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ABSTRACT 

This paper gives a parametrization of all stabilizing compen- 
sators which achieve decoupling in the unity-feedback system. It 
is assumed that the plant transfer-function matrix is full row- 
rank and does not have unstable poles coinciding with zeros. 

1. INTRODUCTION 

In the linear, time-invariant, (LTI) multi-input multi-output 
(MIMO) unity-feedback system, decoupling is achieved if the 
closed-loop transfer-function Hpc from the command-input to 
the plant-output is diagonalized by using a stabilizing compen- 
sator. In this paper we parametrize all decoupling compensators 
and all achievable diagonal, nonsingular maps when the full row- 
rank plant does not have coinciding undesirable poles and zeros. 

Notation: U is a subset of C (the field of complex numbers) 
such that U is closed and symmetric about the real axis, f CO E 
U and t! \ U is nonempty. Ru is the ring of proper rational 
functions of s (with real coefficients) which have no poles in 
U ; IR,(s) is the ring of proper rational functions,IR,,(s) is the 
set of strictly proper rational functions and IR(s) is the field 
of rational functions of s .  J is the group of units of Ru and 
Z = Ru \RSp(s). The set of matrices whose entries are in Ru is 
denoted M ( R u )  . A matrix M E M ( R u )  is Ru-unimodular iff 
det M E J .  The identity maps of size n; and no are denoted 
In; and I,,, ; n; and no denote the number of inputs and outpus. 

2. SYSTEM DESRIPTION A N D  ANALYSIS 

Consider the LTI, MIMO feedback system S( P , C )  in Figure 
I, where P : e p  H yp and C : e, H yc represent the plant 
and the compensator transfer-functions. The closed-ioop jnput- 

I :: I - I ;: 1. output map of S( P , C )  is denoted HYu : 
_ _ . .  

2.1 Assumptions! i) the plant P EIR,(S)~"~"'  ; ii) the compen- 
sator C E I R p ( ~ ) n ' X n o  ; iii) the system S( P ,  C )  is well-posed; 
equivalently, Hyu E M(IRp(s)); iv) P and C have no hidden- 
modes associated with eigenvalues in U. 0 

The closed-loop input-output map is given by 

, where H,, : U ,  H yc is Hyu = Hcc 

H,, = C ( In, + P C)-* and the map H, : U ,  - yp that we 
wish to decouple is H, = PH,, = P C( In, + P C)-' . 

Let ( Np ?_Op )- be a right-coprime-fraction representation 
(rcfr) and ( Dp , Np ) be a left-coprime-fraction representation 
(lcfr) of P E I R , ( S ) ~ ~ ~ ~ ,  where Np E RuMXni,  Dp E Runixni, 

det Dp E 2 ,  (det D p  E 1) if and only if P E M(IR,(s)). 

2.2. Definitions: a )  S ( P ,  C )  is said to be Ru-s table  iff 
Hyu E M(Ru) .  b) S( P , C )  is said to be decoupled iff S( P , C 1 
is Ru-stable and the map H, : U, H y, is diagonal and non- 
singular. c) C is said to be an  Ru-stabilizing compensator for 
P (or C Xu-stabilizes P ) iff C E IRp(~)niXno and S( P I  C )  
is Ru-stable. 

-Hcc 1 (In, - P H c c  )p [ P H c c  

- -1- 
F p  E Xunoxni ,  D p  E Runoxno, P = NpDp-l = Dp N p ;  
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d) C is said to be a decoupling compensator for P (or c 
decouples P ) iff C is an Ru-stabilizing compensator and the 
map H,, : U ,  H yp is diagonal and nonsingular. e)  The set 
S(P)  := { C I C EIR,(S)"~"" and S( P,  C )  is &-stable } 
is called the set of all 'Ru-stabilizing compensators for P . f )  
The set d(P) := { H, : U ,  - yp 1 C E S ( P )  } is 
called the set of all achievable input-ouput m a p s  for S( P , C )  
from the input U ,  to the output yp . g) The set &(P) := 
{ C I C E S ( P )  and Hpc is diagonal and nonsingular } is called 
the set of all decoupling compensators for P.  h) The set 
&(P) := { H, 1 C E &(P) } is called the set of all 
achievable decoupled input-ouput m a p s  H, . 0 
2.3. Smith-McMillan form of t h e  Plant: Let P E I R ~ ( s ) ~ ~ ~ ~ .  
Let rankP = no . Then there exist Ru-unimodular ma- 
trices L 6 Runoxno R 6 Xunixni such that L-'PR-' = 
AQ-' = $-'A; equivalently, P_ = LAQ-'R = L%-'AR, 
where = diag[X, . .  . A,,], Q = diag[$l ... $,,,I, A = 

[ , Q = diag[ 5 I(,,;-,)]. Here A, and $ j  E 

Ru are the invariant-factors of the numerator and denomina- 
tor matrices, where, for j = 1 , . . .  , no,  X j ,  4, E Ru, the 
pair ( X j  , $ j )  is coprime (equivalently, there exist u.j E Ru , 
vj E Ru such that uj X j  + vj $ j  = 1 ) ;  X j  divides Xj+l  and 
$j+l divides 4,. The invariant-factors $ j  E Z if and only if 
P E M(IR,(s)); rank P = no implies that A,, # 0 .  An rcfr of 
P is given by ( N E ,  D p  ) = ( LA, RL'Q ) and lcfr of P is give_n by 
( E p ,  N p )  = (QL-', A?). k t  U :-= diag[ul . . .  U,] , V := 

Onox(ni-no) I 

,v:=di ag [ -  I/ I ( n i - n o ) ] .  
O(ni--M) xno 

diag [U' . . . om], U := 

2.4. All Ru-stabilizing Compensators: The set S ( P )  of all . ,  
Ru-stabilizing compensators is given by S ( P )  = 
{R-'(V/-QA)-'(U-I-Q$)L-~ I Q E Runixno, det(v-AQ) E Z}. 
Using C E S ( P )  in the map H, = P C ( I ,  + P C )-', 
the set A(:) of all achievable maps is obtained as d(P) = 
{LA(U+Q*)L-' = I,,.,-L(v-AQ)%L-' 1 Q E R u ~ ~ ~ ~ ~ ,  det(?- 
A Q )  E Z }. If P is strictly proper, then det( V - QA) E Z 
(equivalently, det( v - A&) E Z ) for all Q E M ( R u )  . 

3. DECOUPLING 

( NP , ,DP ) be an rcfr and ( ZP, F p  ) be an lcfr of 
P ~ I R , ( S ) ~ ~ ~ ~ '  . Let rankP denote the normal rank of P .  Note 
that rank P = rank N p  = rank N p  . 
3.1. Lemma: Let P E I R ~ ( s ) ~ ~ ~ " "  . If the system S( P ,  C )  is 
decoupled, then rank P = no 5 n; . 0. 

Now p,  E U is a U-pole of P if and only if $l (po)  = 0 ; z, E U 
is a U-zero of P if and only if X,(zo) = 0 . The plant P has no 
U-poles coinciding with U-zeros if and only if ( A, , q1 ) is a 
coprime pair; equivalently, there exist & , P E Ru such that, for 

If A,,, E IR,,(s), then p := ( p  - p A,,) E Z for all q E Ru. 
If Ano $Rsp(sl, then P = (6 - p A,) E Z for all q E RU such 

Let U' := diag [ aXno/Xl aXn,/Xz.. . (YX,/;\,,,,-~ a], U' := 

Let 

I 

all Q E R U ~  a X n o + P $ l : = ( &  + p $ i ) ~ , + ( b - p ~ , ) $ ,  = 1 .  

that d ~ )  # P (m)/Xno(m). 

D* [ ~ ( n i ~ n o ) x n o  ] 9 ?* := diag [ P  P41/$2. .  .P$1/$m-1 P$l/%L I ,  
V' := diag [ v* 1 .  
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Since for j = 1 ,.. . , no - 1 ,  X j  divides X j + 1  and $j+l di- 
vides d j ,  and since P E M(IR,(s)) implies that $ j  E Z, 
it is clear that Xw/X, E Ru and $1/$j E 1. The matri- 
ces U * ,  U’, v*, V’ E M(Ru) .  If P has no U - p d ~ s  coincid- 
ing with U-yros, then PQ + U * A  = I,; and QV* + AU* 

3.2. Lemma: Let P ~lFt,(s)””~ . Let rankP = n o .  Then 
there exists a decoupling compensator C for P if P has no 
U-poles coinciding with U-zeros. 

3.3. Parametrization of Decoupling Compensators: Let 
P EIRp(s)”’x“‘‘ . Let rankP = no.  Let P have no U-poles 
coinciding with U-zeros. Under these assumptions, it is possible 
to parametrize the class of all decoupling compensators for P 
and the class of all achievable decoupled maps Hp . From the 

Smith-McMillan form, Np = LA = L A  i OnoX~,;+,4] , where 

L A  E %!UmXM is nonsingular. Let 6, E Ru be a grzatest- 
common-divisor (gcd) of the entries in the j- th row of L A .  Let 
A := diag[ 61 . .. S,, 1 .  Since 6, # 0 ,  the square matrix 
A E Runoxno is nonsingular. Define N as L x  = A N , 
where N := A-‘LA E Runoxno is ’ nonsingular since L A  
and A are both nonsingular; therefore N E Runoxno has an 
inverse, A - ’ .  Let n; j /d; j  denote the i j- th entry of N - l  ; then 
N E IR(s)”OXm, where the pair ( nij , d ; j )  is coprime, n;j E 
Ru, d;j E-Ru, d;, # 0 (d;j  need not be in 2 ) .  

Let 6, E Ru be a least-common-multiple (lcm) of 
( d1j , d , j ,  . . . , dn,j ) ; equivalently, $, is an lcm of all denomina- 
tors in the j- th column of N - *  ; for each j ,  8, # 0 since d;j # 0 . 
Let x := diag[ i1 . . . 8,]. Since 8j  # 0 ,  the square matrix 
A E Runoxno is nonsingular. Note that N 

Let O, E Ru be a gcd of the entries in the j- th column of 
Bp = 5L- l  . Let 0 := diag[ O1 . . . 8, 1 .  Since Oj # 0 ,  the 
square matrix 0 E ~u~~~ is nonsingular. LetADP = D o , 
where-D := Ep 0 -’ E RuWx” . The matrix D is nonsingular 
since D p  and 0 are both nonsingular; in fact, detAB E Z since 
P E M(IR,(s)) by assumption. Consequently, D E Runoxno 
has an inverse, D ; 
then D E Rp(~)wXno, where the pair (z; j  , yij ) is coprime, 
zi, E Ru, y;j E Ru ( y;j E Z since y;j is a factor of det D E 2). 

Let 8; E Ru be a lcm of ( y;1 , . . . , yiw ) ; equivalently, e; 
is an lcm of all denominators in the i-th row of D-’ , where 
8, E z since y;j E Z. Let 6 := hag[ 81 . . . 8,,, 1 .  Since 
8i E Z, the square matrix 6 E RuMxno is nonsingular. Note 
that 6 D-’ E Rum‘”. 
3.4. Theorem: Let P E I R , ( S ) ~ ’ ~ ~  . Let = no . Let 
P have no U-poles coinciding with U-zeros. Then 
i) the set d D ( P )  of all decoupled input-output maps Hv is: 

dn(P) = { aX,I,+ A ~ Q D  6 0 = (l-p$l)lm+ A xQD 6 0 

= w+ xu* = I,. 

[ 

m A -1 -  
A E Runoxno. 

.. -1 . Let z ; j / y ; j  denote the ij-th entry of b 

I QD = diag[ql ... q m ] ,  f o r j = I  ,... , n o ,  

ii) the set &(P)  of all decoupling compensators is: &(P) = 

I QA E %(ni-M)XnO, QD = diad q1 . . . qm 1, fo r j  = 1 , .  . . , no , 

3.5. Comment: i) For j = 1 ,. .. , no,  the condition qj # 
(P$1 - 1)/ 6j 8 j  8 j  Oj on q j  E Ru guarantees that the achieved 
decoupled input-output maps Hp are nonsingular, where Hp = 
~ X n o ~ n o  + A EQD 6 O A ~ Q D  6 0 . If 
( 6 j  8,  ) is coprime with $1 , then this condition is satisfied for 
any q j  E Ru. ii) For j = 1 ,.. . , no, the condition qi(c0) 
# P $ ~ ~ ( c a ) / S j  8, 8 j  8j(m) on qj  E Ru guarantees that the 
decoupling compensators are proper. If the plant is strictly 
proper, then this condition is satisfied for any q i  E Ru. iii) 
If P E Runoxni then without loss of generality, I = I, and 
Q = I,,;. Since $1 = 1 ,  one choice for & is 0 ,  P is 1 aFd U* = 0 
and = I,. In this case, 0 = I ,  = 6 and D = L-l.  
Therefore when P E M ( R u ) ,  parametrizations &(P) and 
d D ( P )  become: &(P) = { A A QD I QD = diag[ q1 . . . qm 1 ,  
f o r j  = 1 ,. .. , no ,  q j  E ~u \ 0,  qj(c0) # 1/6j &(CO) 1; 

(1 - P$i ) lm + 

sDp) = { R-1 [ A-’ QDL ] (I,,, - L-1 A x QDL y L - 1  
QA 

I QA E Ru(ni-no)xno, QD = +ag[ q1 . . . q, 1 ,  for j  = 1 , .  . . , no, 
q j  E RU \ 0 qj(W) # l/Jj 6j (m) 1. 

4. CONCLUSIONS 

For LTI, MIMO plants which have no undesirable hidden- 
modes, full row-rank transfer-function matrices and no undesir- 
able poles coinciding with zeros, we parametrized the class of all 
compensators such that the unity-feedback system is (internally) 
stable and the closed-loop transfer-function from the command- 
input to the plant-output is diagonal and nonsingular. If the 
plant has undesirable poles coinciding with zeros, then this class 
of compensators cannot be used; however, any full row-rank plant 
which has no undesirable hidden-modes can be decoupled using 
two-parameter compensation [2, 31. 

Figure 1: The system S( P , C )  
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