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Abstract

Reliable stabilization with integral action is stud-
ied in the linear, time-invariant, multi-input, multi-
output, two-channel decentralized control system,
where the plant is stable. The objective is to achieve
closed-loop stability when both controllers act to-
gether and when each controller acts alone. Necessary
and sufficient conditions are obtained for existence of
block-diagonal decentralized controllers that ensure
reliable stabilization and integral action. All decen-
tralized controllers with integral action that provide
reliable stabilization are characterized.

1. Introduction

We consider reliable stabilization with integral ac-
tion in the linear, time-invariant (LTI), multi-input,
multi-output (MIMO), two-channel decentralized sys-
tem S( P, % Cp), shown in Figure 1. The goal of re-
liable stabilization is to find a pair of controllers C ,
C, such that the closed-loop system S( P, % Cp) is
stable when both controllers act together and when
each controller acts alone. Furthermore, the closed-
loop system has integral action at all outputs due to
the integrators at each of the two channels. In this
system, the plant P is stable. The integrators in the
controller %CD = %diag [C:1 O3] provide Type-I
closed-loop response. The block-diagonal controller
Cp is not assumed to be stable. The model of con-
troller failure used here is that when a controller fails,
it is replaced by zero. Since the system is required
to remain stable when either one of the controllers
fails, it is assumed that the failure is recognized and
the corresponding controller is taken out of service
(i.e., the states in the controller implementation are
all set to zero, the initial conditions and the outputs of
the channel that failed are set to zero for all inputs).
Clearly, stability is maintained when both controllers
are set to zero as well since the open-loop plant is sta-
ble. The integrators in the control channels guaran-
tee that the closed-loop system achieves asymptotic
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tracking of step inputs. If one controller fails, this
integral action is still present in the outputs of the
channel with the active controller.

After the introduction of multi-controller systems
in [6], [7], the problem of reliable stabilization was
studied using full-feedback controllers ([4], [3]) and
decentralized controllers [8]. Integral action in the de-
centralized configuration was considered with scalar
channels assuming that C; and C, are stable [5], [1].
Conditions on the steady-state gain of the plant were
developed in [1] for the case of scalar channels with
stable Cp assuming that the fully decentralized chan-
nels have gain uncertainty between 0 and 1.

The objective of this paper is to present necessary
and sufficient conditions on P for existence of block-
diagonal decentralized controllers that ensure reliable
stabilization with integral action. The main result
(Theorem 3.5) states that decentralized controllers
with integral action exist if and only if a simple pos-
itivity condition holds on the determinant of P and
it’s sub-blocks evaluated at zero. All decentralized
controllers with integral action that provide reliable
stabilization are characterized. When C, and C, are
square, it is shown that one of the two controllers can
be stable. Fixing one of the controllers, the other
controller is designed by finding a strongly stabiliz-

. ing controller for a pseudo-plant. Strongly stabiliz-

ing controllers can be designed for this pseudo-plant
using the interpolation methods of [9] for the scalar
case. We also give an alternate method of designing
the second controller explicitly without interpolation
for a restricted class of plants.

The results apply to discrete-time systems as well
as continuous-time systems; for the case of discrete-
time systems, all evaluations and poles at s = 0
would be interpreted at 1.

Notation: Let I/ contain the extended closed right-
half-plane (for continuous-time systems) or the com-
plement of the open unit-disk (for discrete-time sys-
tems). Let IR denote the set of real numbers. Let R,
(Rep ) denote proper (strictly-proper) rational func-
tions with real coefficients; R C R, denotes proper
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rational functions which have no poles in the region
of instability & ; M(R) denotes the set of matrices
whose entries are in R . A matrix M is called R-stable
iff M € M(R); M € M(R) is called R-unimodular
iff M~! is also R-stable. For M € M(R), the norm
[| - || is defined as || M || = sup,. o4y 7(M(s)) ,
where & denotes the maximum singular value and
AU denotes the boundary of & . A right-coprime-
factorization (RCF) of Pj; € Rp"™*™/ is denoted
by (Njj, Djj), where Njj, Dj; € M(R), Dj;
is biproper and Pj; = Nj; Dj_jl . Similarly, an
RCF of C; € Ry™*" is denoted by (N¢;j, Dcj),

where N¢; ) D¢j € M(R), D¢;j is biproper and Cj

= Ngj DC The identity map (of dimension n) is
denoted by I,. a:=b means a is defined as b.

2. Analysis
We consider the LTI, MIMO, two-channel decen-
tralized control system S( P,%.—CD) shown in Fig-
ure 1; P and %C’D represent the transfer-functions
of the plant and the controller, respectively, where

P Ba]crmn, py e mem
i =12, n=mn+n, m=m +m,

lop=1ldisg[Ci G ]eR,™", Cj e R™ %M.
It is assumed that S( P, % Cp) is a well-posed system
and that the plant and the controller do not have any
hidden-modes associated with eigenvalues in the re-
gion of instability & . The plant is R-stable. The
controller %.—CD is not R-stable; the block-diagonal
decentralized controller Cp is not necessarily stable.
Let (N¢j, Dcj) be an RCF of Cj, j = 1,2; N¢:=
diag [ Nc1 Nec2], Dc:= diag[ Dci  Dc2 ]; then
(N¢, D¢) is an RCF of Cp .. For integral action at
each output, it is necessary that Cp has no (trans-
mission) zeros at s = 0, i.e.,

ranchj(O):nj f j=1,2;

this necessary condition implies that the number
of outputs can not exceed the number of inputs
(n; < m;) for each channel. Let —a € IR. \U;

then % can be factored as %,— = (H_a)' 732 For
i=12,let ;£ Dciéc; = ;izec; , Nejbos =
yoj - Let up = [upy, up, |7, uc = [ug;, u,]7,
vp = [v5,, v5. 17, ve = [¥E;, vZ,]7. The sys-
tem S(P, % Cp) is described as:
s [Dex 0 |, 1 pfNar O et
sta | 0 Dgg | *te 0 Nea €2
- 1 1 uc
—[mfn ~a ][up]' 1
Nc¢ éct 0 0 [Uc] [yc
= . (2
[PNC][ECZ]+[0 P] up yp @
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Equations (1)-(2) are of the form Dgé = u, y
= N¢ + Gu.
any proper Ci, C,, the system S( P, % Cp) is well-
posed, i.e., the transfer-function H : (up, uc) —
(yp, yc ) is proper.

Now suppose that one of the controllers fails, i.e., is
set equal to zero; it is assumed that the failure is rec-
ognized and the corresponding controller is taken out
of service. When C; is set equal to zero, the system
is called S( P, % C1); similarly, when C is set equal
to zero, the system is called S( P, % C3). Consider
the system S( P, % C1 ), where C is set equal to zero
and the outputs yc; of the second control channel are
not observed. A description of S( P, % C: ) similar to

that of S( P, % CD ) is given by:

Since %CD is strictly-proper for’

[_,+,, Dci + 747 Pi Nc1]§m
Uc
=kt skl O]P][upl]’ 3)
Nea
0 0 |fucs yeu
PuN e
[ et [0 0] <[] @

A similar description can be obtained for S( P, % Cy),
where C} is set equal to zero and the outputs yo; of
the first control channel are not observed.

3. Stability

We now investigate the R-stability of the system
S(P 3 CD) under normal operation and under the
complete failure of either the first or the second con-
troller. It is assumed that if one of the controllers
fails, the failure is recognized and the controller that
failed is taken out of service.

3.1. Definitions (Reliable controller pair):

1) The system S( P, % Cp) is said to be R-stable iff
the closed-loop transfer-function H from (uc, up) to
{(yc, yp) is R-stable. Similarly, for j = 1,2, the sys-
tem S( P, % C;) is R-stable iff the transfer-function
H; from (ucj,up) to (ycj,yp) is R-stable.

2) The pair ( %—C’l , %02) is called a decentralized re-
liable controller pair with mtegral action iff C, i C; ¢
M( R.p) and the systems S( P, 1 sCp), S(P Ci),
S(P, 3 Cg) are all R-stable. o
3.2. Lemma {Closed-loop stability):

Let P € R™™™. For j =1,2,let (Ngj, Dcj) be
an RCF of C;, and let rank NcJ 0) = n;.

i) The system S( P, % Cp) is R-stable if and only

if Dy = sia Dc + s-}-a P Ne¢ =
ﬁ;Dclx + ,%a P;1 Ney +5 P12 Neo
mP21 NC] ‘+aDC2+ 1 P22NC2




18 R-unimodular.
ii) The system S( P,%Cl) is R-stable if and

Dc1 + i Pu N ] is

only if Dy =
R-unimodular.

iii) The system S(P,3 1 Cy) is ’R—stable if and
[ 712 Doz + 745 P2 Nea ] is
R-unimodular. o

a+a

only if Dygs :=

Proof: We prove (i) using the system description
(1)-(2); (i1) and (iit) follow similarly from (3)-(4).
The closed-loop transfer-function of S( P, % Cp) is
given by H = NpDyg~ Ny + G, where Ng, Dy,
Ni, G € M(R). We show that ( Ng,Dg,Nr)
is a bicoprime triple: Since (N¢, D¢) is right-

Dc | _ .
No ] = n for all s € U [2]; hence,

rank [ Nfc ] = n for all s € U\ {0} since
—a is not in U. Since rank N¢ (0) =
sumption, rank [ NDC ](0) = n. Therefore,
c

] =rank | I 0 N¢

o P I 0

-5 D¢ .

= rank [ ’+Rr ] =n forall s €U, ie., (Ng,Dy)

[o;
is right-coprime.  Similarly, rank[Dy N¢] =

coprime, rank [

n by as-

Dy
rank [ Ni

[ ] I 0 0
rank | - =1, 0 PNe I -P | =
tDo s 0 0 I
rank [a+a Dec %EI,, for all s € U. The ma-

trix in the last equa,hty has full row-rank for all
seuU because - I, drops rank only at infinity, but
rank( Dc) = n at infinity since D¢ is biproper.
Therefore, rank [Dg Np] = n foralls € U,
equivalently, ( Dy, Nr ) is left-coprime. Since it is
shown that ( Ng, Dy, Nr ) is a bicoprime triple, it
follows using standard arguments that H € M(R) if
and only if Dg~! € M(R) ([9], [2]). o
From the three conditions of Lemma 3.2, it is clear
that the following conditions on P are necessary for
R-stability when the two controllers act together and
when each controller acts alone.
3.3. Corollary (Necessary conditions on P):
i) If the system &( P, 51). Cp) is R-stable, then

rankP (0) =n,ie., (3= talns ala P) is left-coprime.

ii) If the system S( P, ; Ci) is R-stable,
then rank P;; (0) = n, i.e., the pair
(% ot L) ‘L Py; ) is left-coprime.

iii) If the system S(P, % C2)
is ’R~stable, then rank Pss (0) = na, i.e., the pair
(2 Yolnas ‘i - P22 ) is left-coprime. O
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Proof: By Lemma 3.2, the system S(P,5Cp) is
R-stable if and only if Dy is R-unimodular, equiv-
alently, rank Dy = n for all s € U. Therefore,
rank Dg (0) = rank(2 P (0) N¢c (0)) = n, imply-
ing that rank P (0) = n whenever S( P, % Cp) is sta-
ble. The pair (%

only if rank

—— P) is left-coprime if and

.s+a "’ *ta
s+a s+aln # P ]
row-rank if and only if rank P (0) = n since +aI
only drops rank at s = 0. This establishes (1) (ii)
and (iii) follow similarly from Dg; and Dy . ul
The three conditions of Corollary 3.3 are neces-
sary for the existence of decentralized reliable con-
trollers with integral action; therefore we assume from
now on that rankP(0) = n and for j = 1,2,
rank Pj; (0) = nJ If rank P;j; (0) = n;, equiva-
lently, (-1, P;; ) is left-coprime, then there

34a nj» a+a

exist Vj, U;, V;, U, Djj, Njj € M(R) such that
Vi

-1 S 1.
s+a s+a "N

Nij Y

_ ["3: 12,. ] Cforj=1,2. (5
When P;;, Pp; are square, i.e., ny = m; and
ny = my, then P is also square; Py, and Ps; are
not necessarily square since it is not assumed that
ny = ny. If each P;; is square, then the necessary
conditions of Corollary 3.3 become P (0) is nonsin-
gular and P;; (0) is nonsingular for j = 1,2. When
n; = m; , if P;; (0) is nonsingular, then there exist
V; ,U; ,V; € M(R) such that

= n, which is full

Pj;

N Ui ,1% L, -Uj
- B ol v1a Lii Vi

, forj=1,2. (6)
In (5), (Njj, Dj; ) is a right-coprime-factorization of
1p,; . When Pj; is square, (;# Pjj i) is
an RCF of % %; and U; = U;. Since the only
U-poles of %P,-,- are at s = 0, det D;; (0) = 0.
However, Dj; (0) # 0 when m; > n;.

3.4. Lemma (Decentralized reliable controllers):
Let P € R™™™, Pj; € R" ™. Let rankP (0) =
n and rank P;; (0) = n; for j = 1 2.

i) For j = 1,2, the system S( P, 5 C ) is R-stable if

= I2n,'

and only if, for some Q; € R"/*"7 C, Ne; Dgj
where
Nej = (U;+D;5Q;), Dej=(V;—Nj;Q;). (7)

ii) For j = 1,2, let S( P, % Cj) be R-stable, i.e., let
C; be as in (7). The system S( P, %.— Cp) is R-stable



if and only if

In, — 535 P12 Nea ,+,, Py New

=1In, - (,—_,,l,;;rP12(U2+D22Q2)P21(U1+D11Q1)
is R-unimodular. (8)

Proof: By Lemma 3.2, S(P,1C;) is R-stable

if and only if Dg; is R-unimodular, equiv-

alently, for some RCF (N¢j,Dc;j) of Cj,

[ﬁ;DCj- ,},a P;; Nc_,] = I,;. The expression

Cj = Nej Dgj = (Us + Dj; Qi )((V; = Nj;Q;)~" is
obtained by finding all solutions of this matrix equal-
ity using the Bezout identity (5). For j = 1,2, sub-
stituting this solution for N¢j, Dcj, Dy becomes

Dy = Ln s PalNor | G s
,H Py1 Nea I,
R-unimodular if and only if (8) holds. o

Suppose that m; = nj, ie., P € R**", Pﬁ €
RIIXMS In this case, by setting D;; = a+a I;,
Njj = s+a Pj; and U; = U; as in (6), Lemma 3.4
is stated as follows: Let P (0) be nonmsingular and
P;; (0) be nonsmgular for j = 1,2. For j = 1,2,

the system S( P, 5 C’J ) is R-stable if and only if, for
some Q; € R™*™  Cj = Ng; DCJ , where

1%.Qj); Dcj = ;- ;.—,.; P;; Q;)- (9)

For j = 1,2, let S(P,1C;) be R-stable, ie., let Cj
be as in (9). The system S( P, % Cp) is R-stable if

Ncj =U; +

and only if

In, = 335 Piz Ne2 sia P21 Nei

=In,— (—,_,%)r Py (Uz+ 335 Q2) Pu (Ui + 75 Q1)
is R-unimodular. (10)

By Lemma 3.4, there exist reliable decentralized in-
tegral controllers if and only if R-stable matrices @,
Q2 can be found such that (8) is R-unimodular (or
(10) is R-unimodular if the channels are square). If
P is block-triangular (P12 = 0 or Pp; = 0) then (8)
obviously holds for all @, ,Q2 € M(R). However (8)
does not explicitly state whether such @1, @2 ex-
ist. Theorem 3.5 establishes necessary and sufficient
conditions for existence of @1, @2 by checking ranks
of real matrices associated with P(0). Corollary 3.6
gives an equivalent condition for square channels.

3.5. Theorem (Eristence of decentralized reliable
controllers with integral action):

Let P € R™™™ and P;; € R"*™i . There exists
a decentralized reliable controller pair with integral
action for P if and only if there exist real matrices
R; € R™*"1 and Rz € IR™**"? such that

i) P (0)Ry = I ,
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ii) Pzz (0) Rz = I,,, , and
iti) det(In, — P12(0) Rz P21 (0) Ry ) > 0. (11)

Proof: Necessity: Let ( C, ng) be a decen-
tralized reliable controller pair with mtegral ac-
tion; by Definition 3 1, the systems S(P,3 CD),

S{ P, Cl) S(P, Cz) are R-stable. By
Corollary 3.3, S(P, C' ) R-stable implies that
rank P;; (0) = nj. By Lemma 34, C; is

Deﬁn-
—Gsay P12 Noz Pa, by (10), (In, —

(;%55 Py3 Nz P2y Neiw) ( In, + XNc1) is
R-unimodular. Since det( I,, + X N¢1) is a unit
of R , it must have the same sign at all s €U/ . Since
X (o0) = 0, clearly det ( I, + X Nc1)(o0) = 1.
So det ( I,, + X N¢i)(s) must be positive for all
s €U since it is a unit of R. From (5), ,+a Dc; +
!ia Pj; Ncj = I, implies that a=! N¢; (0) =
(Ui + D11Q;)(0) is a right-inverse of P;; (0),
i.e., Ncj (0) = a Rj . Therefore, X (0)Nc1(0)
= — Py, (0) Ra Ps; (0) R; and hence, det(I,., +
X Nc1)(0) =det (In,~ P12 (0) Rz P51 (0) Rq)
must be positive for some R; such that Pj; R
=1;.

Suﬁ‘i,ciency: If rank P;; (0) = nj, then for j =
1,2, P;j; (0) has a right-inverse. By assumption,
(11) holds for some R1 , Rz . Let C; be given
by by (9). By (6), ,+a Dc; + s+a Pjj Nej =
I,;. Choose Q2 € M(R) for C; such that
Ng2(0) = (Uz + D22Q2)(0) = aRgz for the
particular right-inverse Rz of Pj; (0) which sat-
isfies (11). _Similarly, there is an 4; € M(R)
such that (Uy + D11 A1 )(0) = a Ry for the right-
inverse Ry of P;; (0) which satisfies (11). With
Nca fixed, define X := —rksy P12 Noa Py and

define U := (U, + D11 A;). The goal is to
show that the pair ((I,, + XU), X Dy1) satis-
fies the parity-interlacing-property. Since X (00) =
0, (In, + XU)(o©) = I,, implies that (I,, +
XU) is nonsingular. The first step is to show
that the pair ( (I, + X U), X Dy1) is left-coprime.
For s = 0, X(O)y: —a‘lPu (0) R; Py (0)
and U(0) = (U1 + D11A1)(0) = aRj;
therefore, by (11), I,, + X (0)U(0) L, —
P2 (0) Rz P2; (0) Ry is nonsingular. Therefore,
rank [(In, + XU) XDy ] = ny for s = 0.
Since the only U-poles of %ij are at s = 0,
Dy17Y(s) is R-stable for all s € U except for
s = 0. Therefore, rank [(In, + XU) X Dn] =

tank [(Iﬂl +XU) X.Dll] [ -—Dll—lU Iml ] =
rapk [In, X Di]=mn; foralls el ,s # 0. Since

given by (9), where (10) is R-unimodular.
ing X =



this shows that rank [([,, + XU) XDpl=m
for all s € U, the pair ((I,, + XU), X D11) is
left-coprime. Now the second step is to show that
det (I, + X U) has the same sign at all real block-
ing U-zeros of X Dy . At the blocking U-zeros of
X, det (I, + XU)(s,) is positive for all s, € U
such that X (s,) = 0. Now the only other pos-
sible blocking U-zero of X Dy; is at s = 0 be-
cause det D11 (s) = 0 only if s = 0. But by (11),
det (In, + X (0) U (0)) is positive.

Since ((Iru + X(U1 + D1 Ay )), Dy, X) satis-
fies the parity-interlacing-property, there exists Q:l €
M(R) such that (In,+X ( Uy+Dq; Ay )+X Dy Q} )
is R-unimodular. Choose @, in (7) as @1 = A;+Q); .
Then by Lemma 3.4, condition (8) implies that the
pair Cy , C> is a decentralized reliable controller pair
with integral action. o

3.6. Corollary (Ezistence of decentralized reliable

conirollers with integral action; square channels):
Let P € R™" and P;; € R"™*"™ . There exists
a decentralized reliable controller pair with integral
action for P if and only if,

i) det Py, (0) # 0,
i1) det P (0) # 0, and
iii) det P(0) > 0. (12)

det Pi; (0) det Pso (0)

Proof: Replacing R; and Rz by the unique in-
verses Py; (0)~1 and Py (0)7, (12) follows by ex-
panding det P(0) as
det(Inl Piq (0) Py, (0)"'1 Py (0) Py (0)—1)
det Pu (0) det Pzz (0)
lows the same lines as in the proof of Theorem
3.5. In the proof of sufficiency, Q2 € M(R)
can be chosen arbitrarily since Nga(0) = (T2 +
T4 @2)(0) = a P2(0)"'. Similarly, 4; can be
taken as zero since U1(0) = Uy(0) = a Py (0)71.
Using similar arguments, it can be shown that the
pair ((In, + XUy), ;35 X ) satisfies the parity-
interlacing-property. In the case of square channels,
74 X always has a blocking U-zero at s = 0. o
3.7. Remarks

1) In Theorem 3.5 , for j = 1,2, the real matrices
R; correspond to right-inverses of P;; (0). If m; >
n; then R; is not unique. When m; = n;, using
the (unique) inverse P;; ~*(0), (11) becomes

det (I, — P12(0) P22 (0)~"! P51 (0) P11 (0)~1 ) > O,
which is equivalent to (12) of Corollary 3.6.

2) If the system has single-input single-output chan-
nels (ny = ny = 1), then Pj; € R are scalar and
the conditions of Corollary 3.6 are simplified as fol-
lows: There exists a decentralized reliable controller
pair with integral action if and only if Py; (0) #0,
P23 (0) # 0, P31 (0) P53 (0) P2y (0) P2 (0) < 1.

The necessity proof fol-
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3) The decentralized controller Cpp is proper for all
choices of Q1,Q2 € M(R). With C; as in (7)
(or (9) for square channels), (5) implies ;3 Dc; +
;_-}_—a Pj; Nc¢j = In; . Therefore, D¢; is biproper since
Dcj(c0) = I; and hence, Cj is proper.

4) By Lemma 3.4, the systems S(P,%CD),

S( P, % C1),S(P, % C>) are all R-stable if and only if
C; is given by (7) and (8) is R-unimodular. Defining

X = -—m_le Py3 N¢o Py , (8) is equivalent to ( I, —

(;;1;55 Pyy Neg P Up)— F—l-laff Pi3 Nga Poy D11Qy =
(I, + Xﬁl) + X Dy1Q; is R-unimodular. There ex-
ists @1 € M(R) such that (I,, + XU, )Y+ XD1;Q1
is R-unimodular if and only if the “pseudo-plant”
(I, + XUy )~1X Dy is strongly stabilizable, equiv-
alently, the pair ( (I, + XU; ), XDy, ) satisfies the
parity-interlacing-property {9]. Therefore, the state-
ment of Theorem 3.5 can be interpreted as, there is
a stable stabilizing controller for this “pseudo-plant”
if and only if (11) holds.

For square channels (ny = my, ny = my),
(10) is equivalent to (I,,, — ?s—+177’ PiaNe2 P Uy ) —

(,7},;55 PiaNez P 335Q1 = (In, + XUn) + 55 X01
is R-unimodular. There exists Q1 € M(R) such
that (I,, + XUy) + ;_-f_;XQl is R-~unimodular if
and only if the “pseudo-plant” (I, + XU1)"1 £ X
is strongly stabilizable, equivalently, the pair
((In, +XUy), 755 X) satisfies the parity-interlacing-
property. Therefore, Corollary 3.6 can be interpreted
as, there is a stable stabilizing controller for this
“pseudo-plant” if and only if (12) holds.

5) For the case of square chanmels (ny = my,
ng = my), -‘—_‘*’;—GX has a blocking U-zero at s = 0.
But if m; > =n;, then Dn(O) # 0 although
det D1;(0) = 0. Therefore, X Di; may or may
not have a blocking U-zero at s = 0.

6) Consider the case of square channels (n; = my,
ng = my). If P(0) satisfies the conditions of
Corollary 3.6, then a decentralized reliable controller
pair with integral action can be designed as follows:
Choose any Q2 € M(R); C2 is given by (9), where
the numerator is now fixed as N¢g = (U2 + ;%Qg ).
The R-stable matrix @; should be constructed as any
stable stabilizing controller for the “pseudo-plant”
(Iny + XU1)"1;3.X . For the scalar case, the in-
terpolation method in [9, section 3.3] can be used to
obtain all stable stabilizing controllers.

The description of @; as any stable stabilizing
controller for (I, + XU1)"':%-X is not explicit.
Although interpolation gives the parametrization of
the entire set for the scalar case, the method does
not extend to the MIMO case. We give an alter-
nate method of explicitly finding a sub-class of stable




stabilizing controllers for the MIMO “pseudo-plant”
(In, + X Ul)_l;%X using the binomial expansion.
This method applies only to those P which have lower
or upper block-triangular structure at s = 0. We ex-
plain the case Pj2(0) = 0; the case Po; (0) =0 is
entirely similar: For j = 1,2, let rank P;; (0) = n;
(recall that this condition is necessary). Suppose
that P = %Rlz for some Ryp € M('R) Defin-

siaf(’ (Iﬂl - '(,‘IIESFPIZch le Ul) -
s PNor Po535Q1 = (Iny + XU + 55X Qs

becomes

ing X =:

L, - (;_,_%pﬁ;RuchPn% -
m’lgyz'Pmch',%;Rm;%Ql = In, + ;5:X0 +

‘,f.a Q1) is R-unimodular. Choose Q; as

k
Q:=U1 X E rm k7 (35 UL Xyt (13)
m=2

where k is any integer such that k£ > || ﬁa—X’ Uy |l
and 7, are the binomial coefficients. ~ Then
Ly + 352 X(U1 + 335501 = (I + $:5XU0)F s
R-unimodular. Therefore, using any arbitrary Q; €
M(R) and then @; of (13) in the expression (9) for
C; , we constructed a decentralized reliable controller
pair (%Cl , %Cg ).

7) Suppose that there exists a decentralized reliable
controller pair with integral action, equivalently, the
conditions of Corollary 3.6 hold. One of the con-
trollers, say C3, in (%C’l , %Cz) can always be de-
signed to be R-stable. Since the only U-pole of
1Py isat s = 0, the pair ((;3551n,), 725 Pr2)
satisfies the parity-interlacing-property and hence,
T Pra(351n,)"" = 1 Py is strongly stabilizable.
Therefore there exists Q2 such that the denomina-
tor Doy in (9) is R-unimodular and hence, C, is
R-stable for such Q2. Now the other controller
Ci may or may not be R-stable; there exists an
R-stable €7 if and only if there exists a Q1 such
that (10) is R-unimodular and (Vi — ;%= P11 Q1) is
also R-unimodular.
8) Consider the case of square channels (n; = m,
ny = my). The characterization of C; given by (9)
relies on the solution of the Bezout identity (6). For
the special case of scalar channels, one solution for
Vi ,U; ,V; € R of (6) can be obtained explicitly as
follows: Consider the numerator and the denominator
polynomialsof Pj; € R, i.e., Pj; = : *J; the degree
of z(s) does not exceed the degree of y(s). Let U; =

a P;; ~Y(0) =ai—%%§, V; =¥7j = Z—gg, where v (s) is
the polynomial (of the same degree as y(s) ) given by
sv(s) = (s+a) y(s)—a Pj; 1 (0)z(s). It follows
by simple calculation that this solution for the scalar
Uj ,V; = Vj € R satisfies (6). This simple method of
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finding a solution for the Bezout identity (6) can be
extended to the case of MIMO square channels by ap-
plying the same method to the largest invariant-factor
of P;j; using the Smith-form [9]: Consider the Smith-
form P;; = Lj A; Rj of Pj; € R"™*™ | where L;

"and R; are R-unimodular and the diagonal matrix

A;(0) is nonsingular since we assume that Pj; (0) is
nonsingular. Let A,; denote the largest invariant-
factor of A; and consider the polynomial factoriza-
tion of A, =: f{% . Let u:=aA7}(0) and v = iy'%},
where the polynomial 4 (s) of the same order as y (s)
is given by s7(s) = (s+ a)y(s) — ar;}(0)z(s).
Since Aq; A7! is R-stable, a solution for (6) is Uj =
wdn; RFVAFLTY = udg; Pt V=V =0l
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Figure 1: The decentralized system S(P, % Cp)



