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Abstract

This paper presents an algebraic theory for decou-
pling linear multivariable feedback systems. A global
parametrization of all diagonal nonsingular 1/0 maps and
all D/0 maps achievable by a stabilizing compensator or a
given plant is given in the theorem.

Introduction

In the design theory of linear time-invariant (LT-I)
multi-input multi-output (MIMO) systems, the characteriza-
tion of all designs which can be achieved by a stabilizing
controller for a given plant shows the limitations on achiev-
able performance imposed by the plant and the con-
straints of linearity and stability. This paper presents a
general algebraic design method for all diagonal I/0 maps
which can be achieved by a stabilizing two-input one out-
put controller K for a given plant P. This method gives a
decoupled closed loop system for which the (diagonal) 1/0
map can be specified independently of the D/0 map.

The system Z(P,K) shown in Fig. 1 represents a more
general case in that ¥, the output of interest, is not the
same as z, the measured output; furthermore, the distur-
bance d is applied directly to the pseudo-state of P rather
than being an additive input as for example in [Des. 1].

Algebraic Structure: [Bou. 1], [Lang. 1]

H A principal ring (PID), (e.g.. %;, the ring of proper
rational functions analytic in U).

G The field of fractions over H (e.g., R(s)).

| 6 A multiplicative subset of H; equivalently, I € H,
01 1€l and z,y €] implies that zy €1 (e.g.,
fFelitf eRgand f(o0) = 1.) .

G ={n/d:n €H,d €]}, subring of G (e.g., Ry (s))

UH): = fmecH:m™!<Hj, the group of units in H (e.g.,
JeEUH) = f eRUmaf(s§¢ 0w s el).

Problem Description an Assumptions

We consider the LT-1, MIMO system I(P.K) in Figs. 1
and 2. Given a plant P, we design a controller X with two
inputs and one output such that the resulting system is
stable, K is proper and the /0 map v b Y3 is :
and decoupled, i.e., diagonal. We assume:

(P} P €G®™ has a right-coprime factorization (r.c.f.)
[po

m

= |ym Dp-rl with Dy, Np.,
pr
Dy €1 and de N;,%O

Np e '™ det

(K) K€G™® has a left-coprime factorization (Lc.f.)
D3Ny : Nyl with Dy, Ny, Ny € V™, det Dy €1
and det. (D Dpr + Ny NI2) €

Definition: The system X(P.K} is ed H-stable jf and
only if the map Hy, :(gy,u?,u)z’.d’%a’u» (y;’,y%,z*i) has
elements in H.

Let
Dh = DCleT + Nle;.,.nEI'pm (1)

Z(P,K) is H-stable if and only if det Dy € U(H) [Des. 1,
corollary 3.1]; w.l.o.g. if and only if we can take =17
[Vid. 1] By (1), Z(P.K) H-stable implies that (Ngr,Dpr) are
right-coprime.

The 170 Map H, ., and the D/0 Map H, 4
Definition (A;): Let A; be a diagonal matrix

A, = diag[A;1,48.2,..., 8, ] EHP ()

|
F-<TT i y a4t .- P""q

Fig. 2



where, for k = 1,

s 0, Ay is the g.c.d. over H of the ele-

ments of the k-th row of Ngy. Then

N = 8, N,

@

where 4z, N are not unique since each Ay is defined

within a umt factor.
zeros in

(In Ry. AL "book-keeps" the plant
U that are common to all elements of the k-th row

of Np..)

Definition (Az): Let Ap be a diagonal matrix

AR = diag[Am,ARa...,ARn] € H**» (4)
where, for j = 1, ..., n, Agy is al.c.m. of dlj -

- o T
where the j-th column of (N )l , e Tnj_ .
dy; ,

dj, my €M™, i =1, ... n. Ap is defined within a unimo-
dular factor.

For any Z(P.X) satisfying (P) and (K), the 1/0 map

Hy,y ;v Yz and the D/0 map H"d d » Yy, are given by

Hyo = N3-Di Ny = A N3 Ny

Hyg =

(8

N3 [ = DNy N2] = N3 Doy Dy ()

where we use (1), (2) and take D, = I since Z(P,K) is H-
stable.

Achievable Performance of Z(P.K)
Let P be given and satisfy (P).

H“,,: = { Hy, :for the given P, there exists a K satisfying
(K) such that Z(P.K) is H-stable with H,,, diagonal
and nonsingular }

H,4: ={ Hyg: for the given P, there exists a X satisfying

Theorem:
(P) and (X). Let P™ =

(X) such that Z(P,K) is H-stable with H,
and nonsingular.}

Y diagonal

Consider Z(P, K} of Fig. 1: Let P and K satisfy
Dy Ngt be a Lcf. of P™. Let A

and Ap be defined by (2) and (4). then

i)

i)

the map H, € H**" is an achievable diagonal, non-
singular 1/0 map of the H-stable Z(P,K) if and only if
Hv E}Iyev(P) = SALARQd : Qd EH"""‘,Qd

o . (7)
is diagonal, nonsingular.}

the map Hy; € ™ is an achievable D/0 map of the
H-stable £(P,K) if and only if

Hy = H, 4(P)
= (V3L — (UR+RDuONG)
= N2V -RNT)D,, : R € B ®
s.t. det (VR -RNT) €.}
and Uzt Vo eHM X are such that

URNE + VaDy £1

oM

Comment: onahzmg the 1|

choosing Ny ( = Npbp@y€ ) and this choice is
independent  of Hat  of Dy( = VR—RNJE) and
Ny (= UR+RDy): thus thisis a two—degrees of—freedom
design [HP'!_ 1). These parameters specify a K that stabil-
izes and decouplss P (with &; and R as above).

0 map is achieved by

Example: We focus our attention on the di onal 1/0
map of £(P,K) and calculate only Ny. Let H:= "é

= the entire ring of proper oper rafional functions analytxc m
€, with coefficients in R[e ™™ ]. P? is strictly proper, is
not H-stable and has a simple zeroat s = 3: P°(s,e™™

re" e”S

s+2

1 [
s—2

s-1
(s+1)?

s—1
= N3 D' =

(s—1)e™™>
(s+1)(s+2)

=2
s+1

e—ﬂ

s—1

. 1s—1
dmg[s-l-E

diag|
Ap

(s—2)e~*
(s+1)? |

4,

(s=1)(s-2)] !
(s+l)z'
—] and from (1\/,‘,’.,)'l (g H*™) we obtain
(s —3)e -8 (s—3)e”*
(s +1)2 (s+1)?

Then

s +2
diag

and

Ny = (Ng) 85 Qs = :
-gs—lze" :

s+2

{s—3)e*
(s+2)(s+1)*’
Note that each diagonal

= diag[

So.  Hy ALAR Qs

-(——)———}-3 e . Qe

s+1
engry o? Ap is equal to det NP,. in fact in the 2z2 cage,

each diagonal entry of Ay is always equal to det Ng,
(modulo a unit factor). Consequentiy, Hy, has a zero of

multiplicity fwo at s=3 and may have other C,.-zeros due
to Q4.
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