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2)  

3) 

4) 

set-point control. Furthermore, the simplicity and transparency 
of the analysis makes it accessible to a broad audience. 
Since the GAS property holds for all (positive) choices of the 
filter constants a, and b,, we do not impose any restriction on 
the bandwidth of the filters. As pointed out in the previous 
section, however, the tracking performance will depend on its 
frequency response characteristic. 
Even though we have considered here a simpler model for the 
flexibility effects our result applies verbatim to the model used 
in [l]. 
For the sake of brevity, we have presented only the case where 
joint stiffness is exactly known. Stability robustness vis a vis 
joint stiffness and gravity forces uncertainty can be easily 
established and follows directly from the analysis of [l]. 

An alternative solution for replacing velocity measurement in 
regulation tasks of flexible joint robots has recently been proposed 
in [5]. As point of comparison between both results, it is interesting 
to note that the controller of [5] contains n second order relative 
degree zero filters with inputs the motor shaft position and the gravity 
compensating constant term and output the generated torques. In 
contrast with this, the controller proposed here consists only of n 
first order relative degree zero filters. On the other hand, the design 
procedure followed in [5] is based on energy shaping ideas which 
exploit the natural structure of the system in a more transparent way. 
In particular, the Lyapunov function used for the analysis in [5] is 
the systems total energy. Although for the present design we have a 
nice interpretation in terms of a feedback interconnection of passive 
subsystems (see Remark I), a clearer physical understanding of the 
Lyapunov function is as yet unavailable. Some simulation studies 
comparing these schemes are reported in [9]. 
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Stabilizing Controller Design for Linear 
Systems with Sensor or Actuator Failures 

A. Nazli Gundea 

Absstract-In this note, the stability of the standard linear, time- 
invariant, multi-input multi-output unity-feedback system is investigated 
in the presence of either sensor or actuator failures. Any diagonal stable 
perturbation is included in the failure descriptions. Stabilizing controllers 
are synthesized for two failure classes: the first class allows at most one 
failure at a time; the second class requires at least one connection without 
failure. A parameterization of all stabilizing controllers is achieved with 
prior knowledge of the failure. A controller design method requiring 
no knowledge of the failure is also presented; this method is restricted 
to plants for which certain closed-loop transfer functions can be made 
diagonal. 

I. INTRODUCTION 
A feedback system is said to have complete integrity if it remains 

stable in the presence of sensor or actuator failures. If all sensors 
(or actuators) are disconnected simultaneously, the standard unity- 
feedback system becomes an open-loop cascade connection and, 
therefore, the plant and the controller both have to be stable. With 
a stable plant and controller, necessary and sufficient conditions for 
complete integrity were derived in [2]. For stable plants, a controller 
design method ensuring complete integrity was developed in [l]. A 
number of reliable stabilization results are also available; stabilization 
using two controllers was studied in [7], [9], and a methodology for 
the design of reliable control systems was developed in 181. 

The standard linear, time-invariant (LTI), multi-input multi-output 
(MIMO) unity-feedback system with sensor or actuator failures 
was studied in [4]. Necessary and sufficient conditions were given 
for integrity with a prespecified maximum number of failures. It 
was shown that the integrity requirement imposes constraints on 
denominator matrices of coprime factorizations of the plant and the 
controller. 

A controller design method ensuring integrity is developed in this 
note. In the standard integrity problem, failure means that a sensor 
or an actuator is completely disconnected. A more general failure 
description is used here, allowing the corresponding connection to be 
multiplied by any arbitrary stable transfer function (including zero) 
in case of failure. Requiring complete integrity against simultaneous 
failure of all sensors or of all actuators restricts the plants and the 
controllers to be stable. Instead, two classes of sensor or actuator 
failures are considered the first allows only one failure at a time; 
in the second, any number of failures may occur but at least one 
connection must remain normal. A parameterization of all controllers 
ensuring integrity against either sensor or actuator failures is given 
in Theorem 3.5, which explicitly shows how the controller can be 
updated without solving for the class of all controllers for each new 
plant resulting from the failure. A controller design methodology, 
which does not require the failure to be known, is developed for plants 
that allow diagonalization of certain transfer functions of the nominal 
system (Proposition 3.6). The results apply to continuous-time and 
discrete-time systems. 
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11. PRELIMINARIES 

Notation 

Let U be a subset of the complex numbers (c, U is closed and 
symmetric about the real axis, and &cc E U, C\U is nonempty. 
Let Ru, R,(s), and R,,(s) be the ring of proper rational functions 
with no poles in U, the ring of proper rational functions, and the 
set of strictly proper rational functions of s (with real coefficients). 
The group of units of Ru is 3 and the set of nonstrictly proper 
elements of Ru is Z = Ru\R,,(s). The set of matrices with entries 
in Ru is M ( R u ) ,  hf is called Ru-stable iff M E M ( R u ) ,  and 
izf E M(Rl,) is Ru-unimodular iff det M E 3. If p ,  q E Ru, then 
p N q iff p = aq for some a E 3. 

(A, B, C, D) denotes a state-space representation of P .  P has 
no uncontrollable U-modes or equivalently, P is Ru-stabilizable, 
if rank(s1, - AB] = n for all s E U. Similarly, P has no 
unobservable U modes or equivalently, P is Ru-detectable, if 
rank[(sIn - A)TCT]T  = n for all s E U. If P has no hidden 
modes associated with eigenvalues in U, i.e. if P is Ru-stabilizable 
and Ru-detectable, then P has no hidden U modes. 

(Xp, Dp) denotes a right-coprime factorization (RCF) and 
( D p ,  ivp) denotes a left-coprime factorization (LCF) of P E 
W ~ ( S ) " ~ ~ ~ ' ,  where Np ,  N p  5 Ryxn', Dp E _RC;xne, 
D p  E R r x n o ,  P = iVpDP1 = D,'Np,-detDp N de tDp  E 2. 
Similarly, ( N c ,  Dc)  denotes a RCF and (Dc, Nc) denotes a LCF 
of c E Wp(S)n*Xno. 

System Descriptions 

Consider the LTI, MIMO feedback systems S(P,  C) (the nominal 
system), S ( F s ,  P, C), S(P,  FA,  C) (Figs. 1-3); P :  e p  H yp, 
C:  e c  H yc ,  Fs : yp H ys, and FA : y c  H Y A  represent the 
plant's and the controller's transfer functions, the sensor, and the 
actuator connections. The (no x no) sensor-failure matrix Fs and 
the (n,  x n,) actuator-failure matrix FA are diagonal, Ru-stable, 
with entries nominally equal to one; the failure of the j t h  sensor 
or actuator is represented by a stable rational function (including 
zero, but different than one) in the j t h  diagonal entry of FS or FA. 
Nominally, Fs = Ino and FA = In, . Let F S k  : = {diag [ f ~  . . . fnO] 1 
for j = l , . . . , n o ,  f J  E Ru and at least (no - k) of the f J  = 1) 
denote the class of sensor failures; the subscript k is the maximum 
possible number of sensor failures, k E { 1,. . . , no}. The class FSI 
is the set of all diagonal Ru-stable matrices where at most one of the 
diagonal entries may be different than one, representing the failure 
of at most one of the no sensors. The class F S ( , , ~ - ~ )  represents 
failure of at most (no  - 1) of the no sensors and Fsno includes 
the possibility of all sensors failing simultaneously. A special case 
of failure is when a sensor gets completely disconnected, represented 
by a zero in the corresponding diagonal entry of Fs. This sub-class 
i s F g k : =  (diag[fl . . . f , , ]  1 f o r j  = l , . . . , n o ,  f, = l o r f ,  = 
0, Cy:, f, 2 ( n o  - k)}. Similarly,  FA^:= {diag[fl . . . f , , ]  I 
f o r j  = l , . . . , n % ,  f J  E R u a n d a t l e a s t ( n , - m ) o f t h e f J  =1} 
denotes the class of actuator failures; the subscript m is the maximum 
possible number of actuator failure, m E { 1,. . . , n z } .  The actuator- 
failure classes F A I ,   FA(^^-^), FA"* are also defined similarly, and 

: = {diag [fl ... f n z ]  I for j = 
1;. . ,nz9 f, = 1 or f J  = 0, Cy:, f J  2 (n,  - m)}. 

In S(P,  C ) ,  S ( F s ,  P, C), and S(P. FA,  C), let U : =  [u&:lT, 
y:= [ y p y ~ ]  , and let H :  U H y, Hs:  U H y, and HA: U H y 
be the closed-loop transfer functions. It is assumed that P E 
R, (5 )no  nz , C E Rp(~)naxno, S ( P .  C), S ( F s ,  P, C) ,  and 
S ( P ,  FA, c) are well posed; equivalently, H E M(R,(s)), 
Hs E M(R,(s)), H A  E M(R,(s)), and P and C have no hidden 
U modes. 

C F4m is defined as 

T T T  

Fig. 1. The system S(P,  C) .  

UP 

Fig. 2. The system S(Fs ,  P, C ) .  

Fig. 3. The system S(P ,  FA, C ) .  

Definitions 2. I (Ru-stability, integrity, failure hidden-U modes): 

a) 

i) 

ii) 

iii) 

iv) 

b) 

i) 

ii) 

iii) 

iv) 

The system S ( F s ,  P,  C) is said to be Ru-stable iff 
Hs E M ( R u ) .  
For k = l , . . . , n , ,  S ( F s ,  P, C) is said to have k- 
sensor integrity iff it is Ru-stable for all FS E F S k .  

The plant P is said to have no k-sensor failure hidden 
U modes iff for all FS E FSk, FsP is Ru-detectable, 
i .e. ,forallFs E FSk,rank[(~In-A)~(FsC)~]~ = n 
for all s E U. 
The controller C is said to have no k-sensor failure 
hidden U modes iff for all FS E F S k .  CFS is Ru- 
stabilizable. 

S(P,  FA, C) is said to be Ru-stable iff HA E 
M ( R u ) .  
For m = l , . . . , n z ,  S(P,  FA,  C) is said to have m-  
actuator integrity iff it is Ru-stable for all FA E FA- .  
P is said to have no m-actuator failure hidden U modes 
iff for all FA E FA,,,, PFA is Ru-stabilizable, i.e., for 
all FA E  FA^, rank[sIn - ABFA] = n for all s E U. 
C is said to have no m-actuator failure hidden U modes 
iff for all FA E  FA^, FAC is Ru-detectable. 

Lemma 2.2 (Conditions for  Integrity) 141: 
a) S(Fs,  P, C) has k-sensor integrity (S(P,  FA, C) has m- 

actuator integrity) if and only if Ds 
unimodular for all. F ,  E F S k  ( D A  = 
unimodular for all FA E  FA^). 

b) If S(Fs ,  P, C) has k-sensor integrity (S(P,  FA, C) has m -  
actuator integrity), then P and C have no k-sensor-failure hidden U 
modes (m-actuator failure hidden U modes, respectively). 

= 

111. CONTROLLER SYNTHESIS 
In S ( P ,  C), C i s  an Xu-stabilizing controller iff C E R,(S)~'~"~ 

and S(P, C) is Ru-stable. The set S ( P ) : =  {C I C E 
Rp(~)nzXno and S(P, C) is Ru - stable} is the set of all Ru- 
stabilizing controllers. 
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Dejinitions 3.1 (Controllers with Integrity): 
a) In S(Fs ,  P, C), C is called a controller with k-sensor integrity 

iff C E Rp(~)naxno and S(Fs ,  P, C )  has k-sensor integrity. 

integrity} is called the set of all controllers with k-sensor integrity. 
b) In S(P,  FA, C ) ,  C is called a controller 

with m-actuator integrity iff C E Rp(~)nrxno and 
S( P, FA, C )  has m-actuator-integrity. Sam ( P ) :  = 
{ C  I C E Rp(~)n2xno and S(P, FA, C) has 
m - actuator integrity} is called the set of all controllers 

s S k ( P ) : =  {c 1 c E Wp(~)n*Xno and S(Fs ,  p, c) has k-sensor 

with m-actuator integrity. - 0 
Let ( N p ,  Dp)  and (Dp ,  (p) be any RCF and LCF of P;  

then there exist U,, Up, e, Vp E M ( R u ) ,  such-that VPDP + 
U p N p  = I,,, DPVp+NpUp = I,,, VPUP = UPVP. InS(P,  C) ,  
C E Rp(~)nzxno is an Ru-stabilizjng controller if and only if some 
RCF (A-c, Dc)  and some LCF (Dc ,  N c )  of C satisfy ([lo], [3]) 

[ f i ~  @cl["' - N C ]  = [". 0 1  (3.1) -NP DP N P  DC 0 I n o  ' 

The set S ( P )  of all Ru-stabilizing contro_llers in S(P,-C) is: S ( P )  = 

Q E R z x n o ,  det(Vp - Q e p )  - det(Vp - NpQ) E I}. For any 
Q E M ( R u ) ,  det (Vp - Q N p )  - det (Vp - NpQ). Ef P is strictly 
proper, then det (Vp - QNp)  E Z (equivalently, det (VP - NPQ) E 
Z) for all Q E M ( R u ) .  When P E R r X n z ,  the set S ( P )  becomes 
S ( P )  = {C = ( I n ,  - QP)-'Q = Q(Ino - E'&)-' I Q E 
R r x n o ,  det(In,  - Q P )  = det(Ino - PQ) E 2). 

Proposition 3.2 (Parameterization of Controllers with Integrity): 
a) In S ( F s ,  P, C ) ,  the set Ssk(P)  of all controllers with k-sensor 
integrity is 

{c = ( v ~ - Q N ~ ) - ~ ( u ~ + Q D ~ )  = ( ~ p + ~ p ~ ) ( ~ p - ~ p ~ ) - l  I 

Ssk(P)={C = (Vp - Qfip)- '(Up + QDp) 
= (UP + DpQ)(Vp - NpQ)-' I Q E RL;'xno, 

det (Vp - QNp)  - det (Vp - NpQ) E 2, 
and for all FS E Fsk, 
FS + (VP - NpQ)dp(Ino - Fs) 

= I n o - N p ( U p + Q D ~ ) ( I n o - F ~ )  is Ru - unimodula$. 

(3.2) 

b) In S(P,  FA, C), the set S A ~ ( P )  of all control_lers with m -  
actuator integrity is: sA7?(P) = { C  = (Vp - Q N ~ ) - ~ ( u ~  + 
Qf ip )  - det(% - NpQ) E Z and for all FA E .?'A?, FA + 
FA)  is Ru - unimodular}. 

c) Let P E M ( R u ) ;  then s s k ( p )  = {c = Q(1no - PQ)-' I 
Q E R z X n o ,  det(I,,, - P&) E 2, and for all FS E FSk, FS + 
( I n o - P Q ) ( I n 0 - F ~ )  = Ino-PQ(In0-Fs)  is Ru-unimodular} 
and SA,(P) = {C = ( Inz  - QP)-'Q 1 Q E Ru , det(Inz - 
Q P )  E 2, and for all FA E  FA^, FA + ( Inz  - QP)(In,  - FA)  = 
In, - QP(I,, - FA) is Ru - unimodular}. 

Pro08 We prove a); b) and c) are similar. For each k = 
l,.-.,no, S S ~ ( P )  C S ( P )  because Fs = I n o  E FSk. Using (3.1), 
performing elementary row operations (in Ru) on $e matrix Ds in 
Lemma 2.2, C E S_SL(P) if and only if FS + DcDp(I,, - Fs) = 
Fs + (Ino - NpNc)( Ir0  - F s )  = - Npfic(1n-o - F s )  is 
Ru-unimodular, where NC = Up + Q D p  and DC = Vp - NpQ. 

0 
The conditions imposed on denominator matrices of coprime 

factorizations of P due to the requirement of having no failure hidden 
U modes are stated in Lemma 3.3 for the classes F.1, F S ( , , ~ - ~ ) ,  
F A I ,  and  FA(,^-^); similar conditions are necessary for C [4]. 

nzxno QDP) = (OP + DPQ)(VP - NPQ)-' I Q E Ru , det(Vp - 

Dp(Vp - QNp)(lni - FA) In, - (UP + DpQ)Np(Inz - 

n i x n o  

. 

Lemma 3.3 (Tests for Failure Hidden U Modes) [4]: 
a) Consider S(Fs ,  P, C). Let ( D P ,  N P )  be any LCF of P. 

i) 

ii) 

P has no_ k-sensor failure hidden U modes if and only 
if ( Fs, D P )  is a right coprime pair for all FS E FSk . 
Let FS E F s ~ ;  P has no one-sensor failure hidden U 
modes if and only if there exists an Ru-unimodular 
L1 E RFxno  such that 

d l ' : + J ] ,  dl+,, l + J )  is right-coprime, 

aJ, I f 3  

j = 1,. ..,no - 1. (3.3) 

iii) Let FS E F S ( , , ~ - ~ ) ;  P has no (no - 1)-sensor failure 
hidden U modes if and only if there exists an Ru- 
unimodular L(no-l) E R r x n o  such that 

( d j ,  no,  d n o ,  no) is coprime, j = 1,. . . , no - 1. (3.4) 

b) Consider S(P ,  FA, C). Let (Np, D p )  be any RCF of P. 

i) 

ii) 

P has no m-actuator failure hidden U modes if and only 
if (Dp ,  FA) is a left coprime pair for all FA E  FA^. 
Let FA E FAI;  P has no one-actuator failure hidden 
U modes if and only if there exists an Ru-unimodular 
R1 E RFx"* such that 

0 

DpRi  = 

d n z , 1  d n t . 2  ... dnz ,nz  

( d J + l ,  j+l, [ d l + j ,  1 . . . d l + j ,  31)  is left-coprime, 

j = 1,. . . ,711 - 1. (3.5) 

iii) Let FA E  FA(,^-^); P has no (n ,  - 1)-actuator failure 
hidden U modes if and only if there exists an Ru- 
unimodular R(,,-l) E RzX"' such that 

( d n t , n z ,  d n l , j )  is coprime, j = 1 7 3  ... n, - 1. (3.6) 
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Remarks: 
i) 

a) Let FS E Fsl ; let P have no one-sensor failure hidden 
U modes; let L1 E RY""" be Ru-unimodular as in 
(3.3). Then the coprimeness condition in (3.3) holds if 
and only if, for j = 2, . . .  ,no, 2 = 1, .  .. ,j, there exist 
y,, I E Ru such that xi=, c,, idi, , = 1; equivalently, 
for any G 3 , 1  E Ru, = 2 , . " , n , ,  I = l,...,j - 1, 

[ Y J , ~  . . '  Y J , J I + [ i 3 , 1  ". i J , J - - l l  

Let 

Ys1: = 

1 0  0 1  
Y 2 , l  Y 2 , 2  

I 1 L1 (3.7) 

(see (3.8) at the bottom of the page) where, for j = 
2;..,n0, 1 = l , . . . ,  j - 1,  E Ru. For all 
Qsl E M ( R u )  as in (3.8) -and for all FS E Fsl, 
I n 0  - (Ino - (Y.1 + Qsl)Dp)(In, - Fs) is Ru- 
unimodular. Also, for all Fs E F S I ,  

M s i : =  In, - (Ino - Yslf ip) ( Ino  - F s )  
is Ru - unimodular. (3.9) 

Let Fs E F s ( n o - l ) ;  let P have no (no - 1)-sensor 
failure hidden24 modes; let L(no- l )  E RYxno be Ru- 
unimodular as in (3.4). Then the coprimeness condition 
in (3.4) holds if and only if, for j = _1,. . . , no - 1,  there 
existi , , , ,  i, E Ru suchthatiJ,3dn,,no+53d,,no = 
1; equivalentLy, for-any &+I E Ru, j- = 1, .;. ,no, 

1. Let (see (3.10) at the bottom of the next page) 

b) 

(*,,I -4,+ldl, no)dno, no + (51 +i j+ ldno ,  no)dj,n, = 

Q . q n 0 - 1 ) :  = diag [41 42d2, Gno- 1 dno- I ,  no  i n o  ] . . . 
0 0 ... 

&,,no 0 ... 

dno, n o  -dno-1, no 

(3.1 1) 

where,forj = l , . . . , n o , q J  E Ru.Fora l lQs(no- l )  E 
M ( R u )  as in (3.11) and for all FS E Fs(no-l), 
In, - (In, - (Ys(,,-i) + Q s ( ~ ~ - - ~ ) ) D P ) ( I ~ ~  - F s )  is 
Ru-unimodular. Also, for all Fs E Fs(no-l) 

M S ( n o - 1 ) : ~    no - (In0 - Y S ( n o - l ) b P ) ( I n o  - F S )  
is Ru - unimodular. (3.12) 

1227 

ii) 

a) Let FA E  FA^, i.e,. let m = 1; let P have no one- 
actuator failure hidden U modes; let RI E RClfXn' 
be Ru-unimodular as in (3.5). Then the coprimeness 
condition in (3.5) holds if and only if, for j = 2 , .  . . , n,, 
2 = I , . . .  ,j, there exist y ~ ,  E Ru such that xi=, d3, ly1, , = 1; equivalently, for any qi, E Ru 

+ 

Let 

) = l .  

l o  . Ynz, nz 

(see also (3.14) at the bottom of the next page) where, 
for j = 2,  E Ru. For all 
Q A ~  E M ( R u )  as in (3.14) and for all FA E F A I ,  
Inz - (Inz - DP(yA1 + Q A I ) ) ( I ~ %  - FA) is Ru- 
unimodular. Also, for all FA E FAI 

, nI ,  1 = 1,. . .  , j - 1, q f ,  

 MA^: = In, - (Inz -Fa)(In,  - DpYA1) is Ru - unimodular. 
(3.15) 

Let FA E  FA(^^-^), i.e., let m = ( n ,  - 1 ) .  Let P 
have no (n,  - 1)-actuator failure hidden U modes. Let 
q n * - 1 )  E RI;"""' be Ru-unimodular as in (3.6). Then 
the coprimeness condition in (3.6) holds if and only if, 
for j = 1, . . . , n, - 1, there exist z3 , , z, E Ru such 
that d n r , n z z J , 3  + d n t ,  Jz,  = 1; equivalently, for any 
qJ+1 E Ru,j  = 1,.-' ,nz7 dni,ni(z3,,-qJ+ldn,,3,)+ 
d,, 3(z, + q j+ ldnz ,n l )  = 1. Let (see (3.16) at the 
bottom of the next page) 

b) 

dnc,nz 

(3.17) 

1 -dnt,1 ... -dnz,nz-l 
. diag [q1 d n t ,  242 . . . dnt,nz-lqnz-1 qnz ]  

where, for j = 1 , .  . . ,nz ,  q3 E Ru. The diagonal 
entries of DPYA(n2-1) are all equal to one, the entries 

... O 1 10 0 ... 

0 dnz,nt 

QA(nz-1): = R(nt-1) . 

Qsi:= L1 (3.8) 
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immediately above the diagonal ones and the (n,, 1) 
entry may not be zero and all other entries are zero. 
For all Q A ( ~ ~ - ~ )  E M ( R u )  as in (3.17) and for FA E 
all FA E F 'A(~~- I ) ,  Inz - (Inz - Dp(Ya(,,-l) + 
Q A ( ~ ~ - ~ ) ) ) ( I ~ ~  - F A )  is Ru-unimodular. Also, for all 

b) In S(P,  F A ,  C): If FA E F A ~ ,  let P have no one-actuator 
failure hidden U modes; let Y A ~ ,   MA^ be as in (3.13), (3.15). If 

let P have no (n ,  - 1)-actuator failure hidden U 
modes; let YA,, MA, be as in (3.16), (3.18). Then for m = 1 or 
(n ,  - I ) ,  the set of all controllers with m-actuator-integrity is 

S A ~ ( P )  = {NcD,' = Dzll?c I N c  = (Inz - DpkAm) F A  E F A ( n z - 1 )  

MA(nz-l):= In, - ( I n *  - p A ) ( I n *  - DPlk(nz-1)) . M ~ A G P  + ( I n l  - (Inz - D P Y A ~ ) ( L *  - FA))- 'DPQA, 
is Ru-unimodular. (3.18) 

Dc* = $'p + i ? i p Y ~ ~  M i ;  ETp Theorem 3.5 (All Controllers with Integrity): 
a) In S( F s ,  P, C): If Fs E FSI , let P have no one-sensor - ivTI'(Inc - YAmMiA(Inz - FA)DP)QA, 

failure hidden U modes; let YSk, iwsk be as in (3.7), (3.9).If 
Fs E . F S ( ~ ~ - ~ ) ,  let P have no (no - 1)-sensor failure hidden U 
modes; let Y S k ,  M s ~  be as in (3.10), (3.12). Then for k = 1 or 
(no - l ) ,  the set of all controllers with k-sensor integrity is 

Dr = Y A ~  4- ( I n z  - YAmDp)VpF.4 - QA~GPFA, 

AGc = ( I n *  - YA%DP)UP + Q A D P ,  

Q A  E Rzxno,  d e t D c  - d e t D r  E 2). 
S S k ( P )  = {DG'LGC = NCDG1 I Dc. = T l P  + Z ' P ~ ~ ~ i Y ~ k f i P  

- Q s ( I n o  - DP(Ino - FS)M,-,'YSk)Np, (3.20) 

Q s  E RFxno,  d e t D c  - d e t D c  E I}. (3.19) 

If the-plant is strictly proper, then in (3.19), for any Q S  E RFXno ,  
det DC = del(Vp + UpM;;YSkNp - Qs(lno - f i r  (I,,~ - 
F s ) M ~ ~ Y s ~ ) N P )  --et Dc = det(Ysk+FsTip(I,,-DpYsk)+ 
FsNPQs)  E 1. 

If the plant is strictly proper, then in (3.20), for any QA E RF,"'"", 
det Dc = det (Vp +:VPYA~ M i ;  U p  - N p  (In, - 1'4, M;; (1, - 
F A ) ~ P ) )  - det DC = det(Y.4, + (Inl - Y A ~ D P ) V P F A  - 
QANPFA) E 2. 0 

Proofi We prove a); b) is similar [6]. C is a controller with k- 
sensor integrity if and only if, for some LCF (&, N c ) ,  (Ino - 
NPfic(In2 - ~s)) (equivalently, - @C(I,, - ~s).?ip) = 
f i ) ~ D p + N ~ f ? s N p )  is Ru-unimodular for dl Fs E FSk. For k = 1 
or k = (no - l), for the right-coprime pair ( F s N p ,  D P )  see (3.2t) at 
the bottompf the nextpage. Using (3.21), all solutions of (&, N c )  
satisfying DC DP + NC FS N P  = In, , for all FS E F S k ,  is given by 
(3.19). Since C E M(W,(s))  is-and only if det& E 2, Q5 is any 
Ru-stable matrix such that det DC E 2. An RCF ( N c ,  Dc)  is also 
obtained from (3.21). 0 

L(n"- 1) 1 (3.10) 

(3.16) 
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: -  

Fig. 4. S ( F s ,  P, C ) ,  where C has k-sensor integrity for k = 1 or 
6 = no - 1.  

i .____.__________________________________~~~~~~~., 

Fig. 5 .  
m = n, - 1. 

S(P,  FA,  C ) ,  where C has m-actuator integrity for m = 1 or 

If p E M ( R u ) ,  then DP,  DP,  Ysk, Msk, Y A m ,  MAm can 
be taken as identity matrices. Then (3.19) and (3.20) become 
s S k ( p )  = {c = (Inz - &sFsP)-'Qs I QS E a;""", det (Inz - 
QsFsP) E x}, SAm(P) = {c = (Int - &APFA)-' Q A  I 
QA E Rrxno,  det(I,, - QAPFA)  E 2). These can be obtained 
by replacing P with FsP and with PFA in the parameterization of 
all Ru-stabilizing controllers. 

A block diagram of (3.19) is shown in Fig. 4 for the Ru-stable 
system S(Fs ,  P, C), where C = DG'Nc is any controller with 
k-sensor-integrity. Only one of the internal blocks of the controller 
depends on FS and all others are the same as those for the nominal 
system. QS represents the free parameter. Similarly, Fig. 5 shows 
the block-diagram of the Ru-stable system S(P,  FA,  C), where 
C = NcDC' is any controller with m-actuator integrity. The 
actual inputs and outputs of the failure-matrix FA are used in the 
controller. 

Controller Design Method Based on Decoupling 
Since these conditions are necessary for k-sensor integrity and m- 

actuator integrity, assume that the plant P has no k-sensor failure 
hidden U modes (for k = 1 or k = (no - 1)) for S(Fs, P, C) and 
that it has no m-actuator failure hidden U modes (for m = 1 or 
m = (n,  - 1)) for S(P ,  FA, C). The controllers in Proposition 
3.6.a) for S(Fs, P, C) are based on Ru-stabilizing controllers 
which diagonalize the map Hpc:  U S  ++ y p  of the nominal system 
S(P ,  C), where Hpc = PC(I,, + PC)-l .  It is not required here 
that Hpc  is nonsingular with this controller. A sufficient condition 
for the existence of Ru-stabilizing controllers such that H,, is 
diagonal and nonsingualr is that P is full row rank and does 
not have any U-poles coinciding with zeros [5] .  Similarly, the 
controllers in Proposition 3.6.b) for S( P, FA, C )  are similarly based 

on Ru-stabilizing controllers diagonalizing the map Hcp:  u p  -+ y r .  
of the nominal system S( P, C). 

Proposition 3.6 (A Set of Controllers with Integrity): 
a) In S(Fs, P, C ) ,  let CSD E S ( P )  be any Ru-stabilizing 

controller for P such that the transfer-functi_on Hpc of the nominal 
system S(P,  C )  is diagonal. Let (DsD, N S D )  be an LCF and 
(NsD, DSD)  be an RCF of Csv satisfying (3.1). If FS E F S I ,  let 
P have no one-sensor-failure hidden&-modes; let Y S k  be defined 
by (3.7). If Fs E F.qno-1). let P have no (no - 1)-sensor failure 
hidden U modes; let Y S k  be defined by (3.10). Then, for k = 1 or 
k = (no - l ) ,  a controller with k-sensor integrity is 

C=DG'LGC = (BSD NS'D(YSk Qsk)Np)-' 
. ( N S D  - NSD(YSk + Qsk) f ip )  

. ( D S D  + Rp*sz,(Ysk -k Qsk))-l 
= NcDC' = ( N s v  - DPfisD(Ysk 4- Qsk) )  

= cSD(Ino + ( Y S k  + QSk)fiPCSD)-'(Ino - ( Y S k  + Q S k ) f i P )  

(3.22) 

for any Qsk E RrXno satisfying the following: If k = 1, 
Qsk = Qsl is as in (3.8); if k = (no - l ) ,  Qsk = Qs(,,-l) is as 
i? (3.1 1); in additio?, C should be proper, equivalently, det ( f i ~ ~ ,  + 
NsD(Ysk + Qsk)NP) N det(Dsz, + NpNsD(Ysk + Qsk) )  E 2, 
which holds for all Q s k  E M(Ru)  if P is strictly proper. 

b) In S(P ,  FA, C ) ,  let CAD E S ( P )  be any Ru-stabilizing 
controller for P such that the transfecfunction H,, of the nominal 
system S(P,  C) is diagonal. Let (DAD,  N A D )  be an LCF and 
(NAD,  DAD) be an RCF of CAD satisfying (3.1). If FA E F A I ,  let 
P have no one-actuator failure hidden U modes; let Y A ~  be defined 
by (3.13). If FA E  FA(^^-^), let P have no (n,  - 1)-actuator failure 
hidden U modes; let YA, be defined by (3.16). Then, for m = 1 or 
m = (n,  - lj, a controller with m-actuator integrity is 

- 1 -  C = D, NC = ( f i A D  + (YAm + Q A ~ ) N A D N P ) - ~  
. ( N A D  - (YAm + QAm)NADfiP) 

= NcDC' = (NAD - DP(Y.m + QAm)NAD) 
. ( D A D  + NP(YA,  + QA,)NAD)-' 

. (Int + C A D N P ( Y A ~  QAm))-lCAD (3.23) 

for any QA,  E RFXnz satisfying the following: If m = 1, 
&Am = Q A ~  is as in (3.14); i f m  = (n, - I ) ,  Q A m  = Q A ( , ~ - ~ )  is as 
in (3.17); in addition, C should be proper, equivalently, det ( B A D  + 
( Y A ~ + Q A ~ ) N A D N P )  det(DAD+NP(YAm+QAm)NA=) E 2, 
which holds for all Q A ~  E M ( R u )  if P is strictly proper. 

Prooj? We prove a);-b) is-similar [6]. In (3.2), choose (Vp, U p )  
as ( f i s ~ , - f i s ~ )  and (UP, VP) as (Nsv, DsD). Choose Q as 
Q = -NsD(ysk + Q s k ) .  where QSk is Qsl (for one-sensor 
integrity) or it is QS(,,-1) (for (no - 1)-sensor integrity), defined 
by (3.8) and (3.11). Since H,, = NPNSD is diagonal, for k = 1 
or k = (no - I ) ,  I,, - NPJUP + Qfip) ( In0  - F s )  = I,, - 
NPfisD(Ino - ( y s k  4- Qsk)Dp)(Ino - F s )  is Ru-unimodular for 
all FS E FSk. Therefore the controller given by (3.22) is in sSk(P).  

= (Inz - D P ( Y A ~  + & A m ) )  
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Fig. 6. S(Fs. P, C), where NPNSZ,  is diagonal and C has E-sensor 
integrity for k = 1 or k = no - 1.  

“r 
UP 

I I 

Fig. 7. 
integrity for m = 1 or m = R ,  - 1. 

S(P,  FA, C), where ”VA.DN~ is diagonal and C has m-sensor 

Corollary 3.7 ( A  Set of Controllers with Integrity f o r  Ru-Stable  
Plants) 

a) Let P E M ( R u )  in S ( F s ,  P, C). Let C = ( Int  - 
Nsz,P)-l&s.o E S ( P )  be any Ru-stabilizing controller such that 
the transfer function Hpc of S( P, 6) is diagonal. Then, for k = 1 or 
k = (no - l),  C = NspQsk(Ino - P N s D Q s ~ ) - ~  is a controller 
with k-sensor integrity for any Q s ~  E REXno satisfying the 
following: If k = 1, the diagonal entries of Qsk = QSI E M ( R u )  
are all zero; if IC = (no - l), the sub-diagonal entries and (1, no) 
entry of Q s ~  = Q S ( ~ , , - ~ )  E M ( R u )  are arbitrary and all others 
are zero; in addition, det (fno - P f i ~ ~ Q s k )  E 2, which holds for 
all Q s ~  E M ( R u )  if P is strictly proper. 

b) Let P E M ( R u )  in S(P. FA,  C). Let C = (Int - 
NADP)-’NAD E S ( P )  be an Ru-stabilizing controller such that 
the transfer-function H,.. of S( P, C) is diagonal. Then, for m = 1 or 
m = (n ,  - I), C = ( I ” ~  - Q i z m ~ A - D ~ ) - l Q A , ~ A v  is a controller 
with m-actuator integrity for any QA~,, E Rzxnz  satisfying the 
following: If m = 1, the diagonal entries of Q A ~  = & A I  E M ( R u )  
are all zero; if m = (n ,  - l), the super-diagonal entries and (nz ,  1) 
entry of Q A ~  = QA(”.-~)  E M ( R u )  are arbitrary all others are 
zero; in addition, det(I,,  - QA,IVA.DP) E 1, which holds for all 

0 
The controllers in (3.22H3.23) are shown in Figs. 6 7 ;  these 

controllers are independent of Fs and FA. In Fig. 6, CSZ, is an 
RU-stabilizing controller for P such that Hpc  = N ~ N s z ,  of the 
nominal system S(P ,  C) is diagonal but H,,  of S(Fs, P, C) 
is not diagonal: From (3.22), Hpc = PC(I,, + FsPC)  = 

(YSL + Q ~ k ) D p ) ) - l .  Even when none of the sensors fail 

diagonal entries are all zero. Similar comments apply to Fig. 7. 

Q A ~  E M ( R , )  if P is strictly proper. 

Npfisv(Ino -{YS~ + Q ~ k ) D ~ ) ( - l n o  - (In0 - Fs)NPNsv(I~O- 

( F s  = In,), H p ,  = i?ipNsz,(Ino - ( Y S k  + Qsk)Dp) ,  whose 

IV. CONCLUSIONS 
An algebraic design method was developed to ensure stability 

in the presence of either sensor or actuator failures. Two failure 

classes were considered. All controllers which guarantee stability 
were characterized and a design method was developed based on 
diagonalizing certain transfer functions. Future work will extend the 
failure classes to time-varying and nonlinear perturbations. 
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Robust Control of Robot Manipulators 
with Parametric Uncertainty 

Keun-Mo Koo and Jong-Hwan Kim 

Abstract-This note proposes a robust control law for d i n k  robot 
manipulators with parametric uncertainty whose upper bound is not 
assumed to be known. The proposed robust control based on the Cor- 
less-Leitmann approach includes a simple estimation law for the upper 
bound on the parametric uncertainty and an additional control input to 
be updated as a function of the estimated value. Using the Lyapunov 
stability theory, the uniform ultimate boundedness of the tracking error 
is proved. 

I. INTRODUCTION 

Recently Spong [ I ]  proposed a simple robust nonlinear control law 
for d i n k  robot manipulators with parametric uncertainty using the 
Lyapunov based theory of guaranteed stability. In this scheme, the 
Leitmann [2] or Corless-Leitmann [3] approach was used to design 
a robust controller. The novelty of the result in [l] is the fact that 
the uncertainty bounds needed to derive the control law and to prove 
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