failure of
the j-th channel. When the second channel fails, Cs
is set equal to zero and the corresponding sxstem is
called S(P, Cl) when the first channel fails, C; is set
equal to zero and the corresponding system is called

S(P,Cs).

2.1 Definitions (R-stability):

i) The system S(P,C) is said to be R-stable iff
the transfer-function H from (u,up) to (y,yc) is
R-stable.  Similarly, for j 1,2, the system
S(P,:S%-Cj) is said to be R-stable iff the transfer-
function H; from (u;,up) to (y,yc;) is R-stable.

ii) The decentralized controller c lS said to be an
R-stabilizing controller for P iff C is proper and
S(P, C) is R-stable.

iii) The pair (Cy,Cs) = —%Cl, %Cz) is called a re-
liable decentralized controﬁer pazr with type-m integral
action iff C1 € M(Rp), C2 € M(Rp), and the systems

8(P,C), 8(P,Cy), S(P,Cs) are all R-stable. O

In Lemma 2.2, we give necessary and sufficient con-
ditions for R-stability of the system S(P,C) under
normal operation and under the complete failure of
one of the controllers. The failure model used here
assumes that the j-th controller is replaced by zero if
it fails; if the j-th channel fails, then the output yc¢;
of the j-th channel is not measured. We assume that
the coprime factorizations used are in special canon-
ical forms. Given any RCF of P, the denominator-
matrix can be put into an upper-triangular (Hermite)
form by elementary-column-operations; similarly, the
denominator-matrix of any given LCF of P can be put
into a lower-triangular (Hermite) form by elementary-
row-operations [9], [2]. Therefore, without loss of gen-

erality, it can be assumed that the RCF ND~! and
the LCF D™'N of P are given by
. -1
N N D 0
P ND 1 11 12 [ 11
[ N31  Nag Doy Do
~ -1 ~
— P1f = [ D1 D1y ] [ Ni N12 ] 4)
0 Dy Nay N22

2.2 Lemma (Decentralized stability):
i) Let D™!N be any LCF of P € Rp™*™"; let NCDE.1

be any RCF of C, where € = S%C € Rp™*"°. Then

the system S(P,C) is R-stable if and only if
M ~ ~ . .
%—DDC + NNC] is R-unimodular. (5)

In the case that n, = n,, let ND~! be any RCF of
P € Rp™X"; let D INo be any LCF of C. Then



the system S(P,C) is R-stable if and only if
[%BCD + N¢N| is R-unimodular. (6)

ii) Let the LCF D~'N -of P be as in (4); let N¢2DZ3
be any RCF of C;, where 6’2 = E%C'z. The system
S(P,C,) is R-stable if and only if

Dy is R-unimodular (7
and %bngm + Ny Ny is R-unimodular.  (8)

In the case that ngy = niz, let the RCF ND~! of P
be as in (4); let DCZNcg be any LCF of C3. The
system S(P, Cz) is R-stable if and only if

Di1 is R-unimodular (9)
and %n‘bchzz + ]\~/02N22 is R-unimodular. (10)

iv) Let the LCF D-'N of P beasin (4); let N(ani
be any RCF of C;, where 6’1 = E%Cl. The system
S(P,C,) is R-stable if and only if

[ 7011]301 + NllNCl D12 ] is R-unimodular.
No1Ney Das

(11)

In the case that n,y = n;;, let the RCF ND™ L of P be

as in (4) let DCle be any LCF of Cy. The system

S(P,C}) is R-stable if and only if

%—501011 + NeaiNi NeiNpg
Dy Day

(12)
o

2.3 Lemma (Admissible planis):
Let P € Ry"°*™ be partitioned as in (2). Let n, = n;

and no; = nyj, 5 = 1,2, Let C = $rC € R be
partitioned as in (3).

a) The following conditions hold at s = 0.

i) If the system S(P, 5’) is R-stable, then P has no
(transmission) zeros at s = 0;

ii) if the system S(P, Cy) is R-stable, then Py has no
(transmission) zeros at s = 0;

iii) if the system S(P,C) is R-stable, then Pj; has
no (transmission) zeros at s = 0.

b) For the system S(P, Cy), the following three condi-
tlons are equivalent:

i) There exists a controller 6‘2 = E%Cz such that the
system S(P, 6’2) is R-stable;
i1) Pz has no (transmission) zeros at s = 0 and P

has an RCF ND-! and an LCF D-1N of the form

P‘— mjll,ll,\, le Inll 0 -
- S_QS‘V2N21 N22 —U2N21 Dzz

] is R-unimodular.

_ [ In,, —Ni2Us J [ Ny —¢5—N12V2 (1’3)

0 D22 N21 sz
where Ny € R™Y™1 Nip € R™V"™2 Ny €
R7e2XMi1 gre arbltrary R-stable matrices, { Nag, Dag)

is rlght coprime, (Dzz, Ngz) is left-coprime, and
U, Vg, Us, Vo € M(R) satisfy the identity

V: U S Dy =T
5o ”T’F” ~2]:I; (14)
I B Na2 Va

#i4) Pas has no (transmission) zeros at s = 0 and (P —
P1aDaylUa Pay) € M(R) P13D2z € M(R), D22P21 €

M(R), where N2»D5;' is an RCF and Dy Npp is an
LCF of Py and U, satisfies (14). O

2.4 Theorem (Stabilizing controllers):

Let P € R"*™ | partitioned as in (2), have no (trans-
mission) zeros at s = 0, and let P;; and Pay have no
(transmission) zeros at s = 0. Let P have an RCF
ND-! and an LCF D-!N of the form given by
(13). Let n, = n; and no; = ny;, j = 1,2, Let

—%C € Rp"***™ be as in (3).
a) The system S(P, Cz) is R-stable if and only if for
some LCF D02N02 and some RCF NozDC2 of Cby,

%ﬁczDzz + NecalNgg =1,
%n-ﬁzzl)cz + NaaNeg = 1. (15)

The controller 62 = g‘,éﬁCg R-stabilizes the system
S(P, 6’2) if and only if

Cy = D02N02 = (Va = Q2Na2) " (U + £ Q2D22)

= NeyDZl = (52+%-DQ2QQ)(172—N22Q2)-1 (16)
for some @ € R™**"* such that (V; ~ Qzﬁgg) is

biproper.
b) The system S(P,C) and the system S(P,C,) are

both R-stable if and only if Cz = g?ng is given by
(16) and some LCF D;1N¢, of €y satisfies

m ~ o~ m ~
%—Dm + Ne1(N1 — %leQsz) =1, (17)
equivalently, some RCF N¢i D] of C; satisfies

%001 + (N1 — %N12Q2N2I)NCI =1 (18)

With Cp = ‘S%CQ as in (16), E%Cl is a controller

such that S(P,C) and S(P,C,) are both R-stable if
and only if C; is given by

C1= DgiNer = (Vi — QuNu) ™Y (Us + %QO

1912



= Ne1DZl = (U + %n'Ql)(f}I —Q:Nu)™h, (19)
where Ny; = (N3 — %—N12Q2N21) and Uy, V4, Vi €

M(R) satisfy

V; U s
[ _[\} SmlI l: ? ~U1 jl = 1. (20)
g Nai W

¢) The system S(P,C), the system S(P, Cs), and
the system S(P, 6’1) are all R-stable (equivalently,
(61,62) = (?J,%Cl, ‘-9-%02) is a reliable decentralized
controller pair with integral action) if and only if
Cz = Dcchg = ]chDcz is glven by (16), C1 =
DClNcl = NCchi is given by (19), and

Ds3 + NoaNay Ney Ny is R-unimodular, — (21)
equivalently,

ﬁzz + ﬁzl Nci ]Vmﬁcz is R-unimodular. (22)

O

3 Reliable decentralized stabilizability

By conditions (21)-(22) of Theorem 2.4, there exists a
reliable decentralized controller pair with integral ac-

sion (6y,Cs) = -‘é’,rcl,;ﬁ,cz) if and only if there
exist R-stable matrices @)1, Q2 such that

Dag + (U + %‘DzzQz)Nzl(m + %Q1)N12

is R-unimodular, (23)
equivalently,
Das + Noy (U + %Q1)N12(U2 + %szzz)
is R-unimodular. (24)

Although all reliable decentralized controller pairs are
characterized by (16), (19), and the equivalent condi-
tions (21)-(22), this characterization does not explic-
itly describe how to choose Q1,Q2 € M(R) in order
to satisfy the equivalent conditions (23)-(24).

Since strong R-stabilizability of pseudosystems related
to the original plant P play an important role in ex-
istence of reliable decentralized controller pairs, recall
the following well-known definitions and facts {9]: An
LTI system P is said to be strongly R-stabilizable
iff there is an R-stable R-stabilizing controller C' &
M(R) for P (in the standard full-feedback system).
If i = Cy, P is strongly R-stabilizable if and only if
it satisfies the parity-interlacing-property, i.e., P has
an even number of poles between consecutive pairs of
blocking zeros on the posmve real-axis. For the gen-
eral instability region U, P is strongly R-stabilizable if
and only if P has an even number of U-poles between
consecutive pairs of real-axis blocking U-zeros.

3.1 Theorem (Stabilizability conditions):
Let P € Rp™™™ . Let n, = n; and no; =nyj,j = 1,2.
a) Necessary conditions: If there exists a reliable de-

centralized controller pair (Cl,Cg) = %Ch —%-Cz)
then the following four necessary condltlons on P hold:
i) P has an RCF ND~! and an LCF DN of
the form given by (13); P has no (transmission) ze-
ros at s = 0, Pao has no (transmission) zeros at
s = 0, P;; has no (transm1ss1on) zeros at s = 0 and
I‘a,IlkN]_l(O) = rank(P11 —_ P12U2D22P21)(0) = nol

i) in (13), N12Dj,' is an RCF of Py, and D22 Nap is
an LCF of P21,

i1) Pio is strongly R-stabilizable and P»; is strongly
R-stabilizable; furthermore, det Dy, has the same sign
the all real blocking U-zeros of Pz and at all real
blocking I{-zeros of Ps;; this sign is the same as the
sign of det Dj3(0c0) when Pyp or Py is strictly-proper;
iv) the sign of

det( D22 (0) + N33'(0)N21(0)N13' (0) N12(0) )

_ Dy —UaNy
= det [ Ny Ny ] 0) (25)
is the same as the sign of det Dyy(c0) when Pip or Py
is strictly-proper.

b) Necessary and sufficient conditions: Let P have
an RCF ND-! and an LCF D-!N of the form given
by (13); let P, Py3, Py have no (transmission) zeros
at s = 0 and let rankNy;(0) = nyy. let N12D;21 be
an RCF of Py and D} Na; be an LCF of Py;, where
Py, or Py is strictly-proper. With U; as in (20) and
Nca = (Ua + D22Q2) by (16), define

pP:= g(ngm(Dzz + chﬁ21U1N12)‘1chﬁz1

= S%Plz(f-i- chﬁlelPlz)_1NC21~)22P21- (26)

There exist Q1,Q2 € M(R) satisfyingA the equiva-
lent conditions (23)-(24) if and only if P is strongly
R-stabilizable for some Q; € M(R). When Pi2 or
Py is strictly-proper, a reliable decentralized con-
troller pair (6’1,6'2) = (5‘?;;()1, E(ngz) if and only if
P is strongly R-stabilizable for some Q2 € M(R). O

By Theorem 3.1, a reliable decentralized controller pair
with integral action can be designed if and only if there
exists an R-stable (02 for which

P= g?vrP12(I+ (Uy + ;‘grDzzQz)ﬁmmPn)_l

x (Uz + ‘S%Dan)ﬁzszl

is strongly R-stabilizable. Clearly, there may not exist
a reliable decentralized controller pair for some plants.
We now study special plant cases where existence of
reliable decentralized controller pairs is guaranteed.
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3.2 Proposition (Stable plants):

Let P € R"*™ be R-stable. Let n, = n; and n,; =
nij,j=1,2. Let det P(0) # 0.

a) There exists a reliable decentralized controller pair
with integral action (Cy, Cy) = (gﬁrch ;%—Cz) if and
only if

l) det P11 (0) 75 0 f
ll) det P22 ( 0 ) # 0 5
and iii) det P(0) > 0. (27

det P11(0) det PQQ(O)

b) For j = 1,2, let P;;(0) be nonsingular and (27)
hold; then there exist Vj;,Uj;, V;; € M(R) such that

Vi; Us;
“PJ'J' %’Iﬂoj

Cildd U
gl Ui | _p (28)

Pjj Vii

All reliable decentralized controller pairs (6’1,6’2) =
(EﬁrCh %C’z) are parametrized by

{(6'1»(32) = (gqrsh‘cl, $0) 1 6= g%cj, i=12,

C; = Ng;Dg} = Uy + Q) (V35 — PisQ) ™ }
(29)
for some @1, Q2 € M(R) such that

I— £ PyNey S Pyy Noy =
¢ 12 CZ¢ 214VC1 —

%Plg(Uzz-i-g?sz)Pm(Uu+%Q1) is R-unimodular
~ (30)
and (V;; — P;j;Qj) is biproper. a

3.3 Remark (Block-triangular planis):
By Theorem 3.1, if there exists reliable decentralized

controller pair (5’1,6'2) = (-S—%C'l, S%Cz), then P has

an RCF ND~! and an LCF D=!N of the form given
by (13), where NazDj;' is an RCF of Py, N12 D5, is
an RCF of P;5 and f)2‘21 ﬁgl isan LCF of Py; . Suppose
that Py = 0 or Pia =0 (P is lower block-triangular)
or Py; = 0 (P is upper block-triangular); equivalently,
Nog =0 or Njs =0 or ]\721 = 0. With one of these
numerator matrices equal to zero, the corresponding
pair (0,Dqz) is right-coprime if and only if Dy is
‘R-unimodular, i.e., P is R-stable. Therefore, when-
ever any of the sub-blocks Psy, Pis or Pa; of the given
plant is zero, then there exist reliable decentralized con-
troller pairs if and only if P is R-stable; hence, for any
of these cases, the parametrization of all reliable de-

centralized controller pairs (6‘1, 6’2) = (Eﬁrcl, E%,—Cz)

is given by (29) of Proposition 3.2, where (30) holds
for all @1,@Q2 € M(R) if Piy or Py is zero. O

3.4 Theorem (Conditions when Py; i3 SISO):
Let P € an"xn'y where Py; € an°1xn'1, Py €
anoxxl, Py, € Rplxn‘l, Py € Rp (n02 = ngp = 1)
Let Py5 or P2y be strictly-proper. Let NggD{z1 =
]52‘21]%2 be a coprime factorization of Pss. Let
P1, P2, - -, Py (arranged in ascending order) denote the
distinct real U-poles of Paya and let p;,,p5,, ..., P4,
(arranged in ascending order) denote those distinct
real U-poles of Py for which the sign of Naa(pj,)
is not equal to the sign of Nos(pj+1), 1 < k < £
There exists a reliable decentralized controller pair
(6’1,6’2) = (5%-01, 3%02) if and only if the four nec-
essary conditions of Theorem 3.1(a) hold, and in addi-
tion, Pys has an even number of real U-poles in each of
the intervals (pj, , pj,q,4+1), 1 < k < £—1, and (p;,, 00).
0

3.5 Corollary (Sufficient conditions):

Let P € R,"*™, where Pi; € R,™™, Py €
Rp™otY, Pyy € RpM™™, Pay € Ry (nop = nip = 1).
Let N23D3;' be an RCF of Psy. Let the four necessary
conditions of Theorem 3.1(a) hold.

a) There exists a reliable decentralized controller pair

(S%Cl, —(én-Cg) if Pys has an even number of real
U-zeros f)etween any pairs of its real U-poles.
b) There exists a reliable decentralized controller pair

(E%Cl, -S%C’z) if the sign of D45 is the same at all real
U-zeros of Pya as the sign of Dag(o0). O

Since the case of SISO channels (i.e., P € Rp>*?) is a
special case, there exists a reliable decentralized con-
troller pair (Cy,Cs), with C; € Ry, for j = 1,2, if and
only if the conditions of Theorem 3.4 hold.

Note that when Pys € M(Rsp), the sufficient condition
in Corollary 3.5(b) is equivalent to P32 being strongly
R-stabilizable; when P,y is not strictly-proper, this
condition implies that Pso is strongly R-stabilizable.

3.6 Theorem (Conditions for MIMO channels):
Let P € anoxni’ Pll € annxnu’ P12 = anolxniﬂ,
Py € Rp"e**™1, Ppy € Rp"™0?*™2.  Let the four
necessary conditions of Theorem 3.1(a) hold. Let
(C1,C) = (G, 5 Ca).

a) Let either P13 or Pa; be strictly-proper. Let nys =
n;e > 1. Let the sign of det Doy be the same as the sign
of det Dag(00) at all real (transmission) U-zeros of Py
coinciding with those of Py;. If rank Py = nys < ne,
rankPs; = n,9 < n;ji, then there exists a reliable de-

centralized controller pair (s%cl’ 5%—02).

b) Let either Pis or P;; be strictly-proper. Let
Py € Rep"o2*™02. Let rankPy; = nop = njz.  Let
rank Pyg+rankPey > n,s = niz. Let the sign of det Das
be the same as the sign of det Dy2(c0) at all real (trans-
mission) U-zeros of P13 and of Pp;. If the mumber
of real (transmission) U-zeros of Poy = E;zlﬁn be-
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tween any pair of real blocking U-zeros of 522 is even,
then there exists a reliable decentralized controller pair

(;%Cl,ggrcz)-

c) Let Py; € Rp™?*™2, where noy and n;p are not
both equal to 1. If P;2 € R,™**™** has an R-stable
left-inverse Pf, € R™2*™*' and if Py € R, "
has an R-stable right-inverse P{; € R™'*"2  then
there exists a reliable decentralized controller pair

($rC, o).

d) Let Po; € Rp""zx"“ have an R-stable right-inverse
Pf, € R™*™2  Let Pi; and Pis be strictly-proper.
Let Ppy be strongly R-stabilizable. If M12Pi2 = Py,
for some My € R™2*™°' then there exists a reliable

decentralized controller pair (gﬁrCl, E?H—Cz).

e) Let P53 € R,"**™? have an R-stable left-inverse
P, € R™*X"%1  Let Pi; and Ps; be strictly-proper.
Let P,y be strongly R-stabilizable. If Poy Mo = Pas
for some My; € R™1*™2  then there exists a reliable

decentralized controller pair (qu}rrCl, 5%—02).

f) Let Py € R,spn"zxn”. If MisPis = Poy for
some Mys € R™°2*"1 and Py Mo = Pys for some
Ma, € R™*™2 then there exists a reliable decentral-

ized controller pair (:5%-01, S'%ng). O

The conditions given in Theorem 3.6 are sufficient con-
ditions for existence of reliable decentralized controllers
In six cases. Several other cases can be derived from
these six general cases. For example, under the as-
sumptions of case (b), if either Py; has an R-stable
right-inverse Pf; € R"**™? or P has an R-stable
left-inverse PJ, € R"*"° then rankPj, + rankPs; >
nys holds since either rankPy; = n,o or rankPi; =
n;s = N,y so there exist reliable decentralized con-
trollers. Note that some of the cases in Theorem 3.6
assume that the transfer-function Pss is not scalar; the
case of scalar Py is treated separately in Theorem 3.4,
which provides necessary and sufficient conditions.

4 Conclusions

We considered the problem of designing reliable decen-
tralized controllers which stabilize a given plant when
both controllers act together and when either one of
the controllers acts alone. The controllers are imple-
mented with m integrators in each channel to achieve
(at least) type-m integral action. We showed that there
exist reliable decentralized controllers only if the sub-
blocks Pi; and Ps; of the given plant P are strongly
stabilizable. In Theorem 3.4, we established neces-
sary and sufficient conditions for existence of reliable

decentralized controller pairs (%Cl, ;%—Cz) when the
sub-block Ps; is SISO and in Theorem 3.6, we gave suf-
ficient conditions when all sub-blocks of P are MIMO.
We characterized all reliable decentralized controller

pairs (gfn-Cl, -s%rCz). These results are crucial in de-
ciding if a given plant is stabilizable using a decentral-
ized configuration where each controller must maintain
stability in case of failure of the other controller. Once
the plant is found admissible for reliable decentralized
stabilizability, the controllers are designed using the
parametrizations (16), (19), where the controller pa-
rameter matrices (1 and @2 are selected to satisfy
the unimodularity condition (23).
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Figure 1: The decentralized system S(P, 6’)
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