
FP3 = 3:45 
STABILITY UNDER SENSOR OR ACTUATOR FAILURES 

Proceedings of the 27th Conference 
on Decision and Control 

Austin, Texas December 1988 

Charles A. Desoer 
Department of Electrical Engineering and Computer Sciences 

University of California, Berkeley, CA 94720 

A. Nazli Gundey 
Department of Electrical Engineering and Computer Sciences 

University of Califomia, Davis, CA 95616 

ABSTRACT 
We propose compensators that achieve closed-loop stability 

in the presence of sensor or actuator failures. 

1. INTRODUCTION 
We consider sensor or actuator failures in linear, time- 

invariant multiinput-multioutput feedback systems. We propose 
compensators that achieve stability under arbitrary sensor failures 
or actuator failures. We find the class of all compensators that 
achieve stability under sensor failures and diagonalize the map 
from the external-input to the plant-output. 
Notation: Let U be a subset of the complex-plane C, where U 
contains the closed right-half-plane, U is closed closed and sym- 
metric about the real axis and C \ U  is nonempty. Let Ru(s)  
denote the ring of proper scalar rational functions in s (with real 
coefficients) which have no oles in U .  Let J denote the group of 
units of R&); i.e., f E ? implies that f is a proper rational 
function which has neither poles nor zeros in U U { - 1. The 
ring of proper rational functions in s with real coefficients is 
denoted by Rp (s). The set of matrices whose entries are in Ru(s) 
is denoted by m ( R u ( s  1). A matrix whose entries are in RU(S ) is 
called an Ru-stable matrix. A square nonsingular Ru-stable 
matrix is called RU-unimodular iff its inverse is Ru-stable; 
equivalently, A E m(R,(s)) is RU-unimodular iff detA E J. 

2. MAIN RESULTS 
Consider the linear, time-invariant feedback systems 

S ( F , , P ,  C )  and S ( P , F , ,  C )  shown in Figure 1 and Figure 2, 
respectively. In these systems, P and C represent the plant and the 
compensator, respectively; F, and Fa represent the sensor and the 
actuator connections, respectively, where 
F, E Fs := { F, = diag [ f 
Fa E Fa := { Fa = diag [ f 1 ... f 
The j-th diagonal entry f ,  of F, ( F a  ) becomes zero if the j-th 
sensor (actuator) fails; otherwise, fj = 1. The external inputs are 
denoted by U := [ $ I  , the plant and the compensator outputs are 
denoted by 7 := . The closed-loop input-output (YO) map 
of S(F,,  P , C ) is denoted by HF : U I+ 7 ; the closed-loop U0 
map of s ( P ,  Fa ,  C ) is denoted by gF : U ct 7 . 
2.1. Assumptions: i) The plant P E IR~(S)"'~"'  . ii) m e  
compensator C E Rp ( . Y ) ~ ~ ~ ~ '  . iii) The system s ( F , ,  P, C ) is 
well-posed, equivalently, the closed-loop YO map HF : U t-, 7 is 
in m(RP(s)) .  iv) The system S ( P ,  F a ,  C )  is well-posed; 
equivalently, the closed-loop YO map iiy?i : E cty is in 

2.2. Closed-loop input-outpt  maps: Let Assumptions 2.1 hold; 
then the VO maps HF and HF are in m ( R P  (s)), where 

f ,,, I I f j  = 1 or 0 } , 
3 I f, = 1 or 0 } . 

m(RPe>>. 

L J 
2.3. Definition ( Ru-stability ): a) The system S ( F , ,  P ,  C )  is 
said to be Ru-stable iff HF E m(Ru(s) )  . b) The system 
S(P , F a ,  C ) is said to be Ru-stable iff gF E m ( R &  )) . 

2.4. Theorem (conditions for Rustabi l i ty  under failure) 
Let Assumptions 2.1 hold; then 
a )  the system S(F,,  P , C ) is &-stable for all F, E Fs if and 
only if i) P E m(Ru(s))  and ii) C E m(Ru(s))  and 
iii) (1% +F,PC )-l E m(R,(s)) forallF, E Fs ; 
b) the system S(P , Fa,  C ) is Ru-stable for all Fa E Fa if and 
only if i) P E m(Ru(s) )  and ii) C E m(R,(S)) and 
iii) ( I,' +, CPF, )-' E m(Ru(s))  for all Fa E F ,  . 
2.5. Corollary: Let Assumptions 2.1 hold; let P E R U ( S ) & ~ ~  
and let C E RU(s )"' xn, ; then 
a )  the system S(F,,  P, C ) is Ru-stable for all F, E Fs if and 
only if ( Iflo + F,PC ) is Ru-mimodular for all F, E F ,  ; 
b) the system S ( P  , F a ,  C ) is Ru-stable for all Fa E Fa if and 
only if ( Zf l i  + CPF, ) is RU-unimodular for all Fa E Fa . 
2.6. Definition (compensators that achieve stabilization under 
failure): a) The compensator C in the system s ( F , ,  P , C ) is said 
to achieve stabilization under sensor failures iff C E RU(S )"' 
and S(F,,  P , C ) is &-stable for all F, E Fs . b) The com- 
pensator C in the system s ( P  , F a ,  C ) is said to achieve stabiliza- 
tion under actuator failures iff C E R U ( S ) ~ ' ~ " '  and 
S ( P  , F a ,  C ) is Ru-stable for all Fa E Fa . c) In the case that 
no 2 ni , the compensator C in the system s (F , ,  P ,  C )  is said to 
achieve decou ling and stabilization under sensor failures iff 
C E Ru(s)"~'~' achieves stabilization under sensor failures and 
the closed-loop map Hyu, : U' I+ y is diagonal and nonsingular 
for all F, E F, . 
2.7. Remark: Let Assumptions 2.1 hold; let P E RU(S)""~"'; 
then by Corollary 2.5, the set of all compensators that achieve sta- 
bilization under sensor failures in S(F, ,  P I  C ) is: 

{ C E RU(S)'~~"' I det (Zno+FSPC)  E JforaIIF,  E Fs 1; 
the set of all compensators that achieve stabilization under actuator 
failures in S ( P  , F a ,  C ) is: 

{ C E R U ( S ) ~ ' ~ " '  I det( Z f l ,  + CPF, ) E J for all F ,  E Fa 1 . 
2.8. Proposition (compensators that achieve stailization under 
sensor failures): Consider the system s ( F , , P ,  C).  Let the 
no x ni plant P be RU-stable. 
a) If no 2 ni , then there exists an R -mimodular mamx 
R,  E R u ( s ) ~ ~ ~ ~ ~  such that P R, = [ P ,  0 ] , where 

P ,  E R U ( S ) " ~ ~ '  is lower-triangular; for j = 1, . . . , no,  let 
p , , ( s )  E Ru(s)  denote the j-th diagonal entry of the lower- 
triangular matrix P, .  Let C, E Ru(s)noxno be any lower- 
triangular Ru-stable matrix whose j-th diagonal entry is denoted 
by k,, cS j ( s ) ,  where, for j = 1, . . . , no , c S j ( s )  E Ru(s)  is arbi- 
trary and ksj E IR is chosen so that 

(1) 

Let ct E R ~ ( ~  )(ni-no)xni be arbitrary. Under these conditions, 

1 +  ksjPsj(s)csj(s)  E J . 

L J  

is a compensator that achieves stabilization under sensor failures in 
the system S ( F S ,  P ,  C ). 
b) If no > ni , then there exists an Ru-unimodular mamx 
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- 
is E R~(S)" '~" '  such that P ks = [ > ]  , where 

F8 E RU(s,]:nT is lower-triangular and E 

Ru(s)(""-" ; for j = 1, . . . , ni , letP,i(s) E R (s) denote 
the j-th diagonal entry of ps. Let cs E Ru(s)""~' be any 
lower-triangular &stable matrix whose j-th diagonal entry is 
denoted by ksj i s j ( s ) ,  where, for j = 1, . . . , ni , 
C;i(s) E Ru(s)  is arbitrary and ksj E lR is chosen so that 

1 + ksj p s i ( s )  c,i(s) E J . (3) 
Under these conditions, 

C = Es [ Fs O ]  E RU(S)~"~'  (4) 

is a compensator that achieves stabilization under sensor failures in 
the system S ( F s ,  P I  C ). 
2.9. Proposition (compensators that achieve stabilization under 
actuator failures): Consider the system s ( P  , Fa, C ). Let the 
n, x ni plant P be Ru-stable. 
a) If no < n i  , then there exists an RU-unimodular matrix 
La E R U ( S ) ~ ~ "  such that La P = [ Pa P' ] , where 

P, E R ( s ) ~ " ~ '  is lower-triangular and P' E 
R U ( S ) ~ " ~ ~ ' - ~ ) ;  for j = 1, . . . , no,  let pa , ( s )  E R (s) denote 
the j-th diagonal entry of P a .  Let C, E R,(s)"" be any 
lower-triangular Ru-stable matrix whose j-th diagonal entry is 
denoted by ka! caj (s ) ,  where, for j = 1, . . . ,no , 
cOj(s)  E 

(5)  

B 

IS arbitrary and ka, E -lR is chosen so that 

1 + kaj paj(s) c a j ( s )  E J . 
Under these conditions, 

Fa 

c = 1 E RU(~)niXno 

Y 
+ P 

L J  
is a compensator that achieves stabilization under actuator failures 
in the system S ( P  , F a ,  C ). 
b) If no >n i  , then there exists an Rp-unimodular matrix 

La E RU(s)noxn, such that La P = [ :-] , where Fa E 

Ru(s)""' is lower-triangular; for j - 1, . . . , ni , let 
[ , j ( s )  E Ru(s)  denote the j-th diagonal entry of pa.  Let 
C, E Ru(s)"" be any lower-triangular &stable matrix 
whose j-th diagonal entry is denoted by kaj t a ; ( s ) ,  where, for j = 
1, * 1 * , ni , t?,,(s) E Ru(s)  is arbitrary and kaj E lR is chosen 
so that 

(7) 
Let c" E RU(S)'~(~'-~') be arbitrary. Under these conditions, 

1 + E,,, p a i ( s ) E a j ( s )  E J . 

C = [ Ea c" ] La E RU(s)nixno (8) 

is a compensator that achieves stabilization under actuator failures 
in the system s ( P ,  Fa, C ). 
2.10. Proposition (compensators that achieve decoupling and 
stabilization under sensor failures): Consider the system 
S ( F , , P ,  C). Let P E R u ( ~ ) ~ ~ ~ ~ ~ ,  where n, I n i  and P has 
normal rank no . For k = 1, . . .  ,no , let Au E Ru(s)  be a 
greatest-common-divisor o er Ru(s)  of th entries in the k-th row 
of P .  Let A L  := diag [ ALl . . .  ALG] and P =: A L  p , 
where the matrix P' h_as normal rank n,since P is full rowzank 
and de& t 0. Let P be such that P P = I n 0  ; note that P is 
tot  necessarily Ru-stable or even proper. Write the ij-th entry of 
P as mi, / di,, where mi, , di. E Ru(s) ,  di; f O  and (mi,  , di, ) 
is a coprime pair over A&). For j = 1, . . .  ,no , let 
ARj E Ru(s)  be a least-common-multiple of the denominators of 

the ntries in th j-th column of F r .  Let A R  := 
diag . Under these conditions, C is a compen- 

sator that achieves decoupling and stabilization under sensor 
failures in the system S(Fs, P , C ) if and only if 

(9) 
for some Qd = diag [ q1 . . . qno ] E m(Ru(s))  and for some 
Kd = diag [ k, . . . kno ] E m(IR), where, for j = 1, ,no , 

(10) 
2.11. Comments: a) In the system S(Fs, P , C ), suppose that P 
E RU(S)""~"', where n, 5 ni . If the compensator C is chosen 

as in (2), then the closed-loop map Hyu, from the extemal-input U' 

to the plant-output y becomes lower-triangular, where Hyut = 
P C ( I n O + F s P C ) - '  = P s C s ( I n o + F s P s C s ) - l .  For j = 
1, . .. ,no , the j-th diagonal entry of Hyul is 
ksj p s j ( s )  c s j ( s )  ( 1 + fj ksj p s j ( s )  cSj (s) ) - ' ,  where,fj is 1 or0. 

In the case that n, > ni ,  suppose that the compensator C is 
chosen as in (4); then the last II, - ni columns of Hyut become zero 
and the upper-left ni x n i  submatrix of Hyut becomes lower- 
triangular, where for j = 1, . . . , ni , the j-th diagonal entry of 

b) Under the conditions of Proposition 2.10, Hyul is an achievable 
diagonal, nonsingular, external-input to plant-output map for all Fs 
E Fs if and only if Hyul is of the form 

H Y U ' = A L  A R  Kd f& ( I n , ,  + F S &  A R  Kd Qd 1-l (11) 

for some Qd = diag [ q 1  . . . qn, ] E m(R,(s)) and for some 
Kd = diag [ k l  * .  . kno ] E m(IR), where condition (10) is 
satisfied for j = 1, * . . , n, . 
e) For any proper stable rational function ps j ( s )  csj (s )  E R u e ) ,  
condition (1) can be satisfied by choosing a sufficiently small 
ksj E IR. After the compensator parameters csj (s )  E are 
chosen arbitrarily, choosing ksj E lR to satisfy condition (2) is a 
standard singleinput-singleoutput problem (root-locus, Nyquist, 
etc.) Similar comments apply to conditions (3), (3, (7) and (10). 0 

AR 1 ' ' ' 

c = F r  A R  Kd Qd 

1 + kj ALj ARj qj E J . 

~ y u ' i s  ksj p s i ( s )  C"j(s) ( 1 + f j  Esj i s , ( $ )  c , i ( s )  I-'- 

U I  

Y 
P -  FS 

Figure 1. The feedback system S(Fs, P , C ) . 

U I  

Figure 2. The feedback system s ( P ,  Fa,  C ) . 
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