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Abstract 
An elementary test is develo ed for stabilizability 

of a linear, timeinvariant (LT$ singleinput single- 
output (SISO) plant using output-feedback. 

Introduction 
lant represented by a proper ratio- 

nal transfer Enction can be stabilized in the stan- 
dard feedback configuration using dynamic output- 
feedback. Constant output feedback controllers have 
been considered in several earlier papers, see for ex- 
ample, [3]. In this paper, a test is roposed to check 
existence of static output-feedbacr: controllers that 
stabilize a given LTI plant; the test is limited to scalar 
plant transfer functions. 

A well-known method of checking that a iven 
polynomial has all of its roots in the open-leftxalf- 
plane (OLHP) of the field of complex numbers C 
is the Rmth-Hurwitz stability criterion [2]; closed- 
loop stability usin constant feedback can be veri- 
fied using this met%od by generating the Routh ar- 
ray symbolical1 in terms of the constant feedback 
variable K a n 8  then looking for simultaneous solu- 
tions of a number of strict inequalities in K .  The 
method developed here relies on solving the roots of 
known olynomials independent of K to determine 
if close8-loop stability can be achieved using constant 
output-feedback . 

Any LTI 

Main Results 
Let P denote the transfer-function of the plant; 

we assume that P is a roper rational function of s 
with real coefficients an8  write it as follows: 

N ( s )  amsm+am-18m-1 + * * . + a l s + a o  
D(s)  8" + bn-1sn-l+ * * + bls + bo 

P ( s )  = - - - 

where N , D is a coprime pair of polynomials, D is 
monic. Since P is proper, b ( N )  = m 5 6(D) = n ,  
where b N) denotes the degree of the polynomial 

and D so that 
N .  An a f ternate way to write P is to decompose N 
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where hN(sa) ,  h o ( s 2 ) ,  gN(a2), ~ D ( s ~ )  are polyno- 

If constant output-feedbac k K is used, the closed- 
mials of even powers of s [l 

loop characteristic equation is 1 + K P(s)  = 0 and 
the characteristic polynomial p(s) is given by 

P(8) = D(8) + K N(8)  = ( ho(sa)  + K hN(sa))  

+ s ( g o ( s 2 )  + K g N ( s a ) )  =: h ( 2 )  + sg(s') . 
A polynomial is said to be Hurwitz (sometimes called 
strictly Hurwitz) if and only if all of its roots are in the 
OLHP of C. We now state an important condition so 
that the closed-loop characteristic polynomial p(s) 
is Hurwitz. 

Lemma 1: [l] Let p ( s ) =  h(sa) + sg(s' ) ,  where 
h(s') and g(sa)  are polynomials of even powers of S. 
Then p(8) is Hurwitz if and only if the following four 
conditions hold: 
1) The coefficients of h(s2 and g ( 2 )  are strictly 

positive, with no missin coe fk cients. 
2 )  Either 6(h) = &g) = n - 1 or S(h) = 

6(g) + 2 = n . 
3) All of the roots of h and g are purely imaginary 

(on the jw-axis) and are distinct. 
4) Let hj denote a root of h and let gj denote 

a root of g .  a) If b(h) = b ( g )  = n - 1, then 
the rods of h and g are interlaced as follows on the 
p-axls :  

-jgn-i < -jhn-1 < ... < -jgl < -jhl < 0 

< jh1 < jg1 < < jhn-l < jgn-l . (2) 
b) If 6(h) = b(g) + 2 = n,  then the roots of h 
and g are interlaced as follows on the jw-axis: 

-jhn < -jgn < < - j h l  < -jg1 < O 

< jg1 < jh1 < < jgn < jhn . (3) 
0 

Based on the description of P(s )  in (l), we see that 
there are ei ht different types of P ( s ) .  Conditions 
for stabiliza%ility of these different types will now be 
considered as four separate c m .  
case 1: g ~ ( 8 ' )  = 0 and gD(s') = 0 ; hence, 

(4) 
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Proposition 1: Plants whaee transfer-functions are 
described as (4 cannot be stabilised using constant 

Case 2: Either g ~ ( s ' )  = 0 and h ~ ( 8 ' )  = 0 or 
hN(s') = 0 and ~ D ( s ' )  = 0 ; hence, 

output-feedbac d . 0 

(5) 

Proposition 2: Plants whose tramfer-functions 
are described as (5 can be stabilized using con- 

hnr(s') and d e ' )  (or - ~ N ( s ' )  and gD(8') ) 
satisf the four conditions of Lemma 1. Plants whose 
tran&r-functions are described as (6 can be stabi- 

polynomials gN(s ' )  and h ~ ( s ' )  (or -g~(s ' )  and 
h ~ ( s ' )  ) satisfy the four conditions of Lemma 1. 0 
Case 3: gN(e') = 0 or hN(s2)  = 0 or go(s2) 
= 0 or ~ D ( s ' )  = 0 ; hence, 

stant output-feedba A if and only if the polynomials 

lized using constant output-feedback i 2 and only if the 

To determine stabilizability using constant out ut- 
feedback for the four plant types of case 3, we &U- 
late the value of K such that 1 + K P is strictly 
proper and the values of K such that the roots of 
the closed-loop characteristic pol nomial /?k) are 

aal- 
nes and calculate them as follows: If p ( s )  is strictly 
proper, then 1 + K P is never strictly pro er; d 
n = m , then 1 + K P is strictly proper Er the 
critical K value K, = 2 = -# . NOW ~ ( 8 )  

has roots at the origin for KO = -hi a0 = -% . 
The calculation of the purely im inary roots and the 
corresponding K values for t h s o u r  types of P ( 8 )  
in (7)-(10) are all similar; for example, in (7), 

purely imaginary; we call these t f e critic0 

where jwi is a purely ima inary root of go 
critical K values corresponbZng to distinct wi 
f ing g o (  ( jw i ) ' )  = 0 need not be distinct. Note 
tiat there are at most n + 1 critical K values. At the 
critical K values we determined, we find the number 
of right-half-plane (RHP) roots of p(s) ; this can be 
achieved br  calculating the roots of p(s)  at these 
critical K s. 

In Proposition 3 below we give the conditions for 
stabilizability usin constant output-feedback for the 

lant type in (7) ofcase 3; types (8)-(10) are omitted 
!ere due to their similarity. 

Proposition 3: Let KI < K2 < - . -  < KL 
I < n + 1 , be the well-ordered critical K values 01 p ( 3 .  Then P(s )  given by 7) can be stabilized using 

two conditions hold: 
1) All of the roots of the polynomial 90 are 

purely imaginary and distinct. 
2) There exist two consecutive critical K values 

Kj and Kj+l at which the number of RHP roots 
of B ( s )  is zero and for any arbitrary constant Ka 
where Kj < Ka < Kj+l , the number of RH$ 
roots of p(s) is zero. 

Furthermore, if conditions 1 and 2 hold, then the 
closed-loop system is stable for all K such that 

0 
Case 4: None of the terms, g ~ ( s ' )  , h ~ ( s ' )  , 
g~(8' ) ,  h ~ ( 8 ' )  is zero; hence, 

constant output-feedback i f and only if the following 

Kj < K < Kj+1 - 

The procedure to determine stabiliaability usin con- 
stant output-feedback for this case is very simiar to 
case 3. Again, we calculate the critical K values for ""1' * The critical values K, and KO are found ex- 
act y the same way as in case 3 above. The purely 
imaginary roots and the correeponding K values are 

where jwj is a purely imaginary root of QN h D  - 
h ~ g ~  ; the critical K values corresponding to dis- 
tinct wi satisfying 

need not be distinct. Note that there are at most 
n + 1 critical K values. At these critical K values, 
we find the number of right-half-plane (RHP) roots 
of P ( 4  * 
Proposition 4: Let K1 < K2 < . S .  < KL , 
t 5 n + 1 , be the well-ordered critical K values 
of fs).. Then P ( s )  given by (12) can be stabi- 
lize using constant output-feedback if and only if 
there exist two consecutlve critical K values Kj 
and Kj+l at which the number of RHP roots of 
p s) is zero and for any arbitrary constant Ka , where 
dj < K,, < Kj+l , the number of RHP roots of 
s is zero. Furthermore, the cloeed-loop system is 

sta a( I! le for all K such that K, < K < Kj+l . 0 
Althou h case 4 is the most general case and all 

of the otters can be treated as special cases using 
the procedure for case 4, we comdered cases 1, 2, 
3 separately to take advantage of the simplifications 
provided by Lemma 1. 
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