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STABILITY UNDER SENSOR
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ABSTRACT
We propose compensators that achieve closed-loop stability
in the presence of sensor or actuator failures.

1. INTRODUCTION

We consider sensor or actuator failures in linear, time-
invariant multiinput-multioutput feedback systems. We propose
compensators that achieve stability under arbitrary sensor failures
or actuator failures. We find the class of all compensators that
achieve stability under sensor failures and diagonalize the map
from the external-input to the plant-output. )
Notation: Let U be a subset of the complex-plane €, where U
contains the closed right-half-plane, U is closed closed and sym-
metric about the real axis and €\ U is nonempty. Let Ry(s)
denote the ring of proper scalar rational functions in s (with real
coefficients) which have no poles in U. Let J denote the group of
units of Ry(s); ie, f € ? implies that f is a proper rational
function which has neither poles nor zeros in U U { e }. The
ring of proper rational functions in s with real coefficients is
denoted by IR, (s). The set of matrices whose entries are in Ru(s)
is denoted by m(Ru(s )). A matrix whose entries are in Ry (s) is
called an Ry-stable matrix. A square nonsingular Ry-stable
matrix is called Ry—unimodular iff its inverse is Ry—stable;
equivalently, A € M(Ry(s)) is Ry~unimodular iff detd e J.

2. MAIN RESULTS

Consider the linear, time-invariant feedback systems
S(F,,P,C) and S(P,F,,C) shown in Figure 1 and Figure 2,
respectively. In these systems, P and C represent the plant and the
compensator, respectively; F; and F, represent the sensor and the
actuator connections, respecnvely, whcrc
F,e Fy={ Fo=diag[fy + fp1|fj=10r0},
F, e F, :_{F,,-dzag[f, e fl|fj=10r0}.
The j-th diagonal entry f; of F; (F, ) becomes zero if the j-th
sensor (actuator) fails; otherwise, f j = 1. The external inputs are
denoted by & := , the plant and the compensator outputs are

1
u’

y

denoted by y :=| 7,| . The closed-loop input-output (/O) map
of S(F;, P, C) is denoted by Hy i b ¥ ; the closed-loop /O
map of S(P, F,, C) is denoted by H_— Uk y.

2.1. Assumptions: i) The plant Pe R, (s)™*% . i) The
compensator C € R, ()" . iii) The system S(F_,,P C)is
well-posed; equivalently, the closed-loop /O map H_ ubyis
in MR, (s)). iv) The system S(P,F, 2:C) 1s well-posed;
eqmvalently, the closed-loop /O map H — ! U Py is in
MR, (s)).

2.2, Closed-loop mput-output maps: Let Assumptions 2.1 hold;
then the I/0O maps H— and H sz are in IN(R, (5)), where

(I, -PC(I,, +FSPC)"Fs P PC(I, +FPCY?!
H_ =
i -C(l,, +F,PC)'FepP C(I,, +FPCY?
_ PF, (1, +CPF,y"  PF,(I, +CPF,)'C
ad Hg = | _ (1, +CPF,Y'CPE, (I, +CPE,"'C

2.3. Definition ( Ryy-stability ): a) The system S(F,,P,C) is
said to be Ry-stable iff Hy e m(Ru(s )) . b) The system
S(P,F,,C)issaid to be Ru—stable iff H Z € MRye) .
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2.4. Theorem (conditions for R ;—stability under failure)

Let Assumptions 2.1 hold; then

a) the system S(F,, P, C) is Ry-stable for all F;, e F if and
onlyif )P € MRy(s)) and ii)C e MERy(s)) and

iii) (1, +F,PC ) € MRy(s)) forall Fy € Fy

b) the system S(P, F,, C) is Ry-stable for all F, € F, if and
onlyif )P e M(Ry(s)) and ii) C € MRy(s)) and

iii) (1, + CPF, )" € MRy(s)) forallF, € Fy .

2.5. Corollary Let Assumptions 2.1 hold; let P € Ru(s )""X”l
andlet C e Ry(s)™ ™ then

a) the system S(F,, P, C) is Ry—stable for all F; e Fy if and
only if (1, + FsPC ) is Ry—unimodular for all F; € Fy ;

" b) the system S(P, F,, C) is Ry-stable forall F, € Fj if and
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only if (1 ,, + CPF, ) is Ry-unimodular forall F, € F,

2.6. Definition (compensators that achieve stabilization under
failure): a) The compensator C in the system S(F, P, C) is said
to achieve stabilization under sensor failures iff C € Ry(s ¥ XMt
and S(F,, P, C) is Ry-stable for all F; ¢ Fg. b) The com-
pensator C in the system S(P, F,, C) is said to achieve stabiliza-
tion under actuator failures iff C e RyGs YlXMo  and
S(P,F,,C)is Ry-stable forall F, € F;. c¢)In the case that
n, <n; , the compensator C in the system S(F,, P, C) is said to
achieve decouy, leg and stabilization under sensor failures iff

C e R us )"‘ achieves stabilization under sensor failures and
the closed-loop map Hy,-: 4’ b y is diagonal and nonsingular
forall F; € Fs.

2.7. Remark: Let Assumptions 2.1 hold; let P € Ry(s)™”%;
then by Corollary 2.5, the set of all compensators that achieve sta—
bilization under sensor failures in S(F,, P, C ) is:

{ C e Ryes)" ™ | detl,, +F,PC) e JforallF, e Fy };

the set of all compensators that achieve stabilization under actuator
failures in S(P, F,, C ) is:

{ ¢ e Ry@)"™ ™ | det(1,, +CPF,) e JforallF, e Fy }.

2.8. Proposition (compensators that achieve stailization under
sensor failures): Consider the system S(F;,P,C). Let the
n, x n; plant P be Ryy—stable.

a) If n,<m , then there exists an Rr—unimodular matrix

R, € Ru(s)"‘x"‘ that P R, P o] , where

P, € Ru(s)""x”" is lower-triangular; for j = 1, --- ,n,, let
psj(s) € Ry(s) denote the j-th dlagonal entry of the lower-
triangular matrix P,. Let C, € Ry(s)™ ™ be any lower-
triangular Ru—stable matrix whose j-th diagonal entry is denoted
by kyj ¢5(s), where, for j =1, -~ . n, , cg(s) € Ry(s) is arbi-
trary and k;; € Rischosen so that

such = s

1+ kg pgi(s) ci(s) e J . 6]

LetC’ € Ry(s)™ ™" pe arbitrary. Under these conditions,
CS

C = R,[ o | e Ry(s)" " @

is a compensator that achieves stabilization under sensor failures in
the system S(F, P, C ).
b) If n, > n; , then there exists an Ry—unimodular matrix



- P,

such that PR, = [ };,] ,

P, € Ryt ;"‘x"‘ is  lower-triangular “and @ P’ €
Ru(s)("”_"" XM for j=1, - n L letp(s) € Rg(s)dcnote
the j-th diagonal entry of P,. Let €, € Ry(s)™™™ be any
lower-triangular Ryj—stable matrix whose j-th diagonal entry is

R, € Ru(s)"‘xn‘ where

denoted by k;cg(s), where, for j = 1,---,m,
Ciis) € Ry(s) is arbitrary and k;; e IR is chosen so that
1+ kg py(s) E6) € T . )]
Under these conditions,
C = ie's[ lof 0] e Ry(s)" @

is a compensator that achieves stabilization under sensor failures in
the system S(F,, P, C).

2.9. Proposition (compensators that achieve stabilization under
actuator failures): Consider the system S(P,F,,C). Let the
n, x n; plant P be Ry—stable.

a) If n,<n; , then there exists an Ry—unimodular matrix
L, € Rys)™™ ™ such that L, P = [ P, P’ } , where

P, e R ()™  is  lowertriangular and P’ €
Ru(s)"">< "‘—""); forj =1, < - ,n, letp,(s) e Rg(s) denote
the j-th diagonal entry of P,. Let C, € Ry(s)™™™ be any
lower-triangular Ryy—stable matrix whose j-th diagonal entry is

a

denoted by kaj caj(s), where, for j = 1,---,n,,
Cgj(s) € Ruy(s) is arbitrary and ka/- € ‘IR is chosen so that
L+ kgj Paj(s) c4(s) € T . ®
Under these conditions,
C, )
C=| o |Le Ry(s)"* ©)

is a compensator that achieves stabilization under actuator failures
in the system S(P, F,,C).

b) If n, >n; , then there exists an Ru-unimodular matrix
P,

L, € Ry@)™™ such that L, P = [ 0 } , where P, €

Ry(s)™™ ™ is lower-triangular; for -j Lo, let

i,l-(s) € Ru(s) denote the j-th diagonal entry of P,. Let

€, e Ry@s)™™ be any lower-triangular Ry—stable matrix

whose j-th diagonal entry is denoted by £,; c, aj (8), where, for j =

1, ©+ .y, Cgi(s) € Ry(s)is arbitrary and k,; € IR is chosen
so that

0]
Let ¢’ € Ry(s)™ ™) be arbitrary. Under these conditions,
c [ ¢, ¢ ] £, e Ry()"™ @®)

is a compensator that achieves stabilization under actuator failures
in the system S(P, F,, C).

2.10. Proposition (compensators that achieve decoupling and
stabilization under sensor failures): Consider the system
S(F,,P,C). Let P e Ry(s)"™ ™, where n, <n; and P has
normal rank n, . For k =1, --- ,n,, let Ay, € Ry(s) be a
greatest-common-divisor ow{er Ru(s) of thi entries in the k-th row

1+Eajﬁaj(s)5aj(5) e J.

of P. Let A, =diag | Ay *** B, | and P = AL P,
where the matrix P has normal rank n, since P is full row-rank
anddetAr, # 0. Let " besuchthat P P" =1, ;notethat " is
not necessarily Ryy—stable or even proper. Write the ij-th entry of
F' as my; /dij’ where mi; s di' € Ru(S), dij #0 and (m,-j ,d,-j )
is a coprime¢ pair over Ry(s). For j=1, - ,n,, let
Ap j € Ry(s) be a least-common-multiple of the denominators of
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j-th column of F’. Let Ap
. Under these conditions, C is a compen-

the

ntries
diag [

in th
ARI “ee ARﬂ,j
sator that achieves decoupling and stabilization under sensor
failures in the system S(F, P, C ) if and only if

C=P"ApK,0Q, ©

for some Qy =diag [q; - q,,]1 € m(Ru(s)) and for some
Ky =diag [ky -~  k,, 1 € M(R), where, forj =1, -+ ,n,,

(10)

2.11. Comments: a) In the system S(F,, P, C), suppose that P
€ Ru(s)"° x"‘, where n, <n; . If the compensator C is chosen
as in (2), then the closed-loop map H,,- from the external-input u .
to the plant-output y becomes lower-triangular, where H,,. =
PC(I, +FPC)Y' = PCi(I, +FP,C;)!. For'j =
L, ---,n,, the j-th diagonal entry of H,  is
kg pgj(s) € (8) (1+ £ kgj pgj(s) ci(s) Y, where, f; is 1 or 0.
In the case that n, > n;, suppose that the compensator C is
chosen as in (4); then the last n, — n; columns of H,,- become zero
and the upper-left n; X »n; submatrix of Hy,s becomes lower-
triangular, where for j = 1, --- , n; , the j-th diagonal entry of
Hy,-is Ky Pgi(s) €gj(s) (14 f; kyj pyj(s) E45())7
b) Under the conditions of Proposition 2.10, Hy,- is an achievable
diagonal, nonsingular, external-input to plant-output map for all F
e F; if and only if H,,- is of the form

Hyr=Ap Ag Ky Qg (I, +F,Ap Ag Kz Q7' (D)

for some Q =diag [q; *** qp, ] € m(Ru(s )) and for some
K; = diag [ky -+ k, ] € IM(R), where condition (10) is
satisfiedforj =1, --- ,n, .

¢) For any proper stable rational function p;(s) c,;(s) € Ryts),
condition (1) can be satisfied by choosing a sufficiently small
ksj € IR. After the compensator parameters Csj (s) e Ru(s) are
chosen arbitrarily, choosing k;; € IR to satisfy condition (2) is a
standard singleinput-singleoutput problem (root-locus, Nyquist,
etc.) Similar comments apply to conditions (3), (5), (7) and (10). O

—w_?—‘
T‘_?“

Figure 2. The feedback system S(P,F,,C).
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