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Abstract PUP Compensator 
In this paper, we consider linear time-invariant multi-input 

multi-output (MIMO) systems that are stabilizable by proportional- 
integral (PI) compensators. Such systems are also stabilizable by a 
PI-type compensator to be denoted by PIP. The P I P  compensator 
consists of a PI compensator in the feedforward loop preceding the 
plant to be controlled, and a proportional gain in a feedback loop 
around the plant. Systems that are controlled by the P I P  compensa- 
tors achieve a better performance. We present an efficient and 
easy-to-implement algorithm for computing the optimal gains of the 
PI and P I P  compensators. 

1. Introduction 
The proportional-integral (PI) and the proportional-integral- 

derivative (PID) compensators are the most widely used compensa- 
tors in industry. These compensators are simple and perform fairly 
well for large classes of systems when they are tuned properly. 
Thus, the tuning of the PI and PID compensators has received con- 

and process control designers (see, 

Although the PI and PID compensators can be easily tuned and 
implemented, they may not achieve high performance. Therefore, it 
is desirable to slightly modify these compensators in order to 
improve their performance. One such modification of the PI com- 
pensator is the two-input PI-type compensator shown in Figure 1. In 
this figure, K,, + K,/s  is a PI compensator, K is a proportional 
gain, and H is the plant to be controlled. The ;I-type compensator 
in Figure 1 has been studied by several researchers for single-input 
single-output (SISO) systems (see, e.g., [&t.l], rKan.11, rSha.13). 
We adopt the notation in [Sha.l] to denote the compensator in Fig- 
ure 1 by PVP and the closed-loop system by s ( P I P ,  H )  . Since 
the P I P  compensator has three gains, intuitively, it can outperform 
the PI compensators. In [Sha.l], it is shown that properly tuned P I P  
compensators can achieve the following for linear SISO plants: (i) 
excellent tracking of step inputs with small or no overshoot; (ii) 
small control efforts to the plant H ; (iii) a reliable closed-loop sys- 
tem which remains stable in case of some loops failures. 

In this paper, we consider the problem of tuning MJMO P I P  
compensators in order to achieve a better performance. The paper is 
presented in short form. The entire paper can be found in [Sha.2]. 

2. The Closed-Loop System 
In this section, we first study the stabilizability of the closed- 

loop system s ( P I P ,  H )  which incorporates the P I P  compensator 
and a linear plant H . Then, we derive some of the transfer func- 
tions corresponding to the closed-loop system. 

Consider the system s ( P I P ,  H )  in Figure 1. In this system, 
let H be a linear time-invariant, strictly proper, and square MIMO 
plant with a minimal state-space realization 

x ( t ) = A  x ( t ) + B  u ( t ) ,  x ( O ) = O , ,  (2.la) 
Y ( t )  = c x ( t )  , (2.lb) 

for all I 2 0 .  In (2.1), the state vector x ( t )  E IRn , the input vector 
u ( t )  E IR" , and the output vector y ( t )  E IR" ; the coefficient 

matrices A E IR" x n  , B E IR" '" , and C E IR" "* ; the vector 
0, 

transfer function of the plant by H ( s )  . 
denotes the zero vector in IR" . We denote the m x m  

Y 

Figure 1. The feedback system S ( P I / P ,  H )  . 

In s ( P I P ,  H )  , the P I P  compensator consists of the propor- 
tional gain matrix Kp2 E IR"' '" in a feedback loop around the 
plant H , and the PI compensator K I + K,/s  in the feedforward 
loop. A state-space realization of the $1 compensator is 

S ( t ) = e ( t ) ,  5(0)=0,, (2.2a) 
r l ( t ) = K ,  S(t)+K,,l e o ) ,  (2.20) 

for all t 2 0 . In (2.2), the state vector E,(t) E R"' , the input vector 
e ( t )  E R" , and the output vector q(t)  E IR" ; the gain matrices 
K,, , K, E R m X m  . 

Having the plant H and the P I P  compensator, we obtain the 
state-space realization of the closed-loop system s (HIP, H )  as 

X ( t ) = A ,  X ( t ) + B ,  v ( t ) ,  (2.3a) 
e ( t ) = C ,  X ( t ) + D ,  v ( t ) ,  (2.3b) 
u ( t ) = C , X ( t ) + D ,  v ( t ) ,  (2 .3~)  

(2.3d) Y (f) = cy X ( t )  > 

for all t 2 0 ,  where 

X ( t )  := [ X T ( t )  E , T ( t )  IT  , (2.4) 

and A, , B,  , C, , De , C, , D, , and Cy are the coefficient 
matrices that depend on the gain matrices K,, , KP2 , and K, . 

We assume that: 
(Al) The plant H is stabilizable by a PI compensator. 
An easy-to-check necessary condition for the stabilizability of 

Assertion 2.1: The plant H is stabilizable by a PI compensa- 
the plant H by a PI compensator is: 

tor only if H ( 0 )  E Rm x m  is nonsingular. 0 

We next show that the stabilizability of the plant H by a P I P  

Assertion 2.2: The plant H is stabilizable by a PUP compen- 
compensator is equivalent to its stabilizability by a PI compensator. 

sator if and only if it is stabilizable by a PI compensator. 0 

Assertion 2.2 allows us to use a P I P  compensator instead of a 
PI compensator for plants which are stabilizable by PI compensa- 
tors. The reason we wish to use a PUP compensator is to achieve a 
better performance. 
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We will tune the PIP compensator so that e(.)  in (2.3b) is 
small and U ( - )  in (2.3~) is of a reasonable size. Thus, we should 
know the transfer functions from v to e and U , denoted by 
H e v ( s )  and H u , ( s ) ,  respectively. 

Assertion 2.3: Consider the system s ( P l / P ,  H )  . The error 
e and the input U to the plant H are related to the exogenous 

input v according to 

where 

H e V ( s ) =  [ I m + H ( s ) ( K p l +  K p 2 ) +  -Kjl-11Z,,,+H(s)K,,21 H ( s )  ,(2.6a) 

where I,,, denotes the m x m identity matrix. 0 

3. Optimal Tuning of the Gain Matrices 
In this section, we devise an algorithm for computing the gain 

matrices of the PI and PUP compensators. Our methodology is suit- 
able for implementation in computer-aided design environments. 

Our goal is to have the outputs of the system s ( P Z / P ,  H )  
track step inputs. Thus, we will consider a transfer function slightly 
different from He, ,@)  in (2.6a), in order to take step inputs into 
account. Let the vector of exogenous inputs to the system be 
v ( t )  = V l(t) E" ,- t 2 0, where l(t)  denotes the unit step 

function, and v = [ v 1  F2. . . F,,, IT E Rm is the vector of the 
amplitudes. Since v (s) = u/S , the error due to v is 

(3.1) e @ ) =  - V ,  

where H e v ( s )  is given in (2.6a). The transfer function we will be 
using to develop our algorithm for computing the gain matrices of 
the compensators is Hey (s)/s . We denote this transfer function by 
C,,(s) . Clearly, 

He,@) - 
S 

1 H ( s )  Ge, (s 1 = + H (s )(Kp 1 + Kp 2 )  + -& l-'tJm + H (S )Kp~l .  

(3.2) 

A state-space realization of C,,(s) is (see [Sha.2]) 

R(r)=K, 2 ( t ) + B ,  w ( t ) ,  (3.3a) 
e(t)=C", x"(t), (3.3b) 

for all I 2 0 , where 
R ( t ) : = [ X T ( r )  vT( t ) lT ,  (3.4a) 

(3.4b) w ( t  ) = F sct ) , 

in which X ( t )  is that given in (2.41, 6( t )  is the unit impulse func- 
tion, and 

- 4 Bc 
A, := [ o ]  , E,  :=[:I , (3.5a) 

c', :=[Ce De 1.  (3.5b) 

It can be easily checked that the system (3.3) has m unobserv- 
able modes corresponding to s = O  ISha.21. Hence, (3.3) is not a 
minimal state-space realization of G N ( s ) .  We obtain a minimal 
realization by using a program from MATLAB, which computes a 
minimal realigatitn of_uncontrollable andor unobservable systems. 
We input [A,,  B,, C,, 01 to the program to obtain a minimal 
realization denoted by 

R min = t A miw Bmin, Cmini D m i n  I . (3.6) 

In the following, we will use the N,-norm of transfer func- 
tions, say P ( s )  , given by IIP I 1  := sup o(P 0'0)) , where 
a ( M )  denotes the largest singular value of a matrix M . 

With this preliminary, we cast the problem of choosing the 
gain matrices K,, , KP2 , and Ki as an optimization problem. 

Problem 3.1: Consider the system (2.3a) - (2.3b), and the sys- 
tem (3.3) whose minimal realization is (3.6). Let a scalar-valued 
cost function J be defined as 

(3.7) 

OE. IR 

J = q  llGev ll,+r llHuv I(,, 

where the constants q > 0 and r > 0 are weighting factors, and 

Gev(s)=[  Amin - 1 I B m i n  -- 1 , HuV($ )= [ - -  A, ' I 3, -1 .(3.8) 

Cmin I Dmm c u  I 4 

Let k;l > 0 ,  ki2  > 0 ,  and k,* > 0 be given constant real numbers. 
Determine the gains matrices K , F p 2 ,  a_"d K, of she com- 

pensator PW,  subject to 7 ( K p 1 , f S k  0 ( K P 2 ) I k p 2  , and 
*(K,) I k; , such that J is minimized. 6' ' 

Problem 3.1 can be solved efficiently when MATLAB is used. 
An easy-to-implement algorithm is given in tSha.21. In tSha.21, for 
a two-input two-output plant the optimal gain matrices of the PI and 
PUP compensators are computed. Excellent performance is 
achieved when the P I P  compensators is used. 
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