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ABSTRACT

We derive conditions for the closed-loop stability of the linear,
time-invariant, multiinput-multioutput unity-feedback system un-
der sensor failures. We find compensators that achieve stability
under sensor failures for a class of plants.

1. INTRODUCTION

For any given plant (which has no unstable hidden modes), there
exists proper compensators such that the linear, time-invariant
(1t3), multiinput-multiioutput (MIMO) unity-feedback system is
internally stable. In this paper, we find proper compensators for
a class of plants allowing one or several of the sensor connections
fail. We do not allow all of the sensor connections to fail; this
would require that the plant is stable (see [Des.1, Fuj.1)).
Notation: U is a closed, nonempty subset of €; ¥ is symmet-
ric about the real axis and €\ is nonempty. U := U U {oo}.
Ru denotes the ring of proper scalar rational functions of s
(with real coefficients) which have no polesin &/ . J denotes the
group of units of Ry . IR (s) denotes the ring of proper ratio-
nal functions; IR p(3) denotes the set of strictly proper rational
functions. I denotes the set of non-strictly proper elements of
Ru. M(Ry) denotes the set of matrices whose entries are in
Ry . A matrix A € M(Ry) is Ry-unimodular iff det A € 7.

2. SYSTEM DESRIPTION AND ANALYSIS

Consider the lti, MIMO feedback system S(Fs,P,C) (Figure
1), where P : e — y, C : é — § and ([, ~ Fs) :
y + ys represent the plant, , the compensator and the sensor
connections, respectively. The entries of the diagonal matrix F's
are 1s and Os; the j-th entry is 1 if the j-th connection

fails and 0 otherwise. Let Hgs : Z — [g] denote the

closed-loop input-output (I/0) map of S{Fs,P, C).

2.1 Assumptions: i) P €IR(s)"™*™ ;ii) C eIRy(s)™*"™;
iii) S(Fs,P, C) is well-posed,ie., Hs € M(IR,(s));iv) P
and C have no hidden-modes associated with eigenvaluesin #f .

2.2 Closed-loop I/O maps: Let Assumptions 2.1 hold. Let

Qs = C(lpo + (Ino — Fs)PC)™'. The I/O map Hs is
H (I - PQS(Ina - FS))P PQS :'
$ -Qs(L, — Fs)P Qs |’

2.3 Definition ( Ry-stability ): The system S(Fs,P,C)
is said to be Ry-stable iff Hs € M(Ry) .
2.4 Analysis: Let (Np, Dp) be any right-coprime-fraction

representation (rcfr) of P;ie.,let Np € Ry™*™ | Dp € Ry™*™ |

detDp € I, P = ]\7])1)})_1 and let Vp " Up € M(Ra)
be such that VpDp + UpNp = I,.;. Let (Dp, NP) be e any
left-coprime-fraction representation (lcfr) of P; 1e let Np €
Ru"™*™ | Dp € Ry"™*™, det Dp €I, P= Dp Np and let
Ve, Up € M(Ry) be such that Vpr + UpNp = I,,. Sim-
ilatly, let (N¢, D¢ ) be any refr and ( D, Nc) be any lcfr of
C. Let £c denote the pseudo state of C; using Dcéc =

Noéc = §, y = Pe = Dp  Npe, ys = (I — Fs)y, é =
d—y s and e_u+J,the system S(Fs,P, C) is descnbeda.s
T R[] - ;
(I-Fy) D¢ & - i
[I 0 y |y
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2.5 Theorem ( Ry-stability under failures): Let Assump-
tions 2.1 hold. Let (Dp, Np) beanylcfrof P and (Ng, Dc)
be any rcfr of C. Then S( Fs, P, C) is Ry-stable if and only if
Dus DP — NpNg
(I —-Fs) D¢

If S(Fs,P,C) is Ry-stable, then ((I — Fs), Dp) is a right-
coprime (rc) pair since Dys is Ry-unimodular.

3. STABILIZABILITY UNDER FAILURES

We derive necessary conditions on the plant P for the existence
of stabilizing compensators in the presence of sensor failures.
We consider two classes of sensor failures: i) only one but any
one of the sensor connections may fail; this class is described by
Fo1:={Fs = diag[fy fz.. faol | fi =101 0; fife =0,for k #£j };
ii) any number of the sensor connections, but not all n, of them
may fail; this class is described by
= {Fs = diaglfy fo... fuol | fy =100, [Ij2; f; =0 }
3 1 Deﬁmtxon ( Ru-stabilizing compensator ): A com-
pensator C is said to Ry-stabilize the plant P €IR (s)"’””" iff
C €R,(s)™™" and the system S(Fs,P,C)is Ry-stable.
3.2 Theorem (Ry-stability under failures): Let
P €R(s)"*™;let (Np, Dp) and (Dp, Np), be any rcfr and
lefr of P. Then the following necessary conditions hold: 1) If
there is a compensator which Ry-stabilizes P for all Fs € Fg,,
then there is an Ry-unimodular matrix L; € Ry™*™ such that

is Ry-unimodular. O

dis 0 0 ... 0 0
diy dyy 0O ... 0 0
L, Dp = : : , (31)
dno-11 drnoc12 dno—i3 dno—tno-1 0
dno,l dna,z dno,3 dno,no—l 1
where, for j =1,..., n, 1, the pair
dJ'+1,J
(d;; , ) is right — coprime. (3.2)
dna»]

ii) If there is a compensator which Ry-stabilizes P for all Fg €
Fsm, then there is an Ry-unimodular matrix L,, € Ryu"*"
such that

dl,l 0 0 0
d; 10 0
L.Dp = | dsa 0 1 01, (3.3)
: : 0
dno,l 0 0 1
where, for j =2,..., n,, the pair
(diy , dj1)is coprime. (3.4)

3.3 Comments' i) If there is a compensator which Ry-stabilizes
P = Bp Np for all Fs € Fs;, then an lefr of P is given by
(L1 Dp, L; Np ), where (3.1)-(3.2) hold. Condition (3. 2) implies
that each column of the denominator matrix L, 5;» is full rank
for all s €. The n,-th diagonal entry of L; Dp is domo = 1;
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for j=1,...,n,-1,d;; €Z. For j=1,...,n,, there are
vjk € Ry, where k=j,..., n,, such that

no no
S vjkdi; = vijdii + Y. vikdi; = 1. (3.5)
k=3 k=j+1
Note that dupome = 1 implies that vpone = 1.
vy Y12 W13 V1,n0-1 V1,n0
0 v2 v23 V2,n0-1 V2,00
Let Y7 = : .. : : L.
0 0 0 Vno-1,n0-1 VUno-1,n0
0o o0 0 ... 0 1
Let X;:= I, — Yy Dp ; then,
YiDp + X1 (I — Fs)=1Io — X, Fs, (3.6)

where (I, — X1 Fs) € M(Ruy) is Ry-unimodular for all Fs €
Fs1 since only one diagonal entry of Fs may be equal to 1.

ii) If there is a compensator which Ry-stabilizes P = D7'Np
for all Fs € Fom, then anlcfrof P isgivenby ( L, Dp, Lm Np ),
where (3.3)-(3.4) hold. Condition (3.4) implies that for j =

2,...,n,, rank d]'l] =1 forall s €U (ie., dji(s) # 0,

i
for all s € ¥ where d;;(s) = 0). Note that d;; € I. For
j=2,...,n,, there are y; , y;1 € Ry such that

yidin + ¥indin = 1. (3.7)
Let Yy, :=
Y2 Y21 0 0 ... 0
—d21y3 1 —dyniysn 0 0 0
—d3.1Ys 0 1 —d31Y4,1 0
—dno—l,l Yno 0 0 0 Lo 1 _dno—l,l Yno,1
0 Q 0 (] ... 0 1

Let X := I, — Y, Dp; then

YnDp + X (Lo — Fs )=I,, — Xn Fs, (3.8)

where (I, — Xm Fs) € M(Ry) is Ry-unimodular for all
Fs € Fsm since []52, f;j=0.
4. COMPENSATOR DESIGN

Let P €lRy(s)"™*™ have rank = n, and have no U-poles that
coincide with U/-zeros. ’I‘hep there exist Ry-unimodular matrices
L € Ry™ ™, R € Ry™ ™ such that (the Smith-form of P is)

P=LAY'R=L¥'AR, (41)

where A = [diag[/\l v+ Ano) i Onox(ni=no)| » ¥ = diag[t1 ... ¥nol,

and ¥ = diag [‘i, I(,,,-__m,)] jfor j=1,..., n,, thepair (A;, ¢;)
is coprime; for j=1,...,n,—1, A; divides A;;; and ¥4, di-
vides ;. Now rank P = n, implies that An, # 0. Furthermore,
P has no U-poles coinciding with U-zeros if and only if

(4.2)
equivalently, there exist «, # € Ry such that, for all ¢ € Ry,

(Ao, %1 ) is a coprime pair;
&hot B == (@+q¥) Ao+ (B-g )1 =1. (43)

An rcfr (Np, Dp) and an lcfr ( 5’2 Np) of P is given by:
(Np,Dp) := (LA, R-'%), (Dp, Np) := (¥L, AR).

&Ano/ A2
O(ni-no)xnn
14 = dla'g [ B ﬁ¢l/¢2 B'pl/wno—l é¢1 /qbno ] ’
V = diag [V s I(,,,-_m,)} . A right-Bezout identity VpDp+UpNp =
I,; for the refr (Np, Dp) = (LA, R7'¥) is given by Up :=
UL!, Vp:=VR. Note that NpUp = LAUL™! = & Ao 1o -
4.1 Corollary: Under the assumptions of Theorem 3.2 and as-
suming that rank P = n, and that (4.2) holds, we have the fol-
lowing necessary conditions: i) If there is a compensator which
Ru-stabilizes P for all Fs € Fs;, then by (3.1)-(3.2), the small-
est invariant factor 1, of Dpis 1 (det Dp ~ i) i) If
there is a compensator which Ry-stabilizes P for all Fs € Fs1,
then by (3.3)-(3.4), the invariant factors ¥3,..., Yno of Dp are
all 1 except for the largest one ¢, (det Dp ~ ).
4.2 Proposition ( Ry-stabilizing compensator design):
Let P €IRp(s)"*™; let rank P = n, and let (4.2) hold. Let
(Np, Dp) be any rcfr and (Dp, Np) be any lcfr of P.
i) Suppose that there is an Ry-unimodular matrix L; € Ry
such that (3.1-(3.2) hold. Then C = D¢ Ne =
(VR + UL'Y;Np)'UL-'X; is a compensator which
Ry-stabilizes P for all Fs € Fs,, where ¢ € Ry is such that

Lot U [ diag [ GAno/ M &Ano/Ano-1 @ | J

noxno

det( Lo — (@ + gi¥1) Ao X1(00) ) = det( Lo — &AnoX1(00) ) # 0;

(4.4)

ii) Suppose that there exists an Ry-unimodular matrix L,, €

Ru"*™ such that (3.3)-(3.4) hold. Then C = D¢ 'No =

(VR + UL"'Y,,Np)'UL"'X,, is a compensator which
Ru-stabilizes P for all Fs € Fg,,, where ¢ € Ry is such that

det( Tno — (0 + 1 ) hnoXm(00) ) = det( Lnp — &AnpXm(00) ) # 0.0
(4.5)

L., Note that (4.4) and (4.5) hold automatically if ¢ € Ry is such

that g(o0) = —a(c0)/¢1(00). If P € M(IRy(s)), then A, €
IR¢,(s) N Ry ; in this case, (4.4) and (4.5) hold for all ¢ € Ry .
5. CONCLUSIONS

We considered the closed-loop stability of the unity-feedback
system under two classes of sensor connection failures. The
actuator-failure case is similar and omitted for brevity. If there
exist compensators that Ry-stabilize the given plant for all fail-
ures in these classes, then the denominator matrices of coprime
factorizations of the plant must satisfy certain conditions. We
found a set of compensators that Ry-stabilize a class of MIMO
plants under sensor failures.

€

4 + e Y ys

+
C P

Figure 1. The system S( Fs,P,C)
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