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Abstract 
Reliable stabilization with integral action is stud- 

ied in the linear, time-invariant, multi-input, multi- 
output, twuchannel decentralized control system, 
where the plant is stable. The objective is to achieve 
closed-loop stability when both controllers act to- 
gether and when each controller acts alone. Necessary 
and sufficient conditions are obtained for existence of 
block-diagonal decentralized controllers that ensure 
reliable stabilization and integral action. All decen- 
tralized controllers with integral action that provide 
reliable stabilization are characterized. 

1. Introduction 
We consider reliable stabilization with integral ac- 

tion in the linear, time-invariant (LTI), multi-input, 
multi-output (MIMO), two-channel decentralized sys- 
tem S( P, CD ) , shown in Figure 1. The goal of re- 
liable stabilization is to find a pair of controllers Cl, 
C2 such that the closed-loop system S( P, CD ) is 
stable when both controllers act together and when 
each controller acts alone. Furthermore, the closed- 
loop system has integral action at all outputs due to 
the integrators at each of the two channels. In this 
system, the plant P is stable. The integrators in the 

closed-loop response. The block-diagonal controller 
CD is not assumed to be stable. The model of con- 
troller failure used here is that when a controller fails, 
it is replaced by zero. Since the system is required 
to remain stable when either one of the controllers 
fails, it is assumed that the failure is recognized and 
the corresponding controller is taken out of service 
(i.e., the states in the controller implementation are 
all set to zero, the initial conditions and the outputs of 
the channel that failed are set to zero for all inputs). 
Clearly, stability is maintained when both controllers 
are set to zero as well since the open-loop plant is sta- 
ble. The integrators in the control channels guaran- 
tee that the closed-loop system achieves asymptotic 

1 

controller 4 CD = 1 diag [ C1 Cz 3 provide Type-I 
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tracking of step inputs. If one controller fails, this 
integral action is still present in the outputs of the 
channel with the active controller. 

After the introduction of multi-controller systems 
in [6], ["I, the problem of reliable stabilization was 
studied using full-feedback controllers ([4], [3]) and 
decentralized controllers [8]. Integral action in the de- 
centralized configuration was considered with scalar 
channels assuming that Cl and C2 are stable [5], [l]. 
Conditions on the steady-state gain of the plant were 
developed in [l] for the case of scalar channels with 
stable CD assuming that the fully decentralized chan- 
nels have gain uncertainty between 0 and 1. 

The objective of this paper is to present necessary 
and suficient conditions on P for existence of block- 
diagonal decentralized controllers that ensure reliable 
stabilization with integral action. The main result 
(Theorem 3.5) states that decentralized controllers 
with integral action exist if and only if a simple pos- 
itivity condition holds on the determinant of P and 
it's sub-blocks evaluated at zero. All decentralized 
controllers with integral action that provide reliable 
stabilization are characterized. When C1 and C2 are 
square, it is shown that one of the two controllers can 
be stable. Fixing one of the controllers, the other 
controller is designed by finding a strongly stabiliz- 
ing controller for a pseudo-plant. Strongly stabiliz- 
ing controllers can be designed for this pseuduplant 
using the interpolation methods of [9] for the scalar 
case. We also give an alternate method of designing 
the second controller explicitly without interpolation 
for a restricted class of plants. 

The results apply to discrete-time systems as well 
as continuous-time systems; for the case of discrete- 
time systems, all evaluations and poles at s = 0 
would be interpreted at 1. 
Notation: Let U contain the extended closed right- 
half-plane (for continuous-time systems) or the com- 
plement of the open unit-disk (for discrete-time sys- 
tems). Let IR denote the set of real numbers. Let R, 
(kP ) denote proper (strictly-proper) rational func- 
tions with real coefficients; R c R, denotes proper 
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rational functions which have no poles in the region 
of instability U ; M ( R )  denotes the set of matrices 
whose entries are in R . A matrix M is called R-stable 
iff M E M ( R )  ; M E M ( R )  is called R-unimodular 
iff M-' is also 72-stable. For M E M ( R ) ,  the norm 

where 5 denotes the maximum singular value and 
aU denotes the boundary of U. A right-coprime- 
factorization (RCF) of Pjj E Rpnjxmj is denoted 

is biproper and Pjj = N j j  DG . Similarly, an 
RCF of Cj E RpmXn is denoted by ( N c j  , Dcj ) , 
where Ncj , Dcj E M ( R ) ,  Dcj is biproper and Cj 
= Ncj D$ . The identity map (of dimension n) is 
denoted by I n .  

I1 * II is defined as I t  M II = SUP,@U @ ( M ( s ) )  1 

by ( N j j  , D j j ) ,  where Njj , D . .  E M ( R ) ,  Djj 
I1 

a := b means a is defined as b. 

2. Analysis 
We consider the LTI, MIMO, two-channel decen- 

tralized control system S( P, f CD ) shown in Fig- 
ure 1; P and 4 CD represent the transfer-functions 
of the plant and the controller, respectively, where 

n = nl + n2 , m = ml + m2, 

It is assumed that S( P, 3 CD ) is a well-posed system 
and that the plant and the controller do not have any 
hidden-modes associated with eigenvalues in the r e  
gion of instability U. The plant is R-stable. The 
controller 4 CD is not %stable; the block-diagonal 
decentralized controller CD is not necessarily stable. 
Let ( N c j  , Dcj ) be an RCF of Cj , j = 1,2; NC := 
diag [ Ncl  Nc2 ] Dc := diag [ Dcl Dc2 ] ; then 
( N c  , Dc ) is an RCF of CD . . For integral action at 
each output, it is necessary that CD has no (trans- 
mission) zeros at s = 0,  i.e., 

rank N c j  (0) = nj , 

j 4 CD = = v 5 diag [ C1 Cz ] E Rpmxn Cj E RpmjXnj.  

j = 1, 2 ; 

this necessary condition implies that the number 
of outputs can not exceed the number of inputs 
(nj 5 m j )  for each channel. Let -a E IR \ U ;  
then i can be factored as 4 = (&)-lL a+a * For 
j = 1 , 2 ,  let &Dcj&j = - 1 

s+a ec j  7 Ncj  &j = 
y c j  . Let UP   US^, u & ] ~ ~  UC := 'uF,]', 

T T  YP := [ y T 1  , Y?Z IT, YC := [Y& , yc2] . The SYS- 

tem S( P , ~ C D )  is described as: 

Equations (1)-(2) are of the form DH t = u , 
= N t + G U .  

posed, i.e., the transfer-function H : ( u p ,  U C )  +.+ 

(YP , YC ) is proper. 
Now suppose that one of the controllers fails, i.e., is 

set equal to zero; it is assumed that the failure is rec- 
ognized and the corresponding controller is taken out 
of service. When C2 is set equal to zero, the system 
is called S( P, 4 C l ) ;  similarly, when C1 is set equal 
to zero, the system i s  called S( P, C2). Consider 
the system S( P, 4 Cl), where C2 is set equal to zero 
and the outputs yc2 of the second control channel are 
not observed. A description of S( P, f C1) similar to 
that of S( P, f CD ) is given by: 

y 
Since 4 CO is strictly-proper for' 

any proper C1, C2 , the system S( P, s 1 CD ) is well- 

1 

1 [ 5 DCl + r+a p11 NCl ] €Cl 

[P?++ [; ;][:I = [E 1 .  (4) 
A similar description can be obtained for S( P, f C2 ) , 
where C1 is set equal to zero and the outputs yc1 of 
the first control channel are not observed. 

3. Stability 
We now investigate the %stability of the system 

S( P, f CD ) under normal operation and under the 
complete failure of either the first or the second con- 
troller. It is assumed that if one of the controllers 
fails, the failure is recognized and the controller that 
failed is taken out of service. 
3.1. Definitions (Reliable controller pa i r ) :  
1) The system S( P, 4 CD ) is said to be R-stable iff 
the closed-loop transfer-function H from (tic, up)  to 
(yc, yp) is R-stable. Similarly, for j = 1 ,2 ,  the sys- 
tem S( P,  4 Cj ) is R-stable iff the transfer-function 
Hj ffom ( u c j ,  U P )  to ( y c j ,  p p  ) is R-stable. 
2) The pair ( fC1 , zC2) is called a decentralized re- 
liable controller pair  with integral action iff C1 , Cz f 
M (  I$) , and the systems S( P, 4 CD ) , S( P, 4 C1) , 

0 
3.2. Lemma (Closed-loop stabilaty): 
Let P E R n X m .  For j = 1,  2 ,  let ( N c j ,  D c j )  be 
an RCF of Cj , and let rank N c j  (0) = nj . 

1 i) The system S( P, 5 C O )  is R-stable if and only 
if DH := & D c  + A P N c  = 

1 

S( P, 4 C2) are all R-stable. 

I 1 - 
s+a p12 Nc2 

p21 NCl - asaDc2 + P22 Nc2 
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is R-unimodular. 
ii) The system S( PI 4 C1)  is R-stable if and 

R-unimodular. 
iii) The system S( P, C2)  is 72-stable if and 

R-unimodular . 0 

Proof: We prove (i) using the system description 
(1)-(2); (ii) and (iii) follow similarly from (3)-(4). 

given by H = N R D H - ~ N L  + G , where NR , DH , 
N L ,  G E M ( R ) .  We show that ( N R , D H , N L )  
is a bicoprime triple: Since ( N c  , D c )  is right- 

= n for all s E U [2]; hence, coprime, rank 

rank [ 5: ] = n for all s E U \ (0) since 

--a is not in U .  Since rank N c ( 0 )  = n by as- 

sumption, rank [ $ Nc Dc ] ( 0 )  = n .  Therefore, 

only if D H ~  := [ & D c l + G  1 P11 Ncl ] is 

only if D H ~  := [ & D c 2 + =  1 P22 N c ~ ]  is 

The closed-loop transfer-function of S( PI 5 1 CO ) is 

Dc 
[ N c  1 

rank [ 2 ] =rank [ 0 I 
O P I  

=rank [ 5 Nc Dc ] = n for all s E U ,  i.e., (NR,  D H )  

is right-coprime. Similarly, rank [ DH N c  ] = 
. r  I 0 0 1  

rank[ & D c  -1, 1 0 
- . ,  L o  O I  

rank 15 DC s+o 1 In 1 for all s E U .  The ma- 
trix in the last equality has full row-rank for all 
s E U because s+a I, drops rank only at infinity, but 
rank ( & D c  = n at  infinity since D c  is biproper. 
Therefore, rank [ DH N L ]  = n for all s E U , 
equivalently, ( DH , N t  ) is left-coprime. Since it is 
shown that ( NR , DH , NL ) is a bicoprime triple, it 
follows using standard arguments that H E M ( R )  if 

0 

From the three conditions of Lemma 3.2, it is clear 
that the following conditions on P are necessary for 
R-stability when the two controllers act together and 
when each controller acts alone. 
3.3. Corollary (Necessary conditions on P ) :  
i) If the system S( P I ;  C O )  is R-stable, then 
rankP(0) = n ,  i.e., ( &I,, , s+o P )  is left-coprime. 
ii) If the system S( P, f C l )  is %stable, 
then rank 9 1  (0) = nl , i.e., the pair 
( &I,,, , 4 1  is left-coprime. 
iii) If the system S( P, 4 ~2 ) 
is R-stable, then rank P22 (0) = n2 , i.e., the pair 

0 

1 

and only if D H - ~  E M ( R )  ([9], [2]). 

1 

(&I~., s+a 1 ~ 2 2  ) is left-coprime. 

Proof: By Lemma 3.2, the system S( P, s 1 CO ) is 

R-stable if and only if DH is R-unimodular, equiv- 
alently, rank DH = n for all s E U .  Therefore, 
rank DH (0) = rank ( P (0) Nc (0)) = n ,  imply- 
ing that rank P (0) = n whenever S( P, $ CO ) is sta- 
ble. The pair ( &I,, , b+o 1 P )  is left-coprime if and 

[ &I,, -P 1 ] = n ,  which is full 
s+a 

only if rank 
row-rank if and only if rank P (0) = n since &In 
only drops rank at s = 0 .  This establishes (1); (ii) 
and (iii) follow similarly from DHI and D H ~  . 0 

The three conditions of Corollary 3.3 are neces- 
sary for the existence of decentralized reliable con- 
trollers with integral action; therefore we assume from 
now on that rankP(0) = n and for j = 1, 2 ,  
rank Pjj (0) = nj . If rank Pjj (0) = nj , equiva- 

exist 5 , Uj , 5 ,  Uj , Djj , Njj E M ( R )  such that 

lently, ( $Ini, d;t(l 1 Pjj ) is left-coprime, then there 

, for j = 1 ,  2 .  (5) 

When Pl1 , P22 are square, i.e., nl = nl and 
n2 = m2 , then P is also square; P12 and P21 are 
not necessarily square since it is not assumed that 
nl = n2. If each Pjj is square, then the necessary 
conditions of Corollary 3.3 become P ( 0 )  is nonsin- 
gular and Pjj (0) is nonsingular for j = 1 , 2 .  When 
nj = mi_, if Pjj (0) is nonsingular, then there exist 
4 , Uj , 5 E M ( R )  such that 

= Iznj  , for j = 1 ,  2 .  (6) 

In (5),  (Nj j  , Djj ) is a right-coprime-factorization of 4 Pjj . When Pjj is square, ( "+," Pjj , G I n j  ) is 
1 an RCF of 5 Pjj and Uj = Uj . Since the only 

U-poles of Pjj are at s = 0 ,  det Djj ( 0 )  = 0 .  
However, Djj ( 0 )  # 0 when mj > nj . 
3.4. Lemma (Decentralized reliable controllers): 
Let P E RnXm , Pjj E RnjXmJ . Let rankP(0) = 
n andrankPjj  (0) = nj f o r j = 1 , 2 .  
i) For j = 1 , 2 ,  the system S( P, 5 Cj ) is R-stable if 
and only if, for some Q j  E 72"jxnj , Cj = Ncj DZf , 
where 

1 S 

1 

1 

N c j  = ( D j + D j j & j )  Dcj = ( i & N j j Q j ) .  (7 )  

ii) For j = 1 , 2 ,  let S( PI 4 Cj ) be 72-stable, i.e., let 
Cj be as in (7). The system S( P, 4 CO ) is R-stable 
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if and only if 
In, - s+o P12 Ne2 d+(l P2? Nc l  
= In1 -(s+a)a P12 ( UZ +D22 Q 2 )  PZI ( cl +Dl1 Q I  ) 

1 1 
1 

is R-unimodular. (8) 

Proof: By Lemma 3.2, S(  P, 4 Cj ) is R-stable 
if and only if D H ~  is R-unimodular, equiv- 
alently, for some RCF ( N c j  , D c j )  of C j ,  [ & Dcj + d+h 1 Pj, N c j  ] = In;. The expression 

cj = N~~ D$ = (uj + D ~ ~ Q ~ ) ( G  - ~ ~ ~ ~ ~ 1 - 1  is 
obtained by finding all solutions of this matrix equal- 
ity using the Bezout identity (5 ) .  For j = 1 , 2 ,  sub- 
stituting - this solution for Ncj , Dcj , DH becomes - 

n 
DH = 1 

P21 NCl 
R-unimodular if and only if (8) holds. 

1 In' 
- 

- \ ,  

Suppose that mj = nj , i.e., P E ;Rnxn, Pjj E 
. In this c=, by setting Djj = In;, 

Njj  = Pjj and Uj = c, as in (6), Lemma 3.4 
is stated as follows: Let P ( 0 )  be nonsingular and 
Pjj (0) be nonsingular for j = 1,2. For j = 1 , 2 ,  

some Qj E 'RnJx"j , Cj = Ncj  DZj , where 

~ n j x n ;  

the system S( P, 1 Cj ) is R-stable if and only if, for 

- 1  Ncj  = (uj + &Qj) 1 Dcj = (5 - s+a p j j  Q j ) .  (9) 
1 For j = 1 , 2 ,  let S( P, 5 Cj ) be R-stable, i.e., let Cj 

be as in (9). The system S( P, 4 CO ) is a-stable if 
and only if 

1 1 
I n l  - s+a P12 N c ~  s+o P21 Ncl  
- -Inl-- 1 P12 (u2+&&2) P21(Jj l+&Q1)  

is R-unimodular. (10) 

By Lemma 3.4, there exist reliable decentralized in- 
tegral controllers if and only if 'R-stable matrices Q 1  , 
Q2 can be found such that (8) is R-unimodular (or 
(10) is R-unimodular if the channels are square). If 
P is block-triangular ( 5 2  = 0 or P21 = 0 )  then (8) 
obviously holds for all Q 1  , 9 2  E M ( R )  . However (8) 
does not explicitly state whether such Q 1 ,  Q2 ex- 
ist. Theorem 3.5 establishes necessary and sufficient 
conditions for existence of Q1, Q2 by checking ranks 
of real matrices associated with P ( 0 ) .  Corollary 3.6 
gives an equivalent condition for square channels. 

3.5. Theorem (Existence of decentralized reliable 
controllers with integral act ion):  
Let P E Rnxm and Pjj E RnjXmj . There exists 
a decentralized reliable controller pair with integral 
action for P if and only if there exist real matrices 
RI E lRmlXn1 and R2 E IRmaXna such that 

i) 4 1  ( 0 )  RI = Inl 

ii) P22 ( 0 )  R2 = In, , and 

iii) det ( Inl - Pi2 (0) R2 P21(0) RI ) > 0. (11) 

be a decen- 
tralized reliable controller pair with integral ac- 

1 tion; by Definition 3.1, the systems S( P, CD ) , 
S( P, 4 c1) , S( P, 4 c2 ) are %-stable. By 
Corollary 3.3, S( P, f Cj ) 'R-stable implies that 
rank Pjj (0) = nj.  By Lemma 3.4, Cj is 
given by (9), where (10) is R-unimodular. Defin- 
ing X := -(.+.r pi2 Nc2 P21 , by (lo), ( In ,  - 

'R-unimodular. Since det ( In, + X N c ~  ) is a unit 
of 'R, it must have the same sign at all s E U. Since 
X ( o 0 )  = 0 ,  clearly det(  In ,  + X N c l ) ( m )  = 1 .  
So det ( Inl + X N c ~  ) (s) must be positive for all 
s E U since it is a unit of R. From (5), & Dcj + 

( Uj + Dll Qj ) ( 0 )  is a right-inverse of Pjj ( 0 )  , 
i.e., Ncj ( 0 )  = Q Rj . Therefore, X ( 0 ) N c l  ( 0 )  
= - Prz ( 0 )  R2 Pzl (0) R1 and hence, det (In, + 
X N C I ) ( O )  =de t ( In , -P12(O)R2  P21 ( ( ) ) R I )  
must be positive for some Rj such that Pjj Rj 
= Inj. 
SufFciencyr If rank Pjj ( 0 )  = nj , then for j = 
1 , 2 ,  Pjj ( 0 )  has a right-inverse. By assumption, 
(11) holds for some R1 , R2 . Let Cj be given 

Proof: Necessity: Let ( $ C l ,  s C ~ )  1 

1 

& ~ 1 2  ~ c 2  ~ 2 1   cl) = ( In1 + x ~ c l )  is 

1 - 8+," P j j  Ncj = In; implies that 0-l Ncj  ( 0 )  = 

1 by by (9). = 
In;. Choose Q2 E M ( R )  for C2 such that 

BY (6), &Dcj + ~ + a  Pjj Ncj  

N c 2 ( 0 )  = ( c 2  + D 2 2 Q 2 ) ( 0 )  = uR2 for the 
particular right-inverse R2 of P22 ( 0 )  which sat- 
isfies (11). Similarly, there is an A1 E M ( R )  
such that ( -k Dll A1 ) ( 0) = Q RI for the right- 
inverse RI of 9 1  ( 0 )  which satisfies (11). With 
Nc2 fixed, define X := P12 Nc2 P21 and 
define U := (51 + D l l A 1 ) .  The goal is to 
show that the pair ((In, + X U ) ,  X D l l )  satis- 
fies the parity-interlacing-property. Since X (m) = 
0, (In, + X U ) ( m )  = Inl implies that (Inl + 
X U )  is nonsingular. The first step is to show 
that the pair ( ( I n ,  + X U )  , X Dll ) is left-coprime. 
For s = 0,  X ( 0 )  = - Q - ~ P I ~  (0) R2 P21 (0) 
and U ( 0 )  = (01 + D l l A 1 ) ( 0 )  = u R 1 ;  
therefore, by ( l l ) ,  Inl + X ( O ) U ( O )  = I n ,  - 
P12 ( 0 )  R2 P21 (0) R1 is nonsingular. Therefore, 
rank [ ( I n l + X U )  XD11]  = 121 for s = 0.  
Since the only U-poles of are at s = 0 ,  
D11-'(s) is R-stable for all s E U except for 
s = 0 .  Therefore, rank [ ( In, + X U )  X D l l ]  = 

1 

Pjj 

rank [ ( In,  + X u )  XD111 - D l l - l u  Iml O ] =  [ In, 
rank [ I n ,  X Dl11 = 121 for all s E U ,  s # 0 .  Since 
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this shows that rank [( Inl + X U )  X D l l ]  = nl 
for all s E U ,  the pair ( ( I n ,  + X U ) ,  X Dll ) is 
left-coprime. Now the second step is to show that 
det (In, + X U )  has the same sign at all real block- 
ing U-zeros of X Dll . At the blocking U-zeros of 
X ,  det(I,, + X U ) ( s o )  is positive for all so E U 
such that X ( s o )  = 0 .  Now the only other pos- 
sible blocking U-zero of X D11 is at s = 0 be- 
cause det Dll (s) = 0 only if s = 0 .  But by (ll), 
det( lnl  + X ( O ) U ( O ) )  is positive. 

Since ( (  Inl + x (61 + ~ 1 1  A I  ) ) ,  ~ 1 1  X )  satis- 
fies the parity-interlacing-pr_operty, there exists Ql E 
M ( R )  such that (Inl+X ( Ui+Dii Ai )+X Dii Q; ) 
is R-unimodular. Choose Q1 in (7) as Q1 = A1 +Q1 . 
Then by Lemma 3.4, condition (8) implies that the 
pair C1 , C2 is a decentralized reliable controller pair 

3.6. Corollary (Existence of decentralized reliable 
controllers with integral action; square channels): 
Let P E ICnxn and Pjj E Rnjxnj. There exists 
a decentralized reliable controller pair with integral 
action for P if and only if, 

with integral action. 0 

i) det 4 1  ( 0 )  # 0 , 
ii) det P22 ( 0 )  # 0 , and 

> 0. (12) 
det P ( 0 )  

det S I  ( 0 )  det P22 ( 0 )  
iii) 

Proof: Replacing RI and Ra by the unique in- 
verses 9 1  (O)-’ and P22 ( O ) - l ,  (12) follows by ex- 
panding det P(0) as 
det(In, - P12 (0) P22 (O)-’  P21(0) 9 1  ( O ) - ’ )  
det 9 1  (0) det P22 (0). The necessity proof fol- 
lows the same lines as in the proof of Theorem 
3.5. In the proof of sufficiency, Q2 E M ( R )  
can be chosen arbitrarily since Nc2(0) = (62 + 

Similarly, A1 can be 
taken as zero since Gl(0) = Ul(0) = a P11(0)-’. 
Using similar arguments, it can be shown that the 
pair ((I,, ,  + X U1 ) , X )  satisfies the parity- 
interlacing-property. In the case of square channels, 

0 
#+a 
3.7. Remarks 
1) In Theorem 3.5 , for j = 1,2, the real matrices 
Rj correspond to right-inverses of Pjj ( 0 ) .  If mj > 
nj then Rj is not unique. When mi = nj , using 
the (unique) inverse Pjj -’ ( 0 )  , (11) becomes 
det (In, - Pi2 (0) P22 (01-l Pzi (0) Pi1 (01-l ) > 0 , 
which is equivalent to (12) of Corollary 3.6. 
2) If the system has single-input single-output chan- 
nels (n1 = n2 = l ) ,  then Pjj E 72 are scalar and 
the conditions of Corollary 3.6 are simplified as fol- 
lows: There exists a decentralized reliable controller 
pair with integral action if and only if P11 (0) # 0 ,  

- ,sa Q 2 )  (0) = a P22 ( O ) - ’  . 

X always has a blocking U-zero at s = 0 .  

P22 (0) # 0 ,  p,ll (0) PG1 (0) PZl(0) P12 (0) < 1 - 

3) The decentralized controller CO is proper for all 
choices of Q1 , Q z  E M ( R ) .  With Cj as in (7) 
(or (9) for square channels), (5) implies S D c j  *+a + 
D c j ( m )  = Inj and hence, Cj is proper. 
4 )  By Lemma 3.4, the systems S ( P ,  $CD), 
S( P, $ C l ) ,  S( P, $ C2 ) are all R-stable if and only if 
Cj is given by (7) and (8) is R-unimodular. Defining 
X := -- P12 Nc2 P21 , (8) is equivalent to ( In,- 

(.+a)a Pi2 Nc2 p21 Vi ) - (s+a)a Pi2 NCZ P21 DiiQi = 
( In, + X c l )  + XDllQl  is 7Z-unimodular. There ex- 
ists Q 1  E M ( R )  such that ( I n ,  + X E 1 )  + XD11Ql 
is R-uniqodular if and only if the “pseudo-plant” 
(In, + X61 )-‘X Dl1 is strongly stabilizable, equiv- 
alently, the pair ( ( Inl + Xu1 ) , X D l l )  satisfies the 
parity-interlacing-property [9]. Therefore, the state- 
ment of Theorem 3.5 can be interpreted as, there is 
a stable stabilizing controller for this “pseudo-plant” 
if and only if (11) holds. 

For square channels (nl = m l ,  n2 = m2) ,  

1 - P j j  Ncj = Iflj . Therefore, Dcj is biproper since 

1 

1 - 1 

(10) is equivalent to (Inl - (d+05 1 

mj 1 P12 NCZ 4 1  &QI = (In1 + XU1) + &XQ1 

P12 Nc2 Pzl U1 ) - 

is R-unimodular. There exists Q1 E M ( R )  such 
that (I,,, + XU1) + 5 X Q 1  is R-unimodular if 
and only if the “pseudeplant” (Inl + XUl)-’&X 
is strongly stabilizable, equivalently, the pair 
( (In, + X U l ) ,  & X )  satisfies the parity-interlacing- 
property. Therefore, Corollary 3.6 can be interpreted 
as, there is a stable stabilizing controller for this 
“pseudo-plant” if and only if (12) holds. 
5 )  For the case of square channels (nl = m l ,  
122 = m2 ), & X has a blocking U-zero at s = 0 .  
But if ml > n l ,  then D l l ( 0 )  # 0 although 
det D l l ( 0 )  = 0 .  Therefore, XD11 may or may 
not have a blocking U-zero at s = 0 .  
6 )  Consider the case of square channels (n1 = ml , 
n2 = m2).  If P(0)  satisfies the conditions of 
Corollary 3.6, then a decentralized reliable controller 
pair with integral action can be designed as follows: 
Choose any Q2 E M ( R )  ; C2 is given by (9),  where 
the numerator is now fixed as Nc2 = (U2 + &Q2).  
The R-stable matrix Q1 should be constructed as any 
stable stabilizing controller for the “pseudo-plant” 
(Inl + XUl) - ’&X.  For the scalar case, the in- 
terpolation method in [9, section 3.31 can be used to 
obtain all stable stabilizing controllers. 

The description of Q1 as any stable stabilizing 
controller for ( I ~ ,  + X V ~ ) - ’ & X  is not explicit. 
Although interpolation gives the parametrization of 
the entire set for the scalar case, the method does 
not extend to the MIMO case. We give an alter- 
nate method of explicitly finding a sub-class of stable 

2651 



stabilizing controllers for the MIMO “pseudeplant” 
(In, + XU1)-’$X using the binomial expansion. 
This method applies only to those P which have lower 
or upper block-triangular structure a t  s = 0 .  We ex- 
plain the case P12 (0) = 0 ; the case P21(0) = 0 is 
entirely similar: For j = 1 , 2 ,  let rank Pjj (0) = nj 

(recall that this condition is necessary). Suppose 
that P12 = &R12 for some R12 E M(72). Defin- 
ing x =: A X ,  s+a (Inl - 1-2 P I ~ N C ~  ~ 2 1 ~ 1 )  - 

p12 N c ~  P21 &QI = (In1 + Xu1) + &XQ1 

1 
1 

becomes In, - - & R I ~ N C ~ P ~ I U I  1 - 

s+a 1 P I ~ N c ~ & R I ~ & Q I  = In, + & ~ ( U I  + SI) is 72-unimodular. Choose Q 1  as 

k 

Q1 := U1 X rm k-m ( & U1 X )m-2 UI, (13) 

where k is any integer such that k > 11 5 X U1 11 
and r,,, are the binomial coefficients. Then 
In, + &*(ui + & ~ i >  = (I + + & X U ~ ) ~  is 
R-unimodular. Therefore, using any arbitrary Q 2  E 
M ( R )  and then Q1 of (13) in the expression (9) for 
Cj , we constructed a decentralized reliable controller 

7 )  Suppose that there exists a decentralized reliable 
controller pair with integral action, equivalently, the 
conditions of Corollary 3.6 hold. One of the con- 
trollers, say C2, in (&Cl,  4C2) can always be de- 
signed to be 72-stable. 

satisfies the parity-interlacing-property and hence, 

Therefore there exists Q2 such that the denomina- 
tor Dc2 in (9) is R-unimodular and hence, Cz is 
77,-stable for such Q2.  Now the other controller 
C1 may or may not be R-stable; there exists an 
77,-stable C1 if and only if there_ exists a Q 1  such 
that (10) is 77,-unimodular and (VI - A1 01) is 
also R-unimodular. 
8) Consider the case of square channels (nl = ml , 
n2 = m2).  The characterization of Cj given by (9) 
relies on the solution of the Bezout identity (6). For 
the specjal case of scalar channels, one solution for 
I$ , Uj , & E R of (6) can be obtained explicitly as 
follows: Consider the numerator and the denominator 
polynomials of Pjj E 7 2 ,  i.e., Pjj = ; the degree 
of z(s) does not exceed the degree of y ( s )  . Let Uj = 
a Pjj -l(O) = a % , 5 = = s, where 7 (s) is 
the polynomial (of the same degree as y ( s ) )  given by 

by simple_calculation that this solution for the scalar 
Uj , I$ = % E 72 satisfies (6). This simple method of 

m=2 

1 1  pair ( $1 > S C 2 ) .  

Since the only U-pole of 
1 P22 is at s = 0 ,  the pair ( (&In2), 

- s+a P22 (&In2)-’ = 4 P22 is strongly stabilizable. 

P22) 

1 

s r ( s )  = ( s + a )  y ( s ) - a  P j j - l ( o ) z ( s ) .  It follows 

finding a solution for the Bezout identity (6) can be 
extended to the case of MIMO square channels by ap- 
plying the same method to the largest invariant-factor 
of Pjj using the Smith-form [9]: Consider the Smith- 
form Pjj = Lj Aj Rj of P.. 33 E R”JXnj , where Lj 

and Rj are 72-unimodular and the diagonal matrix 
Aj(0)  is nonsingular since we assume that Pjj (0) is 
nonsingular. Let Xnj denote the largest invariant- 
factor of Aj and consider the polynomial factoriza- 
tion of Xnj =: s. Let U := aX;;(O) and o = ’ a , 
where the polynomial 7 (s) of the same order as y (s) 
is given by s7(s)  = (s+ a ) y ( s )  - aX,-if(O>z(s). 

Since Ani AY1 is 72-stable, a solution for (6) is Uj = 

a 
- 

dnj R ; I A ; ~  L ; ~  = u ~ n j  pjj  - l ,  5 = 4 = PI 

References 

[l] P. J. Campo, M. Morari, “Achievable closed-loop 
properties of systems under decentralized control: 
Conditions involving the steady-state gain,” IEEE 
Trans. Auto. Cont., vol. 39, no. 5: 932-943, 1994. 

[2] A. N. Giindeg, C. A. Desoer, Algebraic Theory of 
Linear Feedback Systems with Full and Decentralized 
Compensators, Lecture Notes in Control and Infor- 
mation Sciences, 142, Springer-Verlag, 1990. 

[3] A. N. Giindeg, “Reliable stabilization of linear plants 
using a two-controller configuration,” Systems and 
Control Letters, vol. 23, pp. 297-304, 1994. 

[4] K. D. Minto, R. Ravi, ”New results on the multi- 
controller scheme for the reliable control of linear 
plants,” Amer. Cont. Conf., pp. 615-619, 1991. 

[5] M. Mora& E. Zafiriou, Robust Process Control, 
Prentice-Hall, 1989. 

f6] D. D. Siljak, “On reliability of control,” 17th IEEE 
Conf. Decision and Cont., pp. 687-694, 1978. 

[7] D. D. Siijalc, “Reliable control using multiple control 
systems,” Int. Jour. Cont., vol. 31, no. 2: 303-329, 
1980. 

[8] X. L. Tan, D. D. Siljak, M. Ikeda, “Reliable stabiliza- 
tion via factorization methods,” IEEE Trans. Auto. 
Cont., vol. 37, no. 11: 1786-1791, 1992. 

[9] M. Vidyasagar, Control System Synthesis: A Factor- 
ization Approach, M.I.T. Press, 1985. 

I U P1 I 
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