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Fig. 6. Errors of approximation of the full-order closed loop by the closed 
loops with the reduced second order controllers. 

The results show that when fast-sampling is used during the 
reduction process, a superior result is obtained. It is sufficient in 
this case to use N = 3 as the fast sampling rate. This corresponds to 
an angular frequency of approximately 190 radsec; the improvement 
in matching of ‘T and ‘T is evident starting at about 10 radsec. 

Needless to say, whatever the sampling frequency is, it makes 
sense, especially if there is a problem with stability of the sampled- 
data closed loop, to use a more sophisticated scheme for obtaining 
the original (high order) discrete controller transfer function [9], [ 101. 

V. CONCLUSION 
The proposed method allows one to reduce a discrete-time con- 

troller which is used in a closed loop with a continuous-time plant, 
sampler, zero-order hold, and antialiasing filter. This reduction is 
based on information describing the system’s behavior not only at 
the sampling instants, but in intersample periods as well, and aims 
to preserve the closed-loop behavior of the sampled-data loop. To 
get information about the intersample behavior of the system, fast- 
sampling has been applied, followed by a lifting operation, which 
gives a time-invariant system. Obviously, the fast sampling procedure 
incurs an approximation error. 

In the whole reduction process, there are actually three different 
types of error: 

i) The error due to replacing a hybrid system by a multirate 
sampled-data system-this error can be made as small as 
desired by choosing a fast enough sampling rate for the faster 
of the two rates. 

ii) The error involved in replacing the problem of matching 
closed-loop transfer functions by the problem of matching 
(with weights) the open-loop responses of the controller-this 
error arises from neglecting second-order terms and has the 
potential to lead to a (mildly) less than optimal result in terms 
of closed-loop matching. 

iii) The error associated with approximating a high-order transfer 
function by a low-order o n e a s  is obviously unavoidable. 

The feasibility, efficiency, and advantage of the proposed method 
have been confirmed by a practical numerical example. 
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Simultaneous Stabilization of Linear Systems 
Under Stable Additive or Feedback Perturbations 

A. N. Gundeg and M. G. Kabuli 

Abshct- In the standard linear, time-invariant, multi-input multi- 
output unity-feedback system, it is shown that a given plant and one 
obtained by a koown stable additive (or feedback) perturbation of this 
plant can be simultaneously stabilized by a common controller. The plant 
is not necessarily stable. No s d - g a i n  restrictions are imposed on the 
stable perturbations. A set of simultaneously stabilizing controllers is 
expliatly derived for any such pairs of plants. The results extend the 
standard single connected set of plants description in robust control 
design methods to two (possibly disjoint) sets of plants. 

I. INTRODUCTION 

In the standard linear time-invariant (LTI), multi-input multi- 
output (MIh40) unity-feedback system, we consider simultaneous 
stabilization of a pair of plants, a nominal plant P, and an additively- 
perturbed plant (P + G A )  (similarly, P and a feedback-perturbed 
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plant P(I + GFP)- ' ) ,  where G A ( G F )  is a known stable pertur- 
bation. The plant is not necessarily stable. No small-gain restrictions 
are imposed on the stable perturbation. We show that there exists a 
common controller that stabilizes any such plant pairs and derive a 
set of simultaneously stabilizing controllers explicitly. 

The problem considered here is a special case of the simultaneous 
stabilization of two plants (see, for example, [2], [3], [61, [8], 191). It 
is well known that the existence of controllers that simultaneously 
stabilize two plants is equivalent to the existence of one stable 
controller that stabilizes an associated "pseudoplant" [7], [8]. We 
show that this strong stabilizability condition is always satisfied for 
the problem considered here by using the parity-interlacing property 
of the pseudoplant. After the parity-interlacing property is verified, 
constructing a controller is nontrivial; the only known method for 
single-input single-output (SISO) plants relies on interpolation con- 
ditions and does not provide a controller explicitly for MIMO plants 
[8]. On the other hand, the results of this note guarantee existence of 
simultaneously stabilizing controllers without obtaining the associated 
pseudoplant and checking the appropriate parity-interlacing property 
for each given perturbation. Furthermore, simultaneously stabilizing 
controllers are constructed, and a subclass of all such controllers is 
developed explicitly for the general MIMO case. 

The systems under consideration are described in Section 11. 
Conditions for closed-loop stability are stated in Section III. The main 
result is Theorem 3.2; it states that the nominal and the additively- 
perturbed plant (or the nominal and the feedback-perturbed plant) 
can always be simultaneously stabilized by a common controller and 
proposes a class of simultaneously stabilizing controllers. In Remark 
3.3, the result is compared with other approaches, and it is shown that 
the finite-dimensional controller parameters proposed in Theorem 3.2 
are applicable to the MIMO case, whereas the interpolation method, 
applicable only to the SISO case, would not give finite-dimensional 
controller parameters. In Comment 3.4, it is shown that it is possible 
to design a simultaneously stabilizing controller to ensure robust 
stability for sufficiently small uncertainties around the nominal plant 
and the known perturbation. Example 3.5 illustrates the comparison 
with the small-gain approach. Conclusions are given in Section IV. 

Notation: Let U contain the extended closed right-half plane (for 
continuous-time systems) or the complement of the open unit-disk 
(for discrete-time systems). Let Et denote the set of real numbers. Let 
R denote proper rational functions which do not have any poles in the 
region of instability U; let I?,(&,) denote proper (strictly proper) 
rational functions with real coefficients. Let M (R) denote the set 
of matrices whose entries are in R. A matrix M is called R-stable 
iff M E M ( R ) ;  an R-stable M is called R-unimodular iff M-' is 
R-stable. For an R-stable M ,  the norm 11 . 11 is defined as 11 M II= 
supSEau5(M(s)) , where ii denotes the maximum singular value 
and dU denotes the boundary of U. A right-coprime factorization 
(RCF) and a left-coprime factorization (LCF) of P E RFoxnl are 
denoted by ( N , D )  and ( D , N ) ,  where N,D,N,D E M ( R ) ,  
D-',D-' are proper and P = ND-' = f i - ' f i .  If ( N , D )  is 
an RCF and (fi,fi) is an LCF of the (nominal) plant P,  then 
(N + G A D ,  D) is an RCF and (d, fi + DGA)  is an LCF of the 
additively-perturbed plant (P + G A ) ;  similarly, ( N ,  D + G F N )  is 
an RCF and (fi + N G F ,  fi) is an LCF of the feedback-perturbed 
plant P(I + G F P ) - ' .  The identity map (of appropriate dimension) 
is denoted by I. a := b means a is defined as b. 

11. SYSTEM DESCRIPTION 
Consider the LTI, MIMO systems S ( P  + G A , C )  (Fig. 1) and 

S ( P ( 1  + G F P ) - ' , C )  (Fig. 2) where P E RFoXni and C E 
RFiXno are the transfer-functions of the plant and the controller. 
The LTI R-stable transfer-functions G A  and G F  represent additive- 
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Fig. 1. The system S ( P  + GA,C).  

perturbations and feedback-perturbations. If G A  = 0 in S ( P  + 
G A , C )  or if G F  = 0 in S ( P ( I  + GpP)- ' ,C) ,  these systems 
become the standard unity-feedback system S(P,C) ,  called the 
nominal system. It is assumed that P and C do not have any hidden 
modes associated with eigenvalues in U and that the systems S ( P  + 
G A ,  C) and S ( P ( I +  G F P ) - ' , C )  are well posed. The additively- 
perturbed plant and the feedback-perturbed plant are denoted by 
(P + G A )  and P(I  + G F P ) ~ ' .  The (nominal) plant P is not 
necessarily R-stable; (P + G A )  is R-stable if and only if P 
is R-stable; P ( I  + GFP)-'  may not be R-stable even if P is 
R-stable, and it may be R-stable when P is not R-stable. The 
additively-perturbed plant ( P  + G A )  has the same U-poles as P; 
the feedback-perturbed plant P(I + GpP)-'  has the same U-zeros 
as P. 

Using an RCF (N, D )  of P and an RCF (Arc, D c )  of C,  with 
D E p = u p + y c a n d D c E c  = U C - y p , t h e s y s t e m S ( P + G ~ , C )  
is described as follows 

Equation (1) is of the form D A ~  = NLU,  y = NRE + E u ;  the 
closed-loop transfer-function H : U H y is H = NRD,'NL + E .  
The system S(P(I+GFP)- ' ,  C) is described similarly, where D A ,  
N R  in (1) are replaced by 

DF := [B)c(D + G F N )  + *cN] 

The system S ( P  + G A , C )  is well posed if and only if D A  is 
biproper, equivalently, the transfer-function H : U I+ y is proper; 
similarly, the system S ( P ( I  + G p P ) - ' , C )  is well posed if and 
only if DF is biproper. If P or C is strictly proper, then D A  and 
DF are biproper, and hence, these systems are well posed. 

111. SIMULTANEOUSLY STABILIZING CONTROLLERS 
A well-posed LTI system interconnection is said to be R-stable 

iff the transfer-function from all exogenous inputs to all closed-loop 
signals is R-stable, i.e., all transfer-functions are in M ( R ) .  

The nominal system S(P,C) is said to be R-stable iff the 
transfer-function H from u := [u;,u;lT to y := [&,y;lT is R- 
stable [8]. Similarly, when G A  and G F  are R-stable, the systems 
S ( P +  G A , C )  and S ( P ( I +  G F P ) - ' , C )  are said to be R-stable 
iff the transfer-function H : U H y is R-stable [4]. 

Let (N, D )  be an RCF and (fi, I?) be an LCF of the plant P 
E RFoxn,. Let ( N c , D c )  and (&,fic) be an RCF and LCF 
of the controller C E RFaxn0. Let G A  E M ( R ) .  By (I), since 
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H = ( N R D A ~ N L  + E )  is a bicoprime factorization, the system 
S ( P  + G A ,  C) is R-stable if and only 

D A  := d c D  + N c ( N  + G A D )  is R-unimodular. (2 )  

Let GF E M ( R )  be such that the feedback-perturbed plant P(I + 
GFP)- '  E M(R,). With D F  replacing DA. the system S ( P ( I +  
G F P ) - ' , C )  is R-stable if and only if 

D F  := B c ( D  + G F N )  + N c N  is R-unimodular. (3) 

The controller C is said to be an R-stabilizing controller for P 
E Rpnoxni iff C E Rpnzxno and the nominal system S(P, C) is R- 
stable. The controller C is an R-stabilizing controller for P if and 
only if C is given by ([8], [ 5 ] )  

c = (v - QN)- ' (u  + ~ b )  = (0 + DQ)(V - NQ)-' (4) 

, for some R-stable Q such that (V - Q R )  is biproper (which holds 
for all Q E M ( R )  when P is strictly proper), where U, V, 0, p are 
R-stable matrices such that 

Lemma 3.1 (Simultaneously Stabilizing Controllers): Let ( N ,  D )  
be an RCF and (B,fi) be an LCF of the plant P E Rpnoxnx. Let 
G A  E M ( R ) .  

Consider the system S(P + GA,  C).  The R-stabilizing con- 
troller C for the nominal plant P is also an R-stabilizing 
controller for the additively-perturbed plant (P + G A )  if and 
only if C is given by (4), where Q E M ( R )  is such that 
(V - Q R )  is biproper and 

D A  = I + (U + Q ~ ) G A D  is R-unimodular. (6) 

Consider the system S ( P ( I + G F P ) - ' ,  C). The R-stabilizing 
controller C for the nominal plant P is also an R-stabilizing 
controller for the feedback-perturbed plant P(I + GFP)- '  if 
and only if C is given by (4), where Q E M (R) is such that 
(V - Q f i )  is biproper and 

D F  = I + (V - Q N ) G p N  is R-unimodular. (7) 

Proof: The system S ( P +  GA,  C) is R-stable if and only if (2) 
holds. The controller C is an R-stabilizing controller for the nominal 
plant P if and only if C is given by (4); using dc = (V - Q I?), 
Nc = (U + Q d )  in (2), by (3, D A  becomes D A  = (I+ (U + Q 
B)GA D) .  To ensure that D A  is R-unimodular and that the controller 
C is proper, the controller-parameter Q E M ( R )  must be such 
that (6) holds and the denominator D c  is biproper. Similarly, in the 
system S ( P ( I +  G F P ) - ' , C ) ,  condition (7) follows from ensuring 
that the matrix D F  is R-unimodular where C is given by (4). 0 

We now show that there exists a simultaneously R-stabilizing 
controller C E RpniXno for the nominal plant and the additively- 
perturbed plant (similarly, for the nominal and the feedback-perturbed 

Theorem 3.2 (Guaranteed Existence and a Class of Simultaneously 
R-Stabilizing Controllers): Let ( N ,  D )  be an RCF and (0, N) be an 
LCF of the plant P E Rt;;,OXna. Let U, V, 0, V E M ( R )  be as in (5). 

a) In the system S(P+ GA,  C), where GA E M ( R )  is a known 
R-stable additive-perturbation, the nominal plant P and the 
additively perturbed plant (P + G A ) can be simultaneously R- 

plant). 

stabilized. Furthermore, a set of simultaneously R-stabilizing 
controllers for P and (P + G A )  is given by 

D A  : = I +  (U + Q , ~ ) G ~ D  = I +  ~ ( 

where T e  = - are the binomial coefficients and k is any 
integer such that k >I) UGAD 11. 

b) In the system S ( P ( I +  GFP) - ' ,  C), where GF E M ( R )  
is a known R-stable feedback-perturbation, the nominal plant 
P and the feedback-perturbed plant P(I + GFP)- '  can be 
simultaneously R-stabilized. Furthermore, a set of simultane- 
ously R-stabilizing controllers for P and P(I + GFP)-'  is 
given by 

k 

= I + ( V G F N )  + $ ( V G F N ) ~  
e=2 

where T e  = - are the binomial coefficients and k is any 
integer such that k >I] V G F N  11. 

Proof: We prove the additive-perturbation case in detail: By 
Lemma 3.1 -ii), C is an R-stabilizing controller for both P and (P+ 
G A )  if and only if C is given by (4), where Q E M ( R )  is such 
that (6) holds. Substituting Q = Q. of (9) into (4), since Ub = DU 
by (9, we obtain 

k 

= (v - Q.fi)-'u 

Since P is strictly proper, (V - Q N )  is biproper for all Q E M ( R )  
and hence, C. is proper. With Q = Q., using the binomial expansion 
in (6), since the integer k > 1) UGAD 11, D A  = I + (U + Q a d )  
G A D  = I + (U + U G A  Ce=2 rekPe (DUGA)e-2UD)GAD = 
( I +  u G / D ) k  = DA is R-unimodular. By Lemma 3.1, the controller 
C, in (14) simultaneously R-stabilizes P and (P + GA).  For any 
Q. E Rnaxno satisfying (8), (I+Q.dGA DD,') is R-unimodular. 
Therefore condition (6) is still satisfied for Q = (Q. + Q.) since 
D A  = DA + Q.D G A D  = ( I  + Q,BGAD DA')DA is R- 
unimodular. Since P is strictly proper, the controllers in set (8) are 
proper for any choice of Q. By Lemma 3.1, the controllers in (8) 
simultaneously R-stabilize P and (P + GA).  

Set (1 1) for the feedback-perturbation case follows similarly by 
choosing Q = Qp in condition (7) of Lemma 3.14): D F  becomes 

k 
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DF given in (13), which is R-unimodular, and 

c, := (V - QpN)- ' (U  + QfD) 

is a simultaneously R-stabilizing controller for P and P(I + 
G p P ) - l .  0 

Remark 3.3: 
a)  Simultaneously R-Stabilizing Controllers When the Plant is Not 

Strictly Proper: In Theorem 3.2, it was assumed for simplicity that 
the plant is strictly proper; (V - Q f i )  is biproper for all Q E M ( R )  
when P E &npxna, and hence, the controllers are proper for any 
choice of Q. For proper plants which are not strictly proper, sets 
(8) and (1 1) can be modified to ensure that the simultaneously R- 
stabilizing controllers are proper. For any P E RFoXna, U in (5) can 
be chosen strictly proper; to see that there exists a solution with U E 
M(&,),  let X, Y, X, ? E M ( R )  satisfy (5).  Let 0 E RniXno 
be any R-stable matrix such that @CO) = - X ( C O ) ~ - ' ( ~ ) .  
Define U := (X + QD), V := (Y - QN), U := (X + DQ), 
V := (? - NQ); then by construction, U(m)  = 0. 

In the additive-perturbation case, with U strictly proper, 0. in (9) 
is also strictly proper; hence, (V Q , f i )  is biproper since (V. -Q, 
I?) (m)D(m) = I - (U + Q,D)(co )N(m)  = I; this shows that 
the controller C, in (8) is in fact strictly proper. To ensure that 
all controllers in set (8) are proper, the choice of Q, should be 
restricted to those for which the denominator (V - (Q, + Q,)N)  
is biproper, in addition to the constraint that 11 Q, II< 11 fi G A D ,  
D A '  [ I - ' .  Any Qa E M ( R )  which is strictly proper would satisfy 
this biproperness condition on the controller's denominator. In the 
feedback-perturbation case, to ensure that all controllers in set (1 1) 
are proper, Q f  should be such that (V - (Qp + Q f ) I ? )  is biproper, 
in addition to 11 Qr 11<11 NGFND;' II-'. 

b) Existence Proof Using the Parity-Interlacing-Property: Two 
given plants can be simultaneously R-stabilized if and only if a 
"pseudoplant," which is formed by these two plants and the associated 
Bezout identity (5) ,  is strongly R-stabilizable (see, for example, [7] 
and [8]). Applying this well-known result to the additive-perturbation 
case, by (6), P and ( P +  G A )  can be simultaneously R-stabilized if 
andonlyifthepseudoplantPs, := DGAD (I+UGAD)-' canbe 
strongly R-stabilized. In the feedback-perturbation case, by (7), P 
and P ( I  + GFP)-'  can be simultaneously R-stabilized if and only 
if the pseudoplant Psf := NGF N ( I +  V G F N ) ~ '  can be strongly 
R-stabilized. Since this is a result of independent interest, we show 
that Ps, (and similarly Ps,) is always strongly R-stabilizable using 
the parity-interlacing property: 

Consider Ps,; by (5),  DU = U D  implies that the pair ((I + 
U G A D ) , D G A D )  is right-coprime since (I - UGAD)(I  + U 
G A D )  + (UGAU)(DGAD) = I .  Without loss of generality, it can 
be assumed that (I+ UGAD) is nonsingular; this can be guaranteed 
by choosing U strictly proper in ( 5 )  as explained in the previous re- 
mark. Now ps, is strongly R-stabilizable if and only if the pair ((I+ 
UGAD),  DGAD) satisfies the parity-interlacing property. By (5), 
for any blockingU-zero SO E U n I R o f  ( B G A D ) ,  (UDGeD)( so )  
= (DUGAD)(SO) = 0. Since the pair ((I + UGAD) ,DGAD)  
is right-coprime, det(I + U G A D ) ( S O )  # 0; therefore, det(I + 
UGAD)(SO)  = det(I+ ~ U G A D ) ' ( S ~ )  is positive at all real-axis 
blocking U- zeros of ( D  G A D )  and hence, the parity-interlacing- 
property is satisfied. Similarly, consider Psp; by (5),  NV = Vi* 
implies that the pair ((I+ V G p N ) ,  N G F N )  is right-coprime since 
(I - V G F N ) ( I  + V G F N )  + (VGpV)(I?G=N) = I. As in the 
case of Ps,, it can be shown that the pair ((I+ VGFN),NGFIL') 

satisfies the parity-interlacing property since det(I+ V G F  N) ( so )  = 
det(I+ ;VGFN)'(SO) is positive at all real-axis blocking U-zeros 
of ( I V G F N ) .  

This approach also clearly verifies the existence of simultaneously 
R-stabilizing controllers for P and ( P  + G A )  (and similarly for P 
and P(I+GFP)-') .  The proof given for Theorem 3.2, however, has 
the advantage of explicitly constructing (a class) of simultaneously 
R-stabilizing controllers. 

c )  Comparison with the Interpolation Method for Scalar Plants: As 
shown in the previous remark, the pseudoplant Ps, (and similarly 
Psp ) always satisfies the parity-interlacing-property; however, the si- 
multaneously R-stabilizing controller still remains to be constructed. 
One approach for SISO plants is to obtain a simultaneously R- 
stabilizing controller by interpolation: Let P = ND-' E Rp. Define 
m := 1 + (U + QD)GAD; then by (6), m(s0) = 1 for all SO 

E U fl lR such that ( G A D ' ) ( S ~ )  = 0. For appropriate choice of W 
(not necessarily finite-dimensional), m = .dWGADZ) is a unit of R 
(see interpolation in the disc algebra [8]). A parameterization of all 
R-stabilizing controllers is obtained as' 

C = (V - QiV)-'(U + Q D )  
m - 1  

G A  - (m - 1)P' 
- - 

m = e  (WGAD') .  (16) 

The controller parameters in (16), which are obtained by interpo- 
lation, are not finite dimensional. On the other hand, the controller 
parameters Q in (8), and similarly (15), in Theorem 3.2 are finite 
dimensional; they are obtained explicitly without interpolation. Fur- 
thermore, the finite-dimensional controller parameters in Theorem 
3.2 also apply to MIMO plants. 

d)  Existence of Simultaneously R-Stabilizing Controllers by the 
Small-Gain Condition: By Lemma 3.1-ii), there exists a controller 
C which R-stabilizes the nominal plant and the additively-perturbed 
plant simultaneously if and only if there is an R-stable Q such that 
DA in (6) is R-unimodular. A sufficient condition that is often used 
in this type of problem is the small-gain condition (see, for example, 
[8], [l]): If we could always find an R-stable Q such that 

(17) 

then the small-gain condition would imply that DA = I + ( U  + Q 
D)GAD is R-unimodular and the existence of simultaneously R- 
stabilizing controllers is concluded. As shown in Example 3.5, since 
there is no restriction on the perturbation G A ,  such Q may not exist. 
Since Theorem 3.2 ensures that there always exist controllers which 
R-stabilize P and ( P + G A )  simultaneously, the small-gain condition 
is too conservative for this problem. 

Comment 3.4 (Robustness of the Simultaneously R-Stabilizing Con- 
trollers): In the usual robust stabilization problem, G A  and G F  
would be unknown perturbations, which have "sufficiently small- 
gain" and consequently, it is possible to find one R-stabilizing 
controller for the entire class of plants resulting from small pertur- 
bations of the nominal plant. We explain the additive-perturbation 
case briefly; the feedback-perturbation case is similar: In the system 
S ( P  + G A ,  C ) ,  by Lemma 3.1-ii), the simultaneously R-stabilizing 
controller C is given by (4), where Q E M ( R )  is such that (6) 
holds. Note that the matrix D A in (6) is R-unimodular if and only if 
(I + GAD(U + QD))  is R-unimodular. Suppose that the R-stable 
additive-perturbation G A satisfies 

11 GA 11<11 D u  II-' . (18) 

II (U + Q D ) G A D  1 1  < 1 

'The parameterization in (16) using the unit m = d W G A D Z )  was 
suggested by Dr. V. Blondel. 
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Then by the small-gain theorem, (I + GADU) is R-unimodular 
(equivalently, MO := (I+ UGAD) is R-unimodular); therefore (6) 
is satisfied for Q = 0 and hence, the controller C = V-’U si- 
multaneously R-stabilizes any number of additively-perturbed plants 
(P + G A )  for all G A  satisfying (18). Furthermore, (6) is satisfied 
by choosing any R-stable Q of appropriate dimensions such that 
11 Q 11<11 DGADM;’ II-’;foranyQ havingnormthatsatisfiesthis 
condition, the corresponding controllers in the set of all R-stabilizing 
controllers (4) R-stabilize any number of additively-perturbed plants, 
where the perturbations are unknown but have “sufficiently small 
gain” satisfying (18). 

The problem considered here does not restrict the known perturba- 
tion G A  or G F  to have small gain, and yet, Theorem 3.2 shows that 
it is possible to simultaneously R-stabilize the nominal plant together 
with a perturbed plant for a known perturbation G A  or G F .  It is still 
possible to consider additional small unknown uncertainties around 
the nominal plant and around either the additively-perturbed version 
(P + G A )  or the feedback-perturbed version P(I + GFP)-’  and 
obtain robustly R-stabilizing controllers which simultaneously R- 
stabilize the two systems. We explain this robustness property for 
the additive-perturbation case in detail: Consider the simultaneously 
R-stabilizing controller C, in (14) for P and (P + G A ) ,  obtained 
by setting Q, = 0 in set (8); let DA and Q, be as in (10) and 
(9). The controller C, R-stabilizes the entire class of additively- 
perturbed plants (P + G A  + A,) for all unknown R-stable additive 
uncertainties A, satisfying 

11 Aa 11 < 11 DDi,’(U + Q o D )  11-l . (19) 

If the unknown R-stable additive-uncertainty A, satisfies an alternate 
small-gain condition, namely 

II A0 II < II D(U + & O D )  11-l (20) 

then the controller C, simultaneously R-stabilizes P and (P+ G A )  
and also all additively-perturbed plants ( P  + A,). We modify the 
gain of A, further to obtain robust R-stability for all sufficiently 
small additive-uncertainties around both P and (P + G A ) :  For all 
A, E M ( R )  satisfying 

II D(U + QJ) v} (21) 

the controller C, in (8) simultaneously R-stabilizes P ,  (P + GA),  
( P  + G A  + A,), ( P  + A,). 

All three robustness claims above follow from Lemma 3.14): 
Replacing G A  with-(GA + A,) in (2), the matrix DA becomes 

DD,’)DA. Recall that DA = I+  (U + Q,D)GAD given in (10) 
is R-unimodular. By the small-gain theorem, if A, satisfies (19), 
then [I + A,DDi,l(U + Q,B)J is R-unimodular, equivalently, 
DA is R-unimodular and hence, CO is a R-stabilizing controller for 
(_P+GA+A,). For all A, satisfying (20), the matrix (I+A,D(U+ 
Q,D)) is R-unimodular and hence, with G A  = 0, the matrix DA is 
again R-unimodular. If A, satisfies (21), then DA is R-unimodular 
with or without G A  and hence, all additive-perturbations A, around 
P and around (P + G A )  are R-stabilized by using Co. 

For the feedback-perturbation case, for all unknown feedback- 
uncertainties A, E M ( R )  satisfying 

DA = I + (U + QaD) ( G A  + Aa)D = ( I  + (U + QoD)Aa 

( 1  A, 11 < min {I1 ND,’(V - QfN)  11-’, 

II N ( V  - QfN) II-’} (22) 

the controller C?f in (15), which simultaneously R-stabilizes P and 
P(I + GFP)-’  also R-stabilizes P ( I  + (GF + Af)P)-’ and 
P(I + AfP)-’. 

Example 3.5: Let the region of instability U be the extended 
closed right-half plane. Consider the diagonal plant 

- ( ~ - 3 )  18 P =  diag[- -1. 
s(s + 1) ’ s - 12 

Then ( 5 )  is satisfied with 

- ( ~ - 3 )  18 
N = N = diag[ (s + 1)(s + 3)’ -1’ 

s s - 1 2  
s + 3 ’ s + 6  

D = D = diag[- -1, 
U = U = I ,  
V = V = diag[-, s + 5  11. 

s + l  

Let the additive perturbation G A  be 

G A  = (g;j) E Rzx2  ,922(0) = 0,  I giz(0) I 2 0.5. (23) 

Since 

since I g12(0) 12 0.5, the norm 11 (U + QD)GA D 11 2 1 for all 
R-stable Q. and hence, (17) can never be satisfied. As commented 
in Remark 3.3-iii), choosing Q which makes the gain of ((U + 
Q b ) G A D )  smaller than one is not always possible. Now to illustrate 
the method in the proof of Theorem 3.2 for finding simultaneously 
R-stabilizing controllers, suppose that the perturbation G A  in (23) is 

G n = [ 1  - O -1. 0 
s+l 

Then 11 UGAD II= 1.5. Taking k >I1 UGAD 11 as k = 2, Q, in 
(9) becomes Q, = ~ G A .  By (14), an R-stabilizing controller CO 
for P and ( P  + G A )  is CO = (V - ~ G A N ) - ’ ( I  + :GAD).  

IV. CONCLUSION 
We showed that for any proper P and stable G A  (or G F ) ,  

there exist proper controllers which simultaneously R-stabilize P 
and (P + G A )  (or P and P(I + GFP)-’ ) .  We gave a class 
of simultaneously R-stabilizing controllers for the additive and 
feedback-perturbation cases. We showed that it is possible to design 
the simultaneously R-stabilizing controller to ensure robust stability 
for additional small unknown uncertainties around the nominal plant 
and the known perturbation. 
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Resource Optimization and (min, +) Spectral Theory 

Stephane Gaubert 

Abstract-We show that certain resource optimization problems relative 
to timed event-graphs reduce to linear programs. The auxiliary variables 
which allow this reduction cm be interpreted in terms of eigenvectors in 
the (min,+) algebra. 

I. INTRODUCTION 
Timed event-graphs (TEG’s) are a subclass of timed Petri nets 

which can be used to model deterministic discrete-event dynamic 
systems subject to saturation and synchronization phenomena, typ- 
ically, flexible manufacturing systems, multiprocessor systems, and 
transportation networks [1]-[3], [5], [16], [17]. The most remarkable 
result about TEG’s [l], [3], [4] is certainly the following: a TEG 
functioning at maximal speed reaches, after a finite time, a periodic 
regime. More precisely, let z denote the counter function of a given 
transition of the graph. That is, x( t )  represents the number of firings 
of the transition up to time t ,  usually the number of parts of a certain 
type produced up to time t, the number of messages sent up to time 
t . . .. Then, there exists a constant X (the periodic throughput) and 
c E N \ {0}, T E N such that 

t 2 T + z(t  + c )  = c x X + z ( t ) .  (1) 

The denomination of periodic throughput is justified, because we get 
from (1) 

x( t )  number of events X = lim - = mean 
t-m t time 

We shall consider the case where some markings are unknown: we 
assume that the initial markings (number of tokens) of some places 
are given by some indeterminates q1, . . . , q k  E N. Typically, the inde- 
terminate qi associated with place P i  represents an unknown quantity 
of resources (number of machines, pallets, processors, storage places, 
buffers) which corresponds to the (unknown) initial marking of 
this place Pi (see the example in Section IV). Then, the periodic 
throughput X = X(q) becomes a (nondecreasing) function of the 
resource indeterminates q1, . . . , q k .  Given a linear cost 

J ( q )  = Plql -k ’ ‘ * + P k q k  (2) 
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( p i  is the price of one unit of resource i )  and a minimal required pe- 
riodic throughput X, we consider the following resource optimization 
problem 

which consists of minimizing the cost of the resources needed to 
obtain (at least) the periodic throughput 1. A slightly different 
resource optimization problem was first considered by Cohen et al. in 
[4] where an iterative algorithm was given to find a minimal allocation 
of resources saturating the bottleneck process. The particular problem 
(RO) has been previously considered by Hillion and Proth [16], 
Laftiteral. [17],ProthandXie[19],andbytheauthorin[12].In[16], 
it was noticed that (720) is an integer linear programming problem 
with, unfortunately, as many constraints as elementary circuits in the 
graph. In [17] and [19], the authors obtained a nice reduction to an 
auxiliary linear program-with real and integer variables-involving 
essentially as many constraints as edges in the graph, so that the 
exact solution can be obtained for much larger systems. This result, 
however, was only given for a restricted class of cost functions and 
of TEG’s. The purpose of this note is to extend the results of [17] and 
[19] to general TEG’s and general cost functions: the linear program 
that we give is exactly the same as in [17] and [19], but without 
undesirable restrictions. As a by-product, using the duality between 
holding times and initial markings in TEG’s, we obtain an analogous 
reduction for an extended resource optimization problem (which 
involves the possibility of selecting a higher performance equipment 
instead of buying more machines with a given performance). The 
simple proof proposed here relies on an elementary key result of 
the (min, +) spectral theory: we show that the throughput constraint 
X(q) 2 X is equivalent to the existence of a finite “subeigenvector” 
of a particular matrix (subeigenvectors are analogous to potentials in 
scheduling theory [2] and to excessive functions in potential theory). 
Then, this potential inequality translates to a set of linear constraints. 
These results are taken from the thesis of the author, up to some 
subsidiary extensions. We also mention that the related problem of 
the symbolic computation of the periodic throughput X ( q )  has been 
dealt with in [123 and 1131. 

11. A SUBEIGENVECTOR LEMMA 

We first recall some (min, +) spectral theory. The traditional term 
“(min. +)-algebra” refers to the set R U {+a} equipped with min 
(denoted by e) and addition (denoted by 8). The zero element is 
written E sf + 03, and we set e = 0 for the unit. We denote by 
Rmin this algebraic structure. There is a natural order relation on 
Rmin given by 

def 

a 5 b - a @ b  = min(a.5) = b a 2 b.  

This is precisely the dual of the usual order (e.g., 2 3). The 
(min, +) notation extends to matrices in the obvious way. We shall 
write, for instance 

and consequently Ak = A @ . . . @ A (k times). The spectral radius 
p(C) [l], [6], [9], [14], of a n x n matrix C with entries in Rmin 
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