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Abstract

We consider the standard linear, time-invariant, multi-
input multi-output unity-feedback system with possible fail-
ures in the sensor or actuator-connections. We parametrize
the set of all controllers such that the closed-loop system is
stable when sensors or actuators fail. We consider two classes
of failures: the failure of one connection and the failure of
any number of connections provided that at least one con-
nection does not fail. The general parametrization requires
knowledge of the failure to update the stabilizing controller.
For plants which can be decoupled, we also give a class of
controllers which ensure stability under any sensor or actu-
ator failures without updating for different perturbations.

1. Introduction

A multivariable feedback system is said to have integrity
if it remains stable in the presence of arbitrary failures of the
sensor or actuator-connections. The problem of integrity is
a robust stability problem. Designing controllers such that
the system remains stable for a class of failures is equivalent
to simultaneous stabilization of the nominal plant and the
plant multiplied by different failure-matrices.

In this paper we consider the stability of the stan-
dard linear, time-invariant, multi-input multi-output unity-
feedback system under possible failures in either the sen-
sor or actuator-connections. In the standard problem of in-
tegrity, the failure of a sensor or actuator means that the
corresponding connection is disconnected and hence, the ap-
propriate output is multiplied by zero. Here we use a more
general description for the failure of a connection and al-
low the connection to be multiplied by any arbitrary stable
rational function (including zero) in case of failure.

Let P and C denote the transfer-functions of the plant
and the controller. If we consider the possibility of fail-
ures in the sensor-connections, then the system we consider
is S(Fs, P,C) (shown in Figure 1), where the outputs
of P are multiplied by arbitrary stable transfer functions.
The sub-block Fs represents the sensor-connections; it is
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a stable diagonal matrix, whose diagonal entries are nom-
inally equal to 1 (meaning that the corresponding sensor-
connection did not fail). The matrix Fs belongs to the class
Frsk , which denotes the set of all possible failures of at most
k of the sensor-connections, where the maximum number of
failures k is between 1 and the number of outputs n,. Sim-
ilarly, the system with possible actuator-connection failures
is S(P, Fy, C) (shown in Figure 2), where F, represents
the actuator-connections. If the j-th actuator-connection
fails, then the j-th output of the controller is multiplied by
a stable transfer-function, which is different than 1. The di-
agonal matrix F4 belongs to the class F4,, , which denotes
the set of all possible failures of at most m of the actuator-
connections, where the maximum number of failures m is
between 1 and the number of inputs n;. If k =n, orm = n,,
then the plant and the controller must be stable; in this case
the problem becomes the complete integrity problem. Oth-
erwise, the plant and the controller need not be stable and
instead of complete integrity, we deal with k-sensor-integrity
or m-actuator-integrity.

The purpose of this paper is to develop a controller de-
sign methodology such that the systems S(Fs, P, C') and
S(P, F4,C) are stable. We consider two classes of fail-
ures: 1) There exists at most one failure; 2) there exists
at least one channel without failure. The controller char-
acterizations in the general parametrizations (Theorems 3.1
and 3.2) are not independent of the failures. But for plants
which can be decoupled in some sense, we also find a class
of fixed controllers that ensure stability of S(Fs, P, C)
and S( P, F4, C) without updating the controller when the
failure-matrices change (Propositions 3.3 and 3.4).

2. Preliminaries

Let U be a subset of the field € of complex numbers;
U is closed and symmetric about the real axis, +o00 € U
and € \ U is nonempty. Let Ry, Rp(s),Rep(s), R(s) be
the ring of proper rational functions which have no poles in
U, the ring of proper rational functions, the set of strictly
proper rational functions and the field of rational functions
of s (with real coefficients), respectively. Let J be the
group of units of Ry, and let T := Ry \ R4p(s). The set of
matrices whose entries are in Ry is M(Ry). M € M(Ry)
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is Ry-unimodular iff det M € J .

Let Fsi denote the class of sensor failures defined as fol-
lows: If Fs € Fsi, then Fs = diag[ fi ... fao ], Where,
forj =1,...,n, fj € Ry and at least (n, — k) of the
entries f; = 1; k is the maximum number of sensor fail-
ures and f; = 0 if the j-th sensor is disconnected. We
are interested in the classes Fg, (the arbitrary failure of
at most one the n, sensors) and Fs(no—1) (arbitrary fail-
ures of at most (n, — 1) of the n, sensors). Similarly,
Fam denotes the class of actuator-connection failures defined
by Fam:= {diag[ f ... fai ]}, where, for j =1,...,n;,
f; € Ry and at least (n; — m) of the entries f; = 1; m is
the maximum number of actuator failures and f; = 0 if the
j-th actuator is disconnected. Again the classes of interest
here are F41 and Fyqni-1) , defined similarly.

In 8(Fs,P,C), [yp yc|" = Hs[up uc]’
S(P,Fa,C),lyp ol =Halup ucl”

Assumptions: i) The plant P € R,(s)™*™ . ii) The con-
troller C € Rp(s)™"™. iii) The systems S(Fs, P,C)
and S(P, F4,C) are well-posed; equivalently, Hs €
M(Ry(s)) and Hy € M(IRp(s)). iv) P and C have no
hidden-#-modes. O

Let P = NpD7' denote > any right-coprime-factorization
(rcf) and P D' Np denote any left-coprime-
factorization (lcf) of P €RL(s)™*™ , where Np € Ry™*™,
DP E Ruﬂlxﬂl’ NP gRuﬂoxﬂ-l BP e Raﬂoxﬂo . det DP G
T (equivalently, det Dp € 7)) if and only if P € M(IRp(s)).
There exist Vp, Up, Vp, TUp € M(Ry) such that
VeDp + UpNp = I;, Dp Vp + Np Tp = Lo, Ve Up
=Up Vp.

Definitions: a) i) S(Fs, P, C) is said to be Ry-stable
if Hs € M(Ry). ii) For k =1,...,n,, S(Fs, P,C)
is sald to have k-sensor-integrity iff it is Ry-stable for all
Fs € Fg . iii) P is said to have no k—se_nfor—failure hidden-

U-modes iff for all Fs € Fgi, rank = n,, for all

and in

Dp
Fg
s€U. iv) C is a controller with k-sensor-integrity iff C €
R, (s)™*™ and S( Fs, P, C) has k-sensor-integrity; the set
Ssk(P):= {C | C € ]Rp( y*" and S(Fs, P,C) has
k-sensor-integrity } is called the set of all controllers with k-
sensor-integrity. b) i) S(P, F4, C) is said to be Ry-stable
if Hy € M(Ry). i) For m=1,...,n;,S(P, Fa,C)is
said to have m-actuator-integrity iff it is Ry-stable for all
Fy € Fpp. iil) P is said to have no m-actuator-failure
hiddenU-modes iff for all Fy € Fam, rank [Dp Fu] =
n;, for all s € Y. iv) C is a controller with m-actuator-
integrity if C € Rp(s)™*™ and S(P, F4,C) has m-
actuator-integrity; the set Sgm(P):= {C |C €Rp(s)™*"
and S(P, F4, C) has m-actuator-integrity} is called the
set of all controllers with m-actuator-integrity. O

3. Main Results

Consider S(Fs, P,C). If it has k-sensor-integrity,
then P has no k-sensor-failure hidden-U-modes [3].
Let Fs € Fs3 ; P has no l-sensor-failure hidden-
U-modes if and only if there is an Ry-unimodular ma-
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1 lzm d:l.no
—_ 0 d d.
trix L; such that Ly Dp = | . ” ZIM , where
0 0 ... dnomo
di14;j ;
( , di4j1+; ) is right-coprime for j =1,..., n,—
d~J 1+j A .
1. For j = 2,...,n,, £ = 1,...,7, there exist
§;¢ € Ry such that 7, §ie dj = 1. Let Yy:=
1 0 0
P Ly. Let Myi= % Dp + (Lo -
gna,l gno,2 . gno,no

YiDp)Fs = Ino = (Ino — ¥1 Dp) (Ino — Fs); then for all
Fs € Fsi1, M, is Ry-unimodular.

Let Fs € Fstno-1); P has mo (n, — 1)-sensor-
failure hidden-U-modes if and only if there is an
Ry-unimodular matrix L(n,—1) such that Ln,-1) Dp

[ 1 0 cZl,'na
01 2o i s .
. ) 2: , where ( djno , dnosno ) is coprime for
L 0 0 e Jno 0
j=1,...,n,—1. For]—l .o+ y Mo — 1, there exist ¥;,
1'4, € Ru such that ¥;dnopmo + ; d_,_,m = 1. Let Ypo1):=
1 0 0 ... 0 ~0
—d2'n9ﬁ1 1 0 0 “4'2,nof)l
0 —danoiiz 1 0 —dz noP
. Bimo'tz .. . 3‘. ? L('n.a—l) .
0 0 1 —Jno-l,noano—i'
0 0 ino—l ino—l.ﬂo—l

Let H(ﬂo—l) = i.}(m:—l.) BP + ( no — Y(no—l)DP )FS = I-no -
(Ino = Yino-1yDp )(Ino — Fs); then for all Fs € Fstuo-1y
M(,,o_l) is Ry~unimodular. If £ = 1 or (n,—1), for the right-
coprime pair ( FsNp, Dp) the following (Bezout-identity)
holds for all Fs € Fsi (Fsx is either Fs1 or Fs(no-1) ):
V;’:-I- UPM;I%NP o Upﬁk_l(IM—YEDz)
—(Ino~Dp(Ino—Fs)M;%)Np  Dp(Fs + (In,—Fs)YiDp)™?

. [ DP _v}"(lno - 5Pi;;s)

|

< o3 v, = Liitno -
FsNp Y + FsVp(In. — DpYh) *

Now consider S( P, Fa, C). If it has m-actuator-integrity,
then P has no m-actuator-failure hidden-U{-modes (3].

Let F4 € Fa; P has no l-actuator-failure hidden-
U-modes if and only if there is an Ry-unimodular matrix
1 0 0
day  dap 0
R; such that Dp Ry = . . . , Where
d‘m 1 dm,2 dm.m
( d1+j,1+j , [d].‘..j,l d1+J, 1+“] ) is left-coprime for
j=1,...,n,—=1. For j =2, ..,n.,l—l ey ds
there exist y,; € Ry such that Tj_, djeye; = 1.




1 Y12 .-+ Yini
0 y22 --- Yomi

Let Yi:= R Let M;:= DpY; +

0 0 ... Ynimi

Fy(Ii—DpYy) = Ii — (Ini — Fa)(Ini — DpY1); then
for all Fy € Fa1, My is Ry-unimodular.

Let Fa € Fapmi-1) ; P has no (m — 1)-
actuator-failure hidden-#/-modes if and only if there is an
Ry-unimodular matrix Rn,—;) such that Dp Rn,-1) =

1 0 ... ©

(_) ! . 0 , where ( dp;ni » dnij ) Is coprime

dm 1 dm 2 e dm,m

for j=1,...,n;—1. For j =1, ; — 1, there exist
vj, u; € Ru such that dnini v; + dm,, ul = 1 Let Y(,.,_l) =

1 -—uldm 2 0 e 0 0

0 1  —usdns 0 0
Rniy : :

0 0 1} e 1 Upi-1

. _"Um'—2dm'|ni-—l Vni-1,ni-1
Let Mni—1y:= Dp 17(1“'—1) + Fa(Ini—Dp Y’(m'_x)) = I~
(I _F,,)( wi = Dp Y(ni—1)) ; then for all F4 € Fagni-y),
Miniyy is Ru-ummodular If m =1 or (n; — 1), for the left-

coprime pair (D;na7 NpFy) the following (Bezout-identity)
holds for all Fy € Fam (Fam is either Fa1 or Fagni—y) ):

Yo + (Tui -;YmDP)VPFA (Ini — XTDP)UP )
—NpFy Dp

0 ~vidnia —vadnis

(Fa+ DpYou(In—Fa))'Dp —(Ini— DPYm)M"l Up ]
NP(Im Y, M_I(Im —FADP) Vp + NpYn, M UP

= Im'+no .

In the following results, we use the well-known fact that C' €
R, (s)™*™ is an Ry-stabilizing controller for the (nominal)
plant P if and only if C = Dg' No NgDg' = (Vp —
Q-Np)™(Up + QuDp) = (Up + DpQa)(Vp — NpQa)™,
where Q, € Ry™*™ such that det(Vp — Q,,Np) eT.

3.1. Theorem (all controllers with k-sensorvmtegrzty)
Consider §(Fs, P,C). Let DC Ne= Ng DZ' be an
Ruy-stabilizing controller for the (nominal) plant P. If Fs
€ Fs1, let P have no 1-se sensor-failure hidden-U-modes; let
¥, be ¥; and let M be M. iFse .7"5(,.,,,_1) ,let P have no
(na—l) -sensor-failure hidden-2/-modes; let ¥ be Y(m,_l) and
let M, be M(,,a_l) The set Sgk(P) of all controllers with
k-sensor-integrity (k = 1 or (n, —1)) is: Ssx(P) ={C =

(BC + Ncﬁl:lﬁcﬁ}’ - Q(Ino - EP(Ino - FS)‘)‘{l‘lc_lyvk)]\h’)_—1

(No M (I — Y Dp) + QDp(Fs + (Ino — Fs)%iDp) ") =

(No(Ino—DpYs)+DpQ)(Ya+ Fs Do(Ino—Dp¥i)+FsNpQ) ™!
, Q € Rum'xno ,

det(ﬁc + N—cﬁilffkﬁp - Q(Ino - BP(IﬂD - FS)HI;—I?IC)NP)
~ det(Y; + FsDo(I, ~ Dp¥i) + FsNpQ) € ZT}. O

IfPis strlct]y proper, then for any @ € ’R.u’"xm det(DC +
Nch YkNP Q(Ino—Dp(Ino—Fs)Mk Yk)Np) ~ det(Yk-l-
FsDo(l,o — DpYi) + FsNpQ) € T. O

Figure 3 shows the block-diagram of the Ry-stable system
S(Fs, P, C), where C € Sg(P).

3.2 Theorem (all controllers with m- actuator—mtegrzty)
Consider S(P, F4,C). Let Dz'Ng= NgDgz'be an
‘Ru-stabilizing controller for the (nominal) plant P. If Fy €
Far, let P have no l-actuator-failure hidden-U{-modes; let
Y. be Y: and let M, be My. If Fu € Fypni-yy, let P
have no (n; — 1)-actuator-failure hidden-Z{-modes; let ¥;, be
9'(,,,«_1) and let My, be M(ni_1). The set S 4 (P) of all con-
trollers with m-actuator-integrity (m = 1 or (n; — 1)) is

Sam(P)={C =
((Im' — DPYM)M;INC + (FA + DPYm([m' - FA))—IDPQ)

(D¢ +NpYm M7 Ng — Np(Ini =Y M7 (Ins— F4) Dp)Q) * =
(Yt (Lno— Y Dp) Do Fa—QNp Fa) " ((Ino— Y4 Dp)No+QDp)
l Q c Rum'xna ,
det(Dc + NpYn M7 Ng — Np(In — Y M7 (I — F4)Dp))
~ det(Yi + (Ino — YiDp)DoFa ~ QNpFy) € T}. O

If P is strictly proper, then for any Q@ € Ry™*™° , det(Dg +
NpY, M 1NC NP(IM Y. M- I(Im - FA)DP)) ~ det(Yk-{-
(I,.,, - YLDP)DCFA - QNPFA) eT.

Figure 4 shows the block-diagram of the Ry-stable system
S(P,F4,C), where C € Syn(P).

In Proposition 3.3 below, assume that the transfer-
function H,. : uc — yp can be made diagonal using an
TRu-stabilizing controller; i.e., there exists Csp such that
H,. = PCsp(lno+PCsp)~lis dlagona.l for the given (nom—
1naILplant P. Then Csp= (VP Qs'DNp) I(UP-I-Qspr)

= (Up + DpQso)(Vr — NpQsp)~!, where Qsp € Ru™*™
is such that Hy. = Np(Up + Qngp) is diagonal. The class
of plants for which the transfer-function Hy,. can be diago-
nalized is not empty; a sufficient condition for the existence
of such controllers is that the plant P is full row-rank and
does not have any U-poles coinciding with zeros (in this case
the transfer-function H,. can be made diagonal and nonsin-
gular). Let Cgp= Egp ﬁsv = Nsp D_;?D be any controller
which diagonalizes HZ,c ; the parametrization of all such de-
coupling controllers is given in [5] for full row-rank plants
without pole-zero coincidences in .

Similarly, in Proposition 3.4, assume that the transfer-
function Hy, : up +— y¢ can be made diagonal using an
Ry-stabilizing controller; i.e., there exists Cap € S(P) such
that Hy = —Cup(Ino+ P Cuap)~' P is diagonal for the given
(nominal) plant P. Then Cap= (Vp — QADNP) HUp +
QuoDp) = (Usp +DPQAD)( Ve~ NpQap)™, where Qup €
Ry™ ™ is such that H, —(Up + DPQAD)NP is diag-
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onal. The class of plants for which the transfer-function
H,. can be diagonalized is not empty; a sufficient condi-
tion for the existence of such controllers is that the plant P
is full column-rank and does not have any U-poles coincid-
ing with zeros (in this case the transfer-function H., can be
made diagonal and nonsingular). Let Cup= BA‘D-I Nap=
Nap Dsp~! be any controller which diagonalizes Hc,; .

3.3. Proposition (controllers with k-sensor-integrity for
decoupled plants): Consider S(Fs, P, C). Assume that the
conditions of Theorem 3.1 hold. Suppose that there exists an
Ru-stabilizing decoupling controller Csp for the (nominal)
plant P, such that the transfer-function H,. is diagonal.
Under these conditions, a class of controllers with k-sensor-
integrity (k = 1 or (n, — 1)) is given by

{C = (Dsp + Nsp¥iNp) ™ Nsp(Io — ¥ Dp)

= (Nsp — DpNsp¥3)(Dsp + NpNsp¥i) '},

where Csp= AD—,;}, Nsp= Nsp Dg}, is any Ry-stabilizing
decoupling controller for the (nominal) plant P such that
det(Dgsp + NspYiNp) ~ det(Dsp + NpNspYr) € I. 0O
Figure 5 shows the block-diagram of the Ry-stable system
S(Fs, P, C) using the controller in Proposition 3.3.

3.4. Proposition (controllers with m-actuator-integrity for
decoupled plants): Consider S(P, F4, C'). Assume that
the conditions of Theorem 3.2 hold. Suppose that there
exists an Ry-stabilizing decoupling controller C4p for the
(nominal) plant P, such that the transfer-function H,, is
diagonal. Under these conditions, a class of controllers with
m-actuator-integrity (m = 1 or (n; — 1)) is given by

{C=Dup+ YmNADNP)-I(NA'D - YmNADBF)

= (Ini = DpYm)Nap(Dap + NpYuNap) ™'},

where Csp= 5511, 1739: Nsp Dg}, is any Ry-stabilizing
decoupling controller for the (nominal) plant P such that
det(Dap + Y NapNp) ~ det(Dap + NpYnNap) € . O
Figure 6 shows the block-diagram of the Ry-stable system
8(P, F4, C) using the controller in Proposition 3.4.
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Figure 1: The system S(Fs, P, C)

Figure 6: S(P, F4, C) with Nup Djip™" disgonalizing l"{., for the nominal P



