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Abstract 
We consider the standard linear, time-invariant, multi- 

input multi-output unity-feedback system with possiblc fail- 
ures in the sensor or actuator-connections. We parametrize 
the set of all controllers such that the closed-loop system is 
stable when sensors or actuators fail. We consider two classes 
of failures: the failure of one connection and the failure of 
any number of connections provided that at least one con- 
nection does not fail. The general parametrization requires 
knowledge of the failure to update the stabilizing controller. 
For plants which can be decoupled, we also give a class of 
controllers which ensure stability under any sensor or actu- 
ator failures without updating for different perturbations. 

1. Introduction 
A multivariable feedback system is said to have integrity 

if it remains stable in the presence of arbitrary failures of the 
sensor or actuator-connections. The problem of integrity is 
a robust stability problem. Designing controllers such that 
the system remains stable for a class of failures is equivalent 
to simultaneous stabilization of the nominal plant and the 
plant multiplied by different failure-matrices. 

In this paper we consider the stability of the stan- 
dard linear, time-invariant, multi-input multi-output unity- 
feedback system under possible failures in either the sen- 
sor or actuator-connections. In the standard problem of in- 
tegrity, the failure of a sensor or actuator means that the 
corresponding connection is disconnected and hence, the ap- 
propriate output is multiplied by zero. Here we use a more 
general description for the failure of a connection and a1- 
low the connection to be multiplied by any arbitrary stable 
rational function (including zero) in case of failure. 

Let P and C denote the transfer-functions of the plant 
and the controller. If we consider the possibility of fail- 
ures in the sensor-connections, then the system we consider 
is S( Fs ,  P ,  C )  (shown in Figure l), where the outputs 
of P are multiplied by arbitrary stable transfer functions. 
The sub-block Fs represents the sensor-connections; it is 
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a stable diagonal matrix, whose diagonal entries are nom- 
inally equal to 1 (meaning that the corresponding sensor- 
connection did not fail). The matrix Fs belongs to the class 
FsI;, which denotes the set of all possible failures of at most 
k of the sensor-connections, where the maximum number of 
failures k is between 1 and the number of outputs no.  Sim- 
ilarly, the system with possible actuator-connection failures 
is S( P , F A ,  C )  (shown in Figure 2), where FA represents 
the actuator-connections. If the j- th actuator-connection 
fails, then the j- th output of the controller is multiplied by 
a stable transfer-function, which is different than 1. The di- 
agonal matrix FA belongs to the class FA,,, , which denotes 
the set of all possible failures of at most m of the actuator- 
connections, where the maximum number of failures m is 
between 1 and the number of inputs 1zi . If k = no or m = ni , 
then the plant and the controller must be stable; in this case 
the problem becomes the complete integrity problem. Oth- 
erwise, the plant and the controller need not be stable and 
instead of complete integrity, we deal with k-sensor-integrity 
or m- actuator-integrit y . 

The purpose of this paper is to develop a controller de- 
sign methodology such that the systems S( Fs , P , C )  and 
S( P ,  F A ,  C )  are stable. We consider two classes of fail- 
ures: 1) There exists at most one failure; 2) there exists 
at least one channel without failure. The controller char- 
acterizations in the general parametrizations (Theorems 3.1 
and 3.2) are not independent of the failures. But for plants 
which can be decoupled in some sense, we also find a class 
of fixed controllers that ensure stability of S( F s ,  P , C )  
and S( P , F a ,  C )  without updating the controller when the 
failure-matrices change (Propositions 3.3 and 3.4). 

2. Preliminaries 

Let U be a subset of the field C of complex numbers; 
U is closed and symmetric about the real axis, f o o  E U 
and C \ U is nonempty. Let Ru,IR,(s),IR,,(s), IR(s) be 
the ring of proper rational functions which have no poles in 
U ,  the ring of proper rational functions, the set of strictly 
proper rational functions and the field of rational functions 
of s (with real coefficients), respectively. Let J' be the 
group of units of 'Ru and let Z := RU \ IRsp(s). The set of 
matrices whose entries are in RU is ,U(&). M E ,U(&) 
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is &-unirr,odular iff det M E 3. 
Let Fsk denote the class of s m w r  faiiures defined as fol- 

lows: If Fs E F . k ,  then FS = diag [ f 1  . . . fno 1, where, 
for j = 1 ,. . . , no , f j  E & and at least (no - k) of the 
entries f j  = 1 ;  k is the maximum number of sensor fail- 
ures and f ,  = 0 if the j- th sensor is disconnected. We 
are interested in the classes Fsl (the arbitrary failure of 
at most one the no sensors) and Fq,,-1) (arbitrary fail- 
ures of at most (no - 1) of the no sensors). Similarly, 
F A m  denotes the class of actuator-connection failures defined 
by FA,,,:= {diag[ f 1  . . . fni I } ,  where, for j = 1 ,... , ni ,  
f j  E &. and at least (n; - m) of the entries f j  = 1 ; m is 
the maximum number of actuator failures and f j  = 0 if the 
j-th actuator is disconnected. Again the classes of interest 
here are  FA^ and F ~ ( ~ i - 1 )  , defined similarly. 
In S ( F s ,  P , C ) ,  [yp y c I T  = & [ u p  ucIT and in 

Assumptions: i) The plant P E I R , ( S ) ~ O ~ ~ '  . ii) The con- 
troller C E IR,(S)~'~~~. iii) The systems S( F s ,  P ,  C )  
and S( P ,  F A ,  C)  are well-posed; equivalently, H S  E 
M(IR,(s)) and HA E M@t,(s)). iv) P and C have no 
hidden-U-modes. 0 
Let P = Np DP1 denote-any right-coprime-factorization 
(rcf) and P = DP1 Np denote any left-coprime- 
factorization (lcf) of P EIR,,(S)~~~"', where Np E 
DP E Rilnixni 7 Fp ; det D p  E 
2 (equivalently, det D p  E 2 )  if and only if P E M(IR,(s)) . 
There exist Vp , U p ,  V,. ,-Up 5 e(&) such tkat 
VPDP-+ UPNP = In;, DP V P  + NP U P  = In,, VP U P  
= up v p .  

Definitions: a) i) S( F s ,  P , C )  is said to be %-stable 
iff Hs E M(&) . ii) For k = 1,.  . . , no,  S( Fs , P , C )  
is said to have k-sensor-integrity iff it is &-stable for all 
Fs E FSk. iii) P is said to have no k-sensor-failure hidden- 

U-modes iff for all Fs E F s ~ ,  rank [ % ]  = no ,  for all 

s E U.  iv) C is a controller with k-sensor-integrity iff C E 
lRp(~)niXno and S( Fs , P , C )  h.as k-sensor-integrity; the set 
s sk (P)  := { c I c E IRp(~)n'xno and ~ ( F s ,  P ,  c )  has 
k-sensor-integrity } is called the set of all controllers with I C -  
sensor-integrity. b) i) S( P , F A ,  C )  is said to be &-stable 
iff HA E M(%) .  ii) For m = 1 ,... , ni,  S ( P ,  FA,  c )  is 
said to have m-actuator-integrity iff it is %-stable for all 
FA E  FA^. iii) P is said to have no m-actuator-failure 
hiddenll-modes iff for all FA E  FA^, rank [ Dp FA]  = 
ni , for all s E U .  iv) C. is a controller with m-actuator- 
integrity iff C E IR,(S)~'~"' and S( P,  F A ,  C )  has,m- 
actuator-integrity; the set Sam(P)  := { C I C E IR,(S)"'~~~ 
and S( P ,  FA, C) has m-actuator-integrity} is called the 
set of all controllers with m-actuator-integrity. 0 

S( P ,  FA,  C) ,  [ YP YC IT = HA [ uC IT* 

anoxni, D p  E 

- -  1 0 0 ... 0 0 
-d2,n0ii1 1 0 ... 0 -d~,noG 

0 -d3,noC2 0 -d3,no62 

1 

. .  . .  . . .  
0 0 1 -dno-l,no&'no-t 

0 0 ... Zno-1 Zno-1,no-1 - 

3. Main Results 
Consider S( Fs , P , C )  . If it has k-sensor-integrity, 

then P has no k-sensor-failure hidden-U-modes [3]. 
Let Fs E Fsl ; P has no 1-sensor-failure hidden- 
U-modes if and only if there is an Q-unimodular ma- 

L(no-1) 

1. For j = 2 ,... , n p ,  l = 1 ,... , j ,  there exist 
ij,,! E such that E:=, i j j ~  &,j = 1 . Let & := 

Now consider S( P , FA,  C ) .  If it has m-actuator-integrity, 
then P has no m-actuator-failure hidden-U-modes [3]. 
Let FA E  FA^; P has no 1-actuator-failure hidden- 
U-modes if and only if there is an Q-unimodular matrix 

1 0 ... 0 

RI such that DpR1 = [ dy '7 ... 0 1 , where 

d n i , ~  . . dni,ni 
( dl+j,l+j , [ dl+j,l d1+j,2 . . . dl+j,j] ) is left-coprime for 
j = 1 ,..., n ; - 1 .  For j = 2 ,...,, ni, l = 1 ,..., j ,  
there exist yl,j E I& such that E:=, dj,tyl,j = 1. 
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R(ni-1) 

(FA + DPYm(Ini-FA))-'DP -If.; - DpYm)M;f_Up 
Np(Ini - YmMil(Ini -FADP) V p  + NpYmMi' U P  - 1  

= In i+no . 
In the following results, we use the well-known fact that C E 
Rp(~)niXno is an Ru-stabilizing controller for the (nominal) 
p l ag  P if and only if C =, DC' NC Nc 0,' = (Vp - 

where Qn E Runrxno such that det(Vp - QnNp) E Z. 
3.1. Theorem (all controllers wig k-sensor-integrity): 
Consider S( F s ,  P , C ) .  Let D,' NC = NC DE1 be an 
Ru-stabilizing controller for the (nominal) plant P . If Fs 
5 FslL let P h a s  no lzensor-failure hidden-U-modes; let 
Y k  be K and let Mk be MI. If FS E , let P have no 
(no - 1)-sensor-failure hidden-U-modes; let E be qnO-l) and 
let %k be k+-'). The set Ssk(P)  of all controllers with 
k-sensor-integrity (k = 1 or (no - 1)) is: Ssk(P) = { C = 

- -  
QnNP)-'(Up + QnDP) = (UP + D p Q n ) ( T E -  NpQn)-', 

- - -  
(& -I- Ncai1?kNp - &(Ino - %(Ino - Fs)M;lyk)Np)-I 
- -  

(NcM;'(Ino - E%) + Q&(Fs + (In0 - Fs)%&)-') = 

( NC ( Ino-  EP E ) +DP Q )  (E +FsDc (In, - 5 ~  E )  +FsNP Q )  - ' 
I Q E Runixno , 

- 1 -Ulani,2 o ... 0 0 
0 1 -uzdni,3 0 0 

0 0  0 ... 1 Uni-1 

- 0 - ~ d n i , 2  -~2dni,3 - .  -Vni-z&i,ni-l vni-1,ni-1 

det(& + z c & - ' E E p  - &(Ino - Ep(Ino - F s ) k ; l % ) z p )  

N det(% + FsDc(I,, - &E) + FsNpQ) E Z }. 0 

I f P j s  st$Jy proper, then for any Q-E Run?, det(55 + 
Nc Mi'  y k N ~ z  9,( In0 - DP (In, - Fs)Mi' Y k )  NP) N det(Yk + 
Figure 3 shows the block-diagram of the %-stable system 
S ( F s , P , C ) , w h e r e  C E Ssk(P). 

3.2 Theorem (al l  controllers witJh m-actuator-integrity): 
Consider S( P ,  F A ,  C )  . Let D,' Nc  = N c  Dc'be an 
&-stabilizing controller for the (nominal) plant P . If FA E 
 FA^ , let P have no 1-actuator-failure hidden-U-modes; let 
Y, be K and let M, be MI.  If FA E FA(,,~-I), let P 
have - no (ni - 1)-actuator-failure hidden-U-modes; let Y, be 
qni-1) and let M ,  be M(ni-l). The set SA,(P) of all con- 
trollers with m-actuator-integrity (m = 1 or (ni - 1)) is: 

FsDc(Ino - D P E )  + FsNPQ) E 2. 0 

SAm(P) = { c = 

((Ini - DPYm)Mi'Nc + (FA + DpYm(Ini - FA))-'DpQ) 

( DC + NpY,M;' NC - Np(Ini - Y,M;' (Ini -FA)  Dp)Q)-' = 

I Q E anixn0 , 

- det(% + (Ino - %Dp)EcFA - Q ~ P F A )  E Z }. 0 
If P is strictly proper, then for any Q E R U " ~ ~ " ~ ,  det(DS + 

(pk + (Ino-RDP)Ec FA-Q%FA)-' ( (Ino-ykDp)Zc +Q?jp) 

det(Dc + NpY,M;'Nc - Np(Ini - YmA4s1(Ini - FA)DP))  

NPYm@G'NC-Np(Ini ~ Y m M i ; ' ( I n i - F A ) D P ) )  N det(yk -I- 
(In0 - KDP)DcFA - QNPFA) E T .  
Figure 4 shows the block-diagram of the Ru-stable system 
S( P ,  F A ,  c ) ,  where c E SA~(P). 

In Proposition 3.3 below, assume that the transfer- 
function Hpc : u c  ++ y p  can be made diagonal using an 
Xu-stabilizing controller; i.e., there exists Cs, such that 
Hpc = P Csv(I,,, + P CSV)-' is diagonal for the given (nom- 
inallplant P . Then_ CSV= ( V p  - QspZp)-'(UP + QS&) 
= ( U P  + DPQsv)( VP - N P Q S V L ' ,  where Qsv E Runixno 
is such that Hpc = Np(Up + QSVDP) is diagonal. The class 
of plants for which the transfer-function HPE can be diago- 
nalized is not empty; a sufficient condition for the existence 
of such controllers is that the plant P is full row-rank and 
does not have any U-poles coinciding with zeros (in this case 
the transfer-function Hpc can be made diagonal and nonsin- 
gular). Let CSV= DF; Nsv = NSV DZ; be any controller 
which diagonalizes Hpc ; the parametrization of all such de- 
coupling controllers is given in [5] for full row-rank plants 
without pole-zero coincidences in U. 

- -  

Similarly, in Proposition 3.4, assume that the transfer- 
function Hq : up ++ yc can be made diagonal using an 
Ru-stabilizing controller; i.e., there exists CAD E S ( P )  such 
that Hq = - C A V ( I ~ ~  + P CAD)-'P is diagonal for the given 
(nom2al) plant P .  Then CAD= (Vp - QAvEP)-l(Up + 
QAVDP) = ( U P  + &QAv)( VP --N~QAv)- ' ,  wh_e QAV E 
Run'xno is such that HV = - ( U p  + DPQAD)NP is diag- 
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onal. The class of plants for which the transfer-function 
HPe can be diagonalized is not empty; a sufficient condi- 
tion for the existence of such controllers is that the plant P 
is full column-rank and does not have any U-poles coincid- 
ing with zeros (in this case the transfer-function Hq can be 
made diagonal and nonsingular). Let CAD= DAQ NAQ = 
NAQ DAD-’ be any controller which diagonalizes Hq . 
3.3. Proposition (controllers with k-sensor-integrity for 
decoupled plants): Consider S( Fs , P , C ) . Assume that the 
conditions of Theorem 3.1 hold. Suppose that there exists an 
%-stabilizing decoupling controller CSQ for the (nominal) 
plant P , such that the transfer-function Hpc is diagonal. 
Under these conditions, a class of controllers with k-sensor- 
integrity (k = 1 or (no - 1)) is given by 

-1 - 

= ( N ~ ~  - D ~ F ~ ~ Y ~ ) ( D ~ ~  + N ~ F ~ ~ D Y ~ ) - ~  , - -  
where CSQ= D G  NSQ = NSZ, DZ; is any %-stabilizing 
decospling Entr_ol&r for the (nominal) @ant P such that 
det(Ds= + N m y k N p )  N det(Dsz, + N p N s ~ y k )  E 2 .  0 
Figure 5 shows the block-diagram of the &-stable system 
S( Fs , P , C ) using the controller in Proposition 3.3. 
3.4. Proposition (controllers with m-actuator-integrity for 
decoupled plants): Consider S( P , F A ,  C )  . Assume that 
the conditions of Theorem 3.2 hold. Suppose that there 
exists an %-stabilizing decoupling controller CAQ for the 
(nominal) plant P , such that the transfer-function Hq is 
diagonal. Under these conditions, a class of controllers with 
m-actuator-integrity (m = 1 or (ni - 1)) is given by 

{ c = (BAD + Y , N A ~ ) F P ) - ’ ( F A  - Y ~ N A D D P )  

= (Ini - DPY~)NAQ(DAQ + NpYmNA~)-’  } 

where CSD= 5;; FSQ = NSQ D$, is any &-stabilizing 
decoupling controller for the (nominal) plant P such that 
det(Daz, + Y”AQNP) N det(Daz, + N P Y ~ N A Q )  E 2. 0 
Figure 6 shows the block-diagram of the &-stable system 
S( P , FA, C) using the controller in Proposition 3.4. 
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Figqrel: ThesyatemS(Fs,P,C) 

Figure 2 The system S( P I  FA, C ) 

UP 

Figure 3 &-stable S( Fs, P,  C )  fork = 1 or k =  no-1 

I ’  I I 

Figure 1: &-stable S ( P ,  FA,  C )  for m = 1 or m = n; - 1 

+ 

Figure 6: S( Fs , P , C )  with 52 FSD diagonalizing Hps for the nominal P 

Figure 6 S( P , FA,  C )  with NAP DAu-’ diagonalizing Hw for the nominal P 
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