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Abstract

An elementary test is developed for stabilizability
of a linear, time-invariant (LTI), single-input single-
output (SISO) plant using output-feedback.

Introduction

Any LTI plant represented by a proper ratio-
nal transfer function can be stabilized in the stan-
dard feedback configuration using dynamic output-
feedback. Constant output feedback controllers have
been considered in several earlier papers, see for ex-
ample, [3]. In this paper, a test is proposed to check
existence of static output-feedback controllers that
stabilize a given LTI plant; the test is limited to scalar
plant transfer functions.

A well-known method of checking that a given
polynomial has all of its roots in the open-left-half-
plane (OLHP) of the field of complex numbers €
is the Routh-Hurwitz stability criterion [2]; closed-
loop stability using constant feedback can be veri-
fied using this method by generating the Routh ar-
ray symbolically in terms of the constant feedback
variable K and then looking for simultaneous solu-
tions of a number of strict mequalities in K. The
method developed here relies on solving the roots of
known (Folynomials independent of K to determine
if closed-loop stability can be achieved using constant
output-feedback.

Main Results

Let P denote the transfer-function of the plant;
we assume that P is a (froper rational function of s
with real coeflicients and write it as follows:

P(s)

_ N(s) _ ams™+am-18™"1+---+ais+ag

D(s) "+ by 18" 14+ b5+ by
where N, D is a coprime pair of polynomials, D is
monic. Since P is proper, §(N) =m < §(D)=~n,
where 6§N ) denotes the degree of the polynomial
N . An alternate way to write P is to decompose N
and D so that

_ hn(s?) + sgn(s?)
" hp(s?) + sgp(s?)’ )
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where hy(s?), hp(s?), gn(s?), gp(s®) are polyno-
mials of even powers of s [1].

If constant output-feedback K is used, the closed-
loop characteristic equation is 1+ K P(s) = 0 and
the characteristic polynomial B(s) is given by

B(s) = D(s) + KN(s) = (ho(s?) + K hn(s?))

+ 8(gp(s?) + Kgn(s®)) =: h(s?) + sg(s?) .

A polynomial is said to be Hurwitz (sometimes called
strictly Hurwitz) if and only if all of its roots are in the
OLHP of C. We now state an important condition so
that the closed-loop characteristic polynomial A(s)
is Hurwitz.

Lemma 1: [1] Let B(s) = h(s®) + sg(s?), where
h(s?) and g(s?) are polynomials of even powers of s.
Then B(s) is Hurwitz if and only if the following four
conditions hold:

1) The coefficients of h(s?) and g(s2) are strictly
positive, with no missing coefficients.

2) Either 6(h) = &(g) = n—1 or §(h) =
6(g) +2=mn.

3) All of the roots of h and g are purely imaginary
(on the jw-axis) and are distinct.

4) Let h; denote a root of k& and let g; denote
aroot of g. a) If 8(h) = 6(9) = n—1, then
the roots of h and g are interlaced as follows on the
Jw-axis:

<—jg1 < —jh < 0

< jhy < jo1 < -+ <jhpy < jga-1. (2)

b) If 6(h) = 6(9) + 2 = n, then the roots of h
and g are interlaced as follows on the jw-axis:

"'jyn-l < —jhn—l & oo

—jha < —jgn < -+ <=jh1 < ~jg1 < 0

<jgl<jhl<"<jgn<jhn-

3)

u]
Based on the description of P(s) in (1), we see that
there are eight different types of P(s). Conditions

for stabilizability of these different types will now be
considered as four separate cases.

Case 1: gn(s?) = 0 and gp(s?) = 0; hence,

_ hn(s?)

P(s) = h—D(sT) . (4)



Proposition 1: Plants whose transfer-functions are
described as (4]2 cannot be stabilized using constant
output-feedback. (n]
Case 2: Either gn(s?) = 0 and hp(s?)= 0 or
hn(s?) = 0 and gp(s®) = 0 ; hence,

82
PO = P ®
2
or P(s) = %’1(%)- . (6)

Proposition 2: Plants whose transfer-functions
are described as (5) can be stabilized using con-
st;anl;zouI:pu;-feedba2 if and o:ly if2 the golynomzl;ls
hn(s*) an 8 or - §*) an 8
sﬁi(sf )the four ggxfdit)ioés of Lenﬁ,t(na) . Plangf v(vhos‘)e
transfer-functions are described as (6) can be stabi-
lized using constant output-feedback if and only if the
polynomials gn(s?) and hp(s?) (or -gn(s?) and
hp(s?) ) satisfy the four conditions of Lemma 1. O
Case 3: gn(s®) = 0 or hy(s?) = 0 or gp(s?)
= 0 or hp(s?) = 0 ; hence,

hn(s?)
i e B
- s gn(s?)

w0 = A
8 2

or P = WO LIME )
2

or b = RS 0o

To determine stabilizability using constant output-
feedback for the four plant types of case 3, we calcu-
late the value of K such that 1 + K P is strictly
proper and the values of K such that the roots of
the closed-loop characteristic pol%nomial {95:) are
purely imaginary; we call these the critica val-
ues and calculate them as follows: If P(s) is strictly
proper, then 1 4+ K P is never strictly proper; if
n = m,then 1 + K P is strictly proper for the
critical K value K, = 3 = —ﬁ{% . Now f(s)
has roots at the origin for K, = T —— IO

ado
The calculation of the purely imaginary roots and the
corresponding K values for the four types of P(s)

in (7)-(10) are all similar; for example, in (7),

hp(a’)
“hn(s?)

where jw; is a purely imaginary root of gp ; the
critical K values corresponding to distinct w; satis-
f{ling gp((jwi)®) = 0 need not be distinct. Note
that there are at most n+1 critical K values. At the
critical K values we determined, we find the number
of right-half-plane (RHP) roots of B(s) ; this can be
achieved by calculating the roots of [(s) at these
critical K ’s.

In Proposition 3 below we give the conditions for
stabilizability using constant output-feedback for the
Elant. type in (7) of case 3; types (8)-(10) are omitted

ere due to their similarity.

K; = 8 = jwi,

(11)
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Proposition 3: Let Ky < K2 < :--- < K,
£ < n + 1, be the well-ordered critical K values of
B(8). Then P(s) given by ((7) can be stabilized using
constant output-feedback if and only if the following
two conditions hold:

1) All of the roots of the polynomial gp
purely imaginary and distinct.

2) There exist two consecutive critical K values
K; "and Kj4; at which the number of RHP roots
of PA(s) is zero and for any arbitrary constant K,
where( )K,- < K. < Kj41 , the number of RHP
roots of J(s) is zero.

Furthermore, if conditions 1 and 2 hold, then the
closed-loop system is stable for all K such that
Kj < K < Kj.'.]_ . o

are

Case 4: None of the terms, gn(s?) , hn(s?) ,
gp(s®), hp(s?)is zero; hence,
2 2
P(s) = hn(s?) + sgn(s?) (12)

hp(s?) + sgp(s?) ~

The procedure to determine stabilizability using con-
stant output-feedback for this case is very similar to
case 3. Again, we calculate the critical K values for
B(s). The critical values K, and K, are found ex-
actly the same way as in case 3 above. The purely
imaginary roots and the corresponding K values are

_ _hp(s®) _ _go(s?) o
K; = hn(sﬁ) = -gN(Bz) s 8 = Jwi,

where jw; is a purely imaginary root of gn hp —
hngp; the critical K values corresponding to dis-
tinct w; satisfying

an((Jwi)?) hp((jwi)?) — hn((jwi)?) gp((jwi)®) = 0
need not be distinct. Note that there are at most

n 4 1 critical K values. At these critical K values,
we find the number of right-half-plane (RHP) roots

of B(s) .

Proposition 4: Let Ky < K3 < -+ < K,
£ < n + 1, be the well-ordered critical K values
of "f(s). Then P(s) given by (12) can be stabi-
lized using constant output-feedback if and only if
there exist two consecutive critical K values K;
and Kj;41 at which the number of RHP roots of
eés) is zero and for any arbitrary constant K, , where

i < Ka < Kj41 , the number of RHP roots of
ﬂ(sg is zero. Furthermore, the closed-loop system is
stable for all K such that K; < K < Kjy;. O

Although case 4 is the most general case and all
of the others can be treated as special cases using
the procedure for case 4, we considered cases 1, 2,
3 separately to take advantage of the simplifications
provided by Lemma 1.
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