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Abstract

It is shown that there exists a common controller which simultaneously stabilizes any given nominal plant P and perturbed
plant KP for any given positive real constant K in the standard linear, time-invariant, multi-input multi-output unity-feedback
system. The class of plants such that P and KP can be simultaneously stabilized for negative K is also determined.
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1. Introduction

It is well-known that any given proper plant P can
be stabilized by a proper controller C in the standard
lingar, time-invariant (LTI), multi-input multi-output
(MIMO) unity-feedback system configuration. The
set of all stabilizing controllers can be obtained using
coprime factorizations of the plant’s transfer-function
P . Now consider the problem of stabilizing the given
P simultaneously with KP, where K is a known real
constant. If P is stable, it follows from the small-gain
theorem (see for example [5]) that there exist common
stabilizing controllers for P and KP for any K # 0;
however, if P is not stable, it is not possible to
conclude existence of simultaneously stabilizing con-
trollers using this result unless K is assumed to be
“sufficiently small”.

In this paper, it is shown that P and KP can be si-
multaneously stabilized for any given P and any given
positive real constant K. Equivalently, there exists a
stabilizing controller C for any given plant P, such
that the controller K(C' also stabilizes P for any positive
real constant K. Simultaneous stabilizability of P and
2P was proven in [5]; however, the proof given there
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cannot be extended to K # 2. The proof given here for
the case of general K uses the Smith—-McMillan form
to show that the pseudo-plant associated with P and
KP satisfies the parity-interlacing-property. The main
result of this note, Theorem 3.1, states existence of si-
multaneously stabilizing controllers for P and KP for
any positive K and characterizes the class of plants
such that P and KP can be simultancously stabilized
for negative K. The simultaneously stabilizing con-
trollers can be constructed as stable stabilizing con-
trollers of an associated pseudo-plant.

Notation: Let % contain the extended closed
right-half-plane (for continuous-time systems) or the
complement of the open unit-disk (for discrete-time
systems). The set of real numbers, the ring of proper
rational functions which do not have any poles in the
region of instability %, the sets of proper and strictly
proper rational functions with real coefficients are de-
noted by R, #, R,,, Ry, respectively. The set of matri-
ces whose entries are in Z is denoted by .#(#); M is
called #-stable iff M € .#(#); an R#-stable M is called
ZA-unimodular iff M~ € .#(R). For M € .#(R), the
norm || - || is defined as || M ||= sup,cqy 0 (M(5)),
where ¢ and ¢% denote the maximum singular value
and the boundary of %. A right-coprime-factorization
(RCF) and a left-coprime-factorization (LCF) of
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Pec R]";‘X’“ are denoted by (N, D) and (D,N), where
N,D,N,De #(#), D and D are biproper and P =
ND'=D'N. Letrank P = r. A zo €U is called a
(transmission) #-zero of P iff rank P(zp) < r, equiv-
alently, rank N(z) = rank N (zo) < r; zo € is called
a blocking %-zero of P iff P(zyp) = 0, equivalently,
N(zg) = 0 = N(z); so € % is called a %-pole of
P iff it is a pole of some entry of P, equivalently,
det D(sq)=0=det D(s¢). The identity map is denoted
by I. a := b means a is defined as b.

Fig. 1. The system S(KI.P,C).

2. Preliminaries

Consider the LTI, MIMO system S(KI,P,C)
(Fig. 1), where P € R)**" and C € R}*™ represent
the plant and the controller. The real constant K € R
represents a known multiplicative perturbation. The
nominal plant P is not necessarily #-stable. If K = 1,
then S(KI,P,C) becomes the nominal unity-feedback
system (P, C). It is assumed that P and C do not
have any hidden modes associated with eigenvalues
in % and that the system S(KI,P,C) is well-posed.

Definitions 2.1 (#-stability, ZA-stabilizing  con-
troller). The system S(KI,P,C) is said to be %-
stable iff the closed-loop transfer-function from u :=
(ur,ul]T to y := [y}, L] is Z-stable. The controller
C is called an #-stabilizing controller for P € Ry»*"
iff C €Ry™™ and (P, C) is Z-stable. The controller
C is called a simultaneously #-stabilizing controller
for P and KP iff C is an #-stabilizing controller for
Pe Rg“x"' and S(KI.P,C) is Z-stable; P and KP
are said to be simultaneously #-stabilizable iff there
exists a simultaneously #-stabilizing controller C for
P and KP .

Facts 2.2 (#-stability of S(KI,P,C), all #-stabiliz-
ing controllers [5, 3, 4]). Let (N,D) be any RCF and
(D,N) be any LCF of P € Ry-*™; let (D¢, N¢) be
any LCF of C.

(1) The system S(KL,P,C) is #-stable if and only
if (DeD + NcKN) is R-unimodular.

(ii) The controller C € #(R,) is an R-stabilizing
controller for P if and only if C is given by

C =V -0QN) (U + QD)
= (U +DO)V -NO)™ (1)

for some R-stable Q € A" such that (V — ON)
is biproper (which holds for all Q € M(R) when
P is strictly proper), where U,V,U,V are R-stable
matrices such that

v Ul[D -U
[—1\7 ﬁHN V}:’- 2)

(iii) Let U,V € M (R) be as in (2). The controller
C is a simultaneously #-stabilizing controller for P
and KP if and only if C is given by (1), where Q €
M(R) is such that (V — ON) is biproper and

(V — QN)D + (U + QD)KN
=1, +(K — 1)U + QD)N

is R-unimodular. (3)

Equivalently, P and KP are simultaneously -
stabilizable if and only if there exists A-stable Q
such that (3) holds.

Remarks 2.3 (i) If the constant K € R is equal to
zero, then the system S(K/,P,C) becomes an open-
loop system. For internal %-stability, each of the
subsystems P and C must then be #-stable. It is
therefore obvious that for K = 0, P and KP are simul-
taneously #-stabilizable if and only if P is #-stable.
This also follows from Fact 2.2(i) because when
K =0,(De¢D + NcKN) = DD is Z-unimodular if
and only if D¢ and D are % unimodular, equivalently,
C and P are both #Z-stable. Note that all %-stable
controllers that #-stabilize P € .#(A) are given by
C = (—-0P)'Q, where Q € .#(#) is such that
(I — QP) is Z-unimodular.

(ii) If P is #-stable, then P and KP are simulta-
neously #-stabilizable for any K € R. One choice
for a simultaneously Z-stabilizing controller is obvi-
ously C = 0; nonzero controllers can be found using
the small-gain condition (see for example [5]) as fol-
lows. If P € #(Z), then (N,D)=(P,l,) is an RCF
of P and a solution for (2) is given by U =0, V' =1,.
If an #-stable O € #™"*" is chosen so that |Q]/<
| (K—1)P| =", then (3) holds since (I, + (K — 1)QP)
is #-unimodular and, hence, P and KP are simultane-
ously #-stabilizable.
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If P is not #-stable, there may not exist #-stable
QO such that [|[(K — 1)(U + QD)N|| < 1, and, hence,
the existence of Q = .# () satisfying (3) cannot be
concluded using this (sufficient) small-gain condition
without restricting K.

(iii) Using a well-known result (see for example
[5,6,1,2]), by Fact 2.2 (iii), P and KP are simultane-
ously #-stabilizable if and only if the “pseudo-plant”
Ps := (I, +(K—1)UN)~ (K —1)DN can be strongly
A-stabilized. The simultaneously #-stabilizing con-
troller for P and KP is given by (1), where Q € .# (%)
is any strongly #-stabilizing controller for the pseudo-
plant Ps.

Fact 2.4 (Smith-McMillan form [5]).

No XAy

Let P €
. Let rank P==:r, where r < min{n,,n;}. There
exist R-unimodular matrices L € R"*" R ¢ R "
such that

A 0 p—! 0
P=L R
[0 O(n..—r;x(nﬁr)} { 0 1<n.—r>]

S AR U

R,4
0 fp-rn] |0 0<no—r)x(n|—r)} )

A:=diag[i, --- 4], ¥i=diaglyr - ¥,

where, for j=1,...,r, the (numerator and deno-
minator) invariani-factors A; and ; satisfy the
Jollowing: £; € R. ;€ R, ; is biproper; for j =
L...,r — 1, 4; divides ;1\, and Y\ divides ;; for
J=1,....r, the pair (4;,\;) is coprime, equivalently,
there exist u; € R, v; € R such that

3. Main results

We now show that P and KP are simultaneously
#-stabilizable for any real positive constant K; we also
show that only certain classes of plants can be simul-
taneously #-stabilized with KP when K is negative.

Theorem 3.1 (Simultaneous #-stabilizability of P
and KP). Let P € R)"*™ be any given plant and let
K € R be a given constant.

(a) Let K > 0; then P and KP are simultaneously
A-stabilizable.

(b) Let K < 0. Consider the Smith—McMillan
form (4) of P. Let s; € RN, i € {1,...,m}, be such
that

W (s;) =0 for some £; € {1,...,r}, and

Vi(s;) # 0 for all j € {1,...,r} such that j >
(i + 1), and

Ai(si) = 0 for all j € {1,...,r} such that j >
(¢; + 1).

Let {{1,...,¢{n} denote the set of indices correspond-
ing to the set {si,...,sm}.

(1) Suppose that P has no real blocking U-zeros
(including infinity); then P and KP are simultane-
ously R-stabilizable if and only if the indices in the
set {£1,...,0n} are either all even or all odd.

(i1) Suppose that P has at least one real blocking
U-zero (including infinity); then P and KP are si-
multaneously R-stabilizable if and only if all of the
indices in the set {£,...,{n} are even.

(¢) Let K = 0; then P and KP are simultaneously
R-stabilizable if and only if P € M (R).

Corollary 3.2 (Conditions for simultaneous #-
stabilizability of scalar P and KP). Let P € R, be
any given (scalar) plant and let K € R, K < 0 be a
given negative constant. Then P and KP are simul-
taneously A-stabilizable if and only if P either has
no real U-zeros (including infinity) or has no real
U-poles.

Proof of Theorem 3.1 . The case for K = 0 is obvious
as explained in Remark 2.3(i). We prove cases (a) and
(b) in detail.

Let (N,D) be any RCF and (D,N) be any LCF
of P; let U,V,U,V € .#(R) satisfy (2). By Fact
2.2(iii), there exist simultaneously %-stabilizing
controllers for P and KP if and only if there exists
Q € .#(#) such that (3) holds. By (2), K # 0
implies

(I, — K YK — HUN){U, + (K — 1)UN)
+(K~NK - HUVY(K — DDN) =1, , (6)

and, hence, the pair ((Z,, + (K — 1)UN), (K — 1)DN)
is right-coprime. Therefore, there exists Q € #(#)
such that (3) holds if and only if the pair (/, +
(K — DUN,(K — 1)DN) satisfies the parity-inter-
lacing-property, equivalently, det(,, + (K — 1)UN)
has the same sign at all real blocking #-zeros of
DN . If K = 1, as expected since this corresponds to
the nominal system (P, C), the parity-interlacing-
property is satisfied because det(/ + (K—1)UN)=1.
We now investigate the parity-interlacing-property
when K # 1: Consider the Smith-McMillan form
(4) of P. Any RCF (N,D) and any LCF (D,N) of
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P is given in terms of this Smith-McMillan form
as

A 0
ND)Y=|(L M,
(. D) ([0 O(no—r>x(n.—r)}
1 | P 0
R [ 0 1(n,~r):| M) , (7)
s o ([T 0 ],
on-(aly 2]
~ | A 0
M R 8
[0 O(nrr)x(n.—r)J > (8)

for some #Z-unimodular M € .# (%) and for some #-
unimodular M € #(R). Let Up := diag[u; --- u,],
Vp :=diag[v, --- v.]; then by (5), (Vp¥ + UpA) =
I,. A solution for U, V, U,V satisfying (2) is

11 Up 0 _
U:=M 1{ JL l
0 O(n,fr)x(n‘,—vr)
a1 | VD 0
V=M [ 0 T R,
~ 11 Up 0 1
U:=R"! M,
{ 0 O(n.—r)X(no—r):l
5o VD 0 ~—1
V.=1L [ 0 l(n(,_r)] M . (9)
By (9),
det(Z,, + (K — 1)UN)
Up A 0
= det 1,,‘+K—ll ])
( ( o O, —ryx(m—r)

J=

By (7) and (8), since M, M € .#(R) are Z-uni-
modular,

(DN )(s0)

~ ¥ 0 1, |4 0
= (M L~'L M
< |' 0 ](nor):| |:O 0("o—r)><("|’)] )(SO)

=0

if and only if (¥ A)(sg) = 0, equivalently, (;4;)(so0)
= 0 for j = 1,...,r. Since (4;,y;) is coprime, (¥,
4;)(s¢) = 0 means that either y;(so) = 0 or A;(so)

= 0. For any sy € RN % such that (DN )(sg) = 0,
there are only two possibilities (sq is either a block-
ing zero of P, or 59 is a pole of P which appears
as a zero of the smallest invariant factor . or which
coincides with a zero):

Case 1: Suppose that Y(so) # 0 for all j €
{1,...,r}, equivalently, det D(sq)+#0; then (DN )(so)
=0 implies that N(so) =0, i.e., 5o is a blocking % —
zero of P. Therefore det({,, + (K — 1)UN)(sp) = 1.

Case 2: Suppose that y,(s¢) = 0 for some / €
{L,...,r}, but ;(so) # 0 for j > /; then Y;(sg) =0
for all j<¢ because ;. divides ;. Since ( /;, ;)
is coprime, A,(sq) # 0. But (DN)(sp) = 0 implies
(¥4 )(s0) = 0 for j = 1,...,#; therefore /,;(sp) = 0
forall j=(£+41). By (5), (u;4;)(s0) =1 forall j</
and (u;4;)(sp) = 0 forall j=(£ + 1). By (10),

det(l, + (K — 1) UN )(so)

(1 +(K—l)(uj/1.,-)(s0)):K/. (11)

j=I

Note that if /7 = r, then the smallest invariant factor
Y, (s¢) = 0 and, hence, 4;(sp) #0for j=1,...,r. In
this case, det(l, + (K — 1)UN )(s9) = K".

(a) Let K > 0. By (11), for all real blocking %-
zeros of (DN )(so) = 0 as in Case 2 above, det(/, +
(K — DUN)(sp) = K’ > 0; since this sign agrees
with the positive sign at all other blocking %-zeros
described in Case 1, the pair (({,, + (K — 1)UN),
(K — 1)DN) satisfies the parity-interlacing-property
and, hence, there exist simultaneously #-stabilizing
controllers for P and KP for any given K > 0.

(b) Let K < 0. Suppose that DN has m real block-
ing %-zeros sy, ..., s, as described in Case 2 above and
the corresponding indices are /y,...,7n; 1.€., W/ (5;)
= 0fori € {1,...,m}.By(11), the parity-interlacing-
property is satisfied for these zeros if and only if the
sign of det(/,, + (K — 1)UN)(s;) = K ' remains the
same for all s;; but when K < 0, the sign of K*' is the
same for all i € {1,...,m} if and only if the indices
£1,...,0 are either all odd or all even numbers. Now
if DN has any real blocking #-zero so as described
in Case 1, then N(sg) = 0, i.e., 5o is a real blocking
9 -zero of P. Since det(, + (K — 1)UN)}(so) = 1 is
positive at these zeros, K’ has to be positive so that
the sign does not change; but when K < 0, K" is
positive if and only if all of the indices £,,...,7,, are
even numbers.

This proves cases (a) and (b). It remains to show
that the simultaneously #-stabilizing controllers,
whenever they exist, can be chosen proper. If the
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plant is strictly proper, then N € .#(Ry,), and, hence,
(V — ON) is biproper for all Q € .#(2); therefore the
controllers are proper for any choice of Q. For proper
plants which are not strictly proper, the choice of
Q € MH(R) satistying (3) should be modified to en-
sure that the simultaneously #-stabilizing controllers
are proper by choosing Q € #(Z) to satisfy the
additional condition that (¥ — QN) is biproper. One
way to do this is explained here for K > 0; the case
of negative K is similar whenever the conditions on
the indices are satisfied and is omitted since ensuring
the properness of the controllers is a technicality: For
any P € #(Ry), there exists a solution of (2) with
Uec H#Ryp); letX, Y, X, Y € .#(R) be any solu-
tion satisfying (2). Let W € #"*" be any #-stable
matrix such that W(co) = —X(oo)D_l(oo). Define
U:=X+WD),V:=(Y-WN),U :=(X+DW),
V := (¥ — NW); then by construction, U(cc) = 0.
Let a € R, —a € C\%; define Q =: (1/(s + a))Q,
where Q € R;";X’lo is such that (3) holds, i.e.,
(1, + (K — DUN + Q(K — 1)(1/(s + a))DN] is
Z-unimodular. (This last claim follows by showing
that, when K > 0, det(/,,, + (K — 1) UN )(s¢) > 0 for
any so € RN % such that ((1/(s + a))DN)(sp) = 0;
from (6), det({,, + (K — 1)UN) > 0 at any real
blocking #-zero of (DN); now the only additional
blocking #-zero of ((1/(s+a))DN) is at infin-
ity, where det(,, + (K — 1)UN)(c0) = 1 since
U(x) = 0). Since U and Q are strictly proper,
(V —ON) is biproper because (¥ — QN )(00)D(c0) =
I — (U + (1/(s + a))OD)(00)N(0) = I ; the corre-
sponding controller C = (V' —(1/(s + a))QN)_ U+
(1/(s + a))OD) is in fact strictly proper. [

Proof of Corollary 3.2. As in the proof of Theorem
3.1, let (N, D) be any coprime factorization of P; let
UV € #(R) satisfy VD + UN = 1. There exist
simultaneously #-stabilizing controllers for P and KP
if and only if the pair (1 +(K — 1)UN,(K —1)DN)
satisfies the parity-interlacing-property, equivalently,
(14 (K —1)UN) has the same sign at all real %-zeros
of DN . But when K < 0, this sign cannot be the same
if P has both real %-zeros and real %-poles: At the
real #-zeros of N, (1 +(K —1)UN)=1 > 0 and at
the real %-zeros of D, (1 + (K — 1)UN) =K < 0.
Therefore, the parity-interlacing-property is satisfied
if and only if P either has no real %-zeros or it has
no real %-poles.

An alternate proof follows from Theorem 3.1 (b):
If P has any real %-poles, then the only denominator

invariant factor index is £ = 1 because P is scalar;
since the index is an odd number, the parity-
interlacing-property is satisfied if and only if P does
not have real %-zeros when it has real %-poles. [l

Comments 3.3 (Special cases for simultaneous -
stabilizability of P and KP). Theorem 3.1 shows
that P and KP are simultancously #-stabilizable
for any given plant P € .#(R;) and any given
positive real constant K. If K is negative, then
P and KP are simultaneously Z-stabilizable only
for certain classes of plants. In the single-input
single-output case, the characterization of this
class of plants is simple; as stated in Corol-
lary 3.2, plants in this class are allowed to have
either real %-poles or real #-zeros, but not both.
Note that co € % so when K < 0, if P is
strictly proper, then it can be simultaneously -
stabilized with KP if and only if it has no real %-
poles.

For MIMO plants, when K < 0, the characteriza-
tion of the class of P which can be simultaneously %-
stabilized with KP is not as simple since it requires a
careful account of all possible real blocking %-zeros
of the product (DN ). The blocking #-zeros of D and
of N are obviously among the blocking %-zeros of
(ﬁN ). However, there may also be additional block-
ing %-zeros: If P is strictly proper or it has at least
one real blocking #-zero, then N(z) = 0 for some
z € RN 4%, which is clearly a blocking #-zero of
(DN). Considering the Smith-McMillan form in (4),
all other real blocking #-zeros of (DN) are either
9-zeros of the smallest invariant factor v, of the de-
nominator or they are %-zeros of some denominator
invariant factor ., which also appear immediately as
a zero of the next numerator invariant factor A¢ 1.
It is clear that the conditions in Theorem 3.1 (b) are
satisfied for the following special cases:

(i) If P has no real %-poles, then there are no s; as
described in Theorem 3.1 (b); therefore P and KP are
simultaneously #-stabilizable for any K < 0.

(ii) If P has no real %-zeros (including infinity),
then none of the numerator invariant factors 4; have
real %-zeros and, hence, the only blocking %-zeros of
(DN) are due to the smallest denominator invariant
factor ,, i.e., the only index /; = r; therefore P and
KP are simultaneously #-stabilizable for any K < 0.

(ii1) If P has no real %-poles coinciding with %-
zeros, then the only s; are due to Y,(s;) = 0, ie.,
the only index #; = r. In this case, if P has real
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blocking #-zeros (including infinity), then P and KP
are simultaneously #-stabilizable for any K < 0 if
and only if the rank r is even. If P is full (row
or column) rank, i.e., if ¥ = min{n,,n;}, then obvi-
ously these comments on » apply to the smaller of the
number of inputs (#;) and outputs (1, ).

4. Conclusions

It is shown that P and KP are simultaneously #-
stabilizable for any given P and any given positive real
constant K > 0. This result is equivalent to existence
of an #-stabilizing controller C such that KC is also
an Z-stabilizing controller for P. It is also shown that
P and KP are not always simultaneously stabilizable
for K < 0 and a complete characterization of the class
of plants that can be simultaneously #-stabilized with
KP is given in Theorem 3.1 .
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