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Load Frequency Control of Multiarea
Interconnected Power Systems
With Time Delays

A. N. Gindes® and L. A. Kabuli

Abstract—Finite-dimensional decentralized controller
design methods are developed for load-frequency control
of interconnected multiarea power systems subject to time
delays. Each service area may contain different types of
governors and turbines, and are subject to different time
delays. The controllers proposed for each service area are
simple to implement, and they offer freedom in the design
parameters, which may be used to improve achievable sys-
tem performance. They also have integral action so that the
frequency deviation outputs due to constant load distur-
bances go to zero asymptotically.

Index Terms—PID control, stable LFC design, time delay.

|. INTRODUCTION

ONTROL of frequency and power generation is an im-
C portant function of automatic generation control systems.
Successful operation of a power network requires that the total
generation match the total load demand and system losses.
System frequency deviations due to mismatches over time cause
power flows between service areas to differ from their scheduled
exchanges. Load frequency control (LFC) compensates for local
load changes to maintain the scheduled tie-line power flows,
and achieves area control error (ACE) reduction. For a given
initial operating condition, the stability of a power system is
defined as its ability to regain a state of operating equilibrium
after a physical disturbance occurs, with most system variables
bounded so that practically the entire system remains intact [1].
The objective of power system control is to maintain stability,
performance, and system integrity after failures occur, or in the
presence of system disturbances, such as short circuits and loss
of generation.

Power networks are important examples of networked control
systems, where control loops are closed over a communication
network. As in any large-scale system, time delays arising dur-
ing transmission become important since time delays in LFC
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schemes may destabilize the closed-loop system and degrade
dynamic performance. In open communication systems involv-
ing information exchange of control and feedback signals over
communication networks in the form of data packages, time
delays can arise during transmission from the control center to
individual units and also from telemetry delays. Applications
that include data networks in a control loop also introduce an
network-induced delay effect in transmission between the con-
troller and the remote system. These delays degrade the dynamic
performance and may cause instability in a network-based power
system.

The generation, transmission, and distribution of electric en-
ergy in modern large-scale power systems require high reliability
and efficiency under uncertainty. The designs of control units
and supervisory control and data-acquisition systems centers
are based on rigorous robust and optimal control methodolo-
gies, infrastructure communication, and information technology
services. Power systems are highly nonlinear and large-scale
multi-input—multi-output dynamical systems, but a simpler lin-
earized model can be used for the purpose of frequency control
analysis and synthesis in the presence of load disturbances.
Decentralized control structures offer practical advantages for
large-scale multiarea frequency control synthesis since central-
ized controller designs are difficult to implement in a large-scale
power system environment, where multiple control areas are
connected through tie-lines [2]. As active power load changes,
the frequencies of the service areas and tie-line power exchange
deviate from scheduled values. LFC systems have been stud-
ied extensively in single-area and tie-line connected multiarea
systems (see e.g., [3]-[9]) and, in some cases, with nonlinear-
ities [10], [11]. When time delays are present in transmission,
most studies consider state-space representations, while very
few detailed systematic finite-dimensional controller synthesis
methods have been developed, where the system is described
using transfer functions [12]-[14]. Constant and time-varying
delays are considered in [15], where delay margins with respect
to PI gains are obtained. A delay-dependent proportional integral
derivative (PID)-type analysis/synthesis method was proposed
in [16], where robustness against uncertainties is guaranteed,
and stability is retained for delays smaller than a preset upper
bound on the delay. A PI-type decentralized LFC design based
on .7, methods was proposed in [17], where it is assumed that
time delays can be modeled as an unstructured multiplicative
uncertainty block that contains all possible variations in the

2325-5870 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 22,2022 at 05:44:54 UTC from IEEE Xplore. Restrictions apply.



626 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 9, NO. 2, JUNE 2022

range of delays. Robust delay-dependent PI-based LFC schemes
considering the sampling-period and transmission delay based
on sampled-data control were considered in [18] and [19].

This article considers the finite-dimensional stabilizing con-
troller synthesis problem for single-area and complex tie-line
interconnected multiarea power systems that are subject to time
delays. For steady-state accuracy, the designed controllers here
also provide integral action in order to asymptotically track
step-input load disturbances with zero steady-state error, equiv-
alently, to have zero frequency deviation in steady state due
to constant loads. The designs offer freedom in the parameter
selections that may improve achievable performance. When
low-order stabilizing controller designs are preferred for simple
implementation, the designs also include the special case of
PID controllers. The proposed designs are applied to numerical
studies with different types of turbines using typical values of
the model parameters, as given in, e.g., [6], [12], [20], and the
references therein.

The rest of this article is organized as follows. The main
results are collected in Section II. The controller design for
individual service areas is considered in Section II-A. A simple,
straightforward design procedure is given in Proposition 1;
these finite-dimensional controllers maintain closed-loop sta-
bility with integral action even in the presence of time delays.
The design becomes a PID controller by selecting parameters
accordingly. The controllers designed for the individual sub-
systems are then modified in the decentralized interconnected
multiarea LFC system in Section II-B. For the multiarea closed-
loop system with arbitrary time delays in each service area, the
necessary and sufficient stability conditions are developed in
Theorem 1 that provide results for stability analysis. The design
for the individual service areas is modified in Proposition 3-
a) as a decentralized integral action controller configuration
that maintains closed-loop stability for prespecified time delays
when the service areas are interconnected via tie-line gains. The
controllers are parameterized by using a free design parameter
(); in each service area; these parameters can be varied in order
to satisfy additional design specifications beyond closed-loop
stability and asymptotic tracking. Proposition 3-b) treats the
special case of PID controllers. Section IIT applies the multiarea
controller design to a two-area system with a nonreheated and a
reheated turbine. Finally, Section IV concludes this article.

Notation: Let C, R, and R, denote complex, real, and pos-
itive real numbers, respectively. The closed right half-plane
is C4 = {s € C|Re(s) > 0}. The region of instability is the
extended closed right half-plane, i.e., C ;. = C U {cc}. The
set of real proper rational functions of s is denoted by Ry, ;
S C Ry isthe stable subset with no poles in{. The space 7% is
the set of all bounded analytic functions in C ;. A matrix-valued
function H is in M (#,) if all its entries are in .7, ; a matrix
M € M(s#,,) is called unimodular if M ! € M(3#,). For
[ € A, thenorm || - ||isdefinedas || f| := esssup,cc, | f(s)],
where esssup denotes the essential supremum. Since here all
norms of interest are 7%, mnorms, the subscript is dropped,
ie, || - |lso = || - |l When this is clear from the context, (s) is
dropped in transfer-functions, such as P(s). We use diag[a;]¥_,
to denote the (k x k) diagonal matrix with entries aq, ..., a.

wj
+
O— Cj
| B,
Fig. 1. Closed-loop single-area power system .7;.

For W € R,"”*, we use coprime factorizations over /% , i.e.,
W = UV ! denotes a right-coprime-factorization of W, where
U,V e A det V(o0) # 0.

II. MAIN RESULTS

The LFC problem for a single generator supplying power to
a single service area is considered in Section II-A. A network
of multiple service areas connected by a tie-line is considered
in Section 1I-B.

A. Single-Area LFC With Time Delays

A linearized low-order model of the jth service area plant
for purposes of system frequency analysis and control synthesis
consists of three main parts, as shown in Fig. 1.

The transfer-functions of the load and machine, the speed
governor, and the turbine are G);(s), Gy;(s), and Gy;(s),
respectively. The speed regulation due to governor action is
represented by the speed droop characteristic constant I?;. Let
Ty, Tg;,Ty;,and T} ; be the time-constants of the load, governor,
nonreheated turbine, and reheated turbine, respectively; Kj;
is a constant inversely proportional to the generator damping
coefficient; and ¢,; is a constant for reheated turbine. The
load transfer-function G,;(s) for all types of turbines and the
governor transfer-function Gy;(s) are given by (1). In some
cases, the governors of hydraulic units include transient droop
compensation for stable speed control performance [20]; in that
case, G y;(s) for hydraulic turbines can be defined as

K; 1
Gpj(s) = Tost1 Ggj(s) = Tostl (1)
1 Teis+1
ng(5)=(T 'S—l—l). Jgt,J ) . (2)
97 (R_'chjS + ].)

]

For nonreheated turbines, the turbine transfer-function G (s)
is in (3) and for reheated turbines, it is in (4). For hydraulic
turbines, the transfer-function G;(s) as given in (5) contains a
zero in the right-half plane at 1/7%,;

1

Gij(s) = Trstl 3)
"
N erTer—f—].
Gl = s+ )Ty 1) @
o 1-— ijS
Gij(s) = 05T+ 1 )
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Define X;,Y;,and P; € S as follows:
X = GG Gyj Yy =1+ R;'X;, P;=X,;Y; ' (6)

For all three types of turbines (3), (4), and (5) used in generation,
X;(0) =1 and X;(oo) = 0. Assuming that the speed droop
characteristic I2; is set for speed regulation, Yj’1 is stable,
and, hence, P; is stable. Since Yj_1 € S, we have Y;(0) =
(1+ R;lKj) # 0. Define

K

=7 7
1+R;'K; ™

pi = P;(0) = (Y;Gp;)(0)

With e *"i representing a delay of h; seconds, the jth area open-
loop system P; € M () is atwo-input one-output plant, with

Y o f;j given by
v

(1 x 2) transfer-function from

ﬁj = |:Pj675hj —Y}_lejj| S e%ﬂoo:lXQ. (8)

Now, consider the closed-loop system shown in Fig. 1. The
constant I3; € R is called the frequency bias factor for the
Jjth service area. For a single-area system, the constant B; = 1.
This constant is used in multiarea interconnected systems in
Section II-B. The input—output equations describing the jth area
are as follows:

B;C;Gy Yy Cj

H =1+e*mB,PC;)!
J ( a7 ]) _Gpjy;—l E_SthjOj

C))

The frequency deviation map H Jf Y from v; to f; is

HI" = —(1+ e "M B;X;C5) 1 GpyY; (10)

Definition 1:

a) The system .7} in Fig. | is stable if the closed-loop map
HJ‘ c M(%x)

b) The stable system .} has integral action if the closed-loop
map Hj; is stable, and the frequency deviation transfer-
function H]]-C"(O) =0.

c) The controller Cj is called a stabilizing controller for P;
if C is proper and H; € M(52,).

d) The stabilizing C; is called an integral action controller
if Cj(s) has poles at s = 0. O

Consider any coprime factorization of the controller C; =
D' Nj, where Nj, D; € H#, and Dj(oc) # 0. Then, Cj is a
stabilizing controller if and only if M j_l € , where

M; = (Dj + Nje *" P;B;). (11

By Definition 1-b), in the stable system .7}, the frequency
deviation output f; due to constant load disturbance v; goes
to zero asymptotically if and only if it has integral action,
equivalently, Hf”(O) = 0. Using C; = D; ' Nj, write ijv =
—(1+e M B;P;Cj) "Gy Y; " = —M;'D;G,;Y;". Since
G)p;(0) # 0and Y;(0) # 0, by Definition 1-d), the steady-state

frequency deviation output f; due to constant load disturbance
v; is zero if and only if D;(0) = 0, i.e., C; is an integral action
controller.

Proposition 1 presents a finite-dimensional controller design
method for closed-loop stability with integral action for each
individual LFC system subject to time delays. The procedure is
simple, and it offers freedom in the design parameters.

Proposition 1: Design for Individual Service Areas.

a) General Controllers That Stabilize a Service Area: For
any (); € S, the controller Cj is a stabilizing controller
for P;, which is given by

G _ BiQj
=
T Bi(1-5Q;P))

where 3; € R satisfies the following norm condition:
- 1
hillsQ; Pill

b) Controllers With Integral Action: For any QQ; € S, an
integral action controller C'; is given as follows:

Bi(1+5Q;)

12)

Bj (13)

C: = 14
7 Bjl(s + Bip)) — Bi(1 + sQ;) Pj] (19
where 3; € R satisfies
1
P < . 15
O < BT @B as)
O

The controllers in Proposition 1 are parameterized by a free
stable parameter (); € S, and no restrictions are imposed on
the degrees of these controllers. A special case of the general
controllers in (12) is a proportional+derivative (PD) controller;
a special case of the integral action controllers in (14) is a PID
controller. These special cases are explored in Proposition 2.

Proposition 2: PD and PID Design.

a) PD Controllers for Individual Service Areas: For any
K,;, K4 € R, and 7; € R, a special case of the con-
troller in (12) is a PD controller as in

ﬂj deS
= —=|Kp; 1
Cha B; m+7’js—|—1 (16)
where 3; satisfies
Kd-s
3; < ||[[Ky, e 71 17
81 < 1Ky + 220 1P) a7

b) PID Controllers for Individual Service Areas: For any
Ky, K4 € R, and 7; € R, a special case of the con-
troller in (14) is a PID controller as in

& deS 1

B, K,; + - (18)

Coa =
pid Tis+1 s

where 3; € R satisfies the following norm condition:

Kg;s P;—p;
. K. . d P. J J
B < [lI( m+TjS+1) it =
K 4js* ~
(s + 7 DB A9)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 22,2022 at 05:44:54 UTC from IEEE Xplore. Restrictions apply.



628 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 9, NO. 2, JUNE 2022

In (16) and (18), the “derivative” term in Cpq and in Clq is in Proof of Proposition 2:
proper (realizable) form, where 7; is typically chosen small. [ a) The stable controller in (16) is Cpq = Dj_lN j» with N; =
Remarks 1: The norm conditions (13) and (15) in Proposition Cpa and D = 1. Then, (11) becomes
1 and the norm condition (19) in Proposition 2 determine a 3, Kos
conservative bound on the controller parameter /3; for a fixed Mj=1+ ¢ J = (K + . )B;Fj. (25
time delay h;. The value of /; used for these norm computations B; s+l
can beregarded as a guaranteed upper t?ound on the time delay, or For f; > 0 satistying (17), [|e~*" CpgP;|| < 1 implies
the largest expected delay, but the designed controllers robustly MJ-_l € ., and hence, the system . is stable. The

stabilize the service area for any time delay smaller than h; as
well. Due to the conservatism in the small-gain condition, the
designed controller may actually result in a delay margin larger
than the prespecified /; for the service area. O Ky;s

PD controller Cpq can be obtained from C~'J- in (12) by
choosing (); as

— Kijs -1
Proof of Proposition 1: B Qj = (Kp + T8+ 1)[1 + B (Kpj + ;8 + 1)Pj]

a) The controller in (12) is C; = D_lN], with N; = (26)
6JQJB 1 and D; = (1-3;Q;P;)=1~- N,;B;P;. b) The controller in (16) is Cyig = Dj_le,with N and D;
Then, (11) becomes as

s
_ Di=——" _ N;
M;=(1-8;Q;F)) + B;Qje Sh’B "B P; T s+ Bipy)
(G_ShJ _ 1) 5 Kd'82
=1+ fBj————=h;s5Q;P;. (20) =— 1 (K,s+—%"_4+1). (7
J hjS J I B](S+ij])( pJ Tj8+1 )
For 3; > 0 satisfying (12), using the norm equality With 3; > 0 and p; > 0, (11) becomes
[[(hys) t(e 5" —1)| = 1, it follows that o s
( —sh; _ 1) ! (5 + /ijj)
||5g—_ hjsQ; Pl < Bjh;l|sQ; Pjl < 1. 4 K
JS I ﬂ] fsh (K + dJ +1)P
(21) (S+/))Jp_]) PJ +1 J
Therefore, M j_l € J%,, and hence, the system .7} is Ky
stable with C~'j proposed in (12). =1+ B—é [(Km + 1 +1)P; — p;)
b) The controller in (14) is C; = D; " Nj, with N; and D; (s + Bjp;) +
as Ky
5, + (e7%h — 1) (K s + +1 + l)P]
- 7js
N»:—l—l—e D;=1- N,B,P;.
J (S + 5jpj)( QJ) J VAV A} ﬂjs deS Pj _ pj
(22) =1+m( it T
Since N;(0) = p;' = P;(0)~" implies that D, (0) = 0, . I /
C; has poles at s = 0, i.e., C; is an integral action con- (et 1) _ Kjs* '
troller. Then, (11) becomes T sh; h; (Kpjs + st 1 +1)F;|.
3, (28)
M;=(1-—2—(1 i) P;
= (s + ijj)( T5Qi)b) Using the two norm equalities: ||s(s + 3;p;) !|| = 1and
8. [(hjs)~t(e=shi —1)|| = 1, for j3; satisfying the norm
+ e 5hi (_'_—[';)(1 +5Q;)B; ' B; P; condition (19), it follows that M, ' € .7, and hence, the
ML system .7} is stable with the controller Cyig € Rp in (18).
B (e=shi —1)  hys By Definition 1-d), Cjig is an integral action controller
=145 hjs (5+5jpj)(1+st)]Dj' since it has a pole at s = 0. O

(23)
B. Multiarea Interconnected LFC System With Time
For 3; > 0 satisfying (15), using the norm equality ||(s + Delays

-1 .
s0:)7s|| = 1, it follows that . .
Bipi)~ sl In a large-scale interconnected power system, multiple areas

(e=hi — 1) 1)h;s are connected via tie-lines. When the frequencies in individual
113; m (1+sQ;) P areas are different, a power exchange occurs through the tie-line
iPi that connects these areas. The multiarea interconnected system

< Bih;||(1+sQ;)P;| < 1. (24)  isshownin Fig. 2, where each area has the same structure as the

. ~one shown in detail. The individual arecas may have either one
Therefor.e, M j € jfsoy_ and hence, the system .7 is  fthe governor transfer-functions given in (1) or (2), and any of
stable with C'; proposed in (14). O the turbines given in (3)~(5).
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T - i

1 Cj e shs TUGW QG
1/Rje——
B;
& +£ %;
N\

[ S—

to areas / :
(t#j5) ~——L2

from areas ¢

(£ #J)

Fig. 2. Multiarea system .% ; area j is shown in detail.

In Fig. 2, with the constant B; denoting the frequency bias
factor for the jth service area, the ACE signal £; used in feedback
is

§ = ¢+ Bjfj. (29)

Define the input vectors v and w, and the output vectors u, f,
and £ as follows:

vy wy Uy fi &1

With X; = G,,;G¢;Gy; as given in (6), define the diagonal
matrices of the system parameters as follows; the time delay
h; may be different for each service area

. i k: . k
R = diag _Rj:|j:1 , B = diag |:Bj:|j:1 B
r k
= diag e‘s’”] L
L J:
o 1k _ k
Gp = dlag _Gpj:|j=1 ,GtGg = d1ag |:thng:|j=1 5
-1k
X =diag [X;| ¥ =1+XR
L Jj=
P=Xy l—vy-lx P= [PE —Y—lep] EN)

For any coprime factorization of the controller C'; = Dj_lN s
where N;, D; € #% and D;(o0) # 0, define

D= dlag[Drl,

=

N = diag [Nj]k

j=1

C = diag [Cj]; — diag [p;wj]j:l DN, 31

The tie-line power flows among the k interconnected areas are
represented by the constant matrix ¥ € R***. Consider any
right-coprime-factorization as
1 ~1
—Up=UV (32)
s
where U,V € .."*, and det V(o) # 0. The only closed
right half-plane poles of V=1 are at s = 0, although some entries
do not have these poles since W is generally singular. The

equations describing the closed-loop multiarea interconnected
system .#* in Fig. 2 are as follows:

u I 0 0 N
o viput v _.H v 7
Jg 0 U "oloyv-ig, O] lw w
a

D N(aU + BV)

Dy =
B PE Vv lG,U

(33)

The multiarea interconnected system .7 is stable if the closed-
loop map H € M(J%,), equivalently, Dyy € M (7%).

Theorem 1 states conditions for stability analysis of the multi-
area interconnected system .#* under time delays based on a de-
centralized structure for the controllers C';, where j = 1, ... k.
The method in Proposition 1 can be used to design each of the
controllers C; of the k subareas j = 1,..., k. Since each area
is individually stabilized, the analysis in Theorem 1 provides
conditions for the stability of the interconnected system with
the tie-line interconnections as well as the decentralized areas if
the tie-line is broken.

Theorem 1: Stability Analysis of Multiarea Systems With
Time Delays.

a) The multiarea interconnected system .#¥ is stable if and
only if W1 € M(#.), where W is given as

W = [D+ NEPB]V + o[NEP +Y~'G,D|U
=D(V +aY 'G,U)+ NEPB(V +aB 'U).
(34)

b) Let Cj = D; !N, be a controller that stabilizes P; of
area j for each service area j = 1,..., k. With the def-
initions in (31) and M; as given in (11), let M :=

diag [M} ’ _, = (D+NEPB).

tions, the multlarea interconnected system ¥ is stable

Under these condi-

if and only if W-le M(H,), where W is given by
W= (I+ %(I + ECPB) ™Y (ECP + Y™1G,)Ur)V.
(35)
O

Proof of Theorem 1:

a) The multiarea interconnected system .#* is stable if and
only if H € M(5%,) in the system description (33),
which is equivalentto Dy ' € M (). Since the diag-
onal matrices N, D, P, and E commute, H € M(7%,),
these diagonal matrices commute, and EPD 'N =
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D~ !'EPN implies that Dy can be written as

D 0

D:
H=\_pE 1

36
0 D'W (36)

[I D 'N(U + BV)

By (36), det Dy = det W. Therefore, . k ig stable if
and only if W=t € M(J7,) in (34).

b) Since C} is a stabilizing controller for P; for all j, it
follows that M ' = (I + CPEB) D! € M(#,).
Rewrite  (34) as W =M[V+aM }(NEP +
DY 'G,) U] = MW. Since M~'e M(#), the
system .#% is stable if and only if W e M%) in
(35). O

The controller C); stabilizes the jth service area if and only if

M j_l € J,, where M is defined as in (11). For the intercon-
nected system, the frequency deviation map H/? from v to f is
H/" = VW 1DY 'G,,. Therefore, if each of the controllers
C; has integral action, then D(0) = 0 implies H Jf “(0) = 0,and
hence, the frequency deviation output f; due to constant load
disturbance v; goes to zero asymptotically for each subarea of
the interconnection under the tie-line interchange matrix Wr.
The stable controllers C'; in (12) or the special PD controller in
(16) of Proposition 1-a) can also be designed for the individual
service areas. However, with controllers that lack integral action,
the frequency deviation would not approach zero in steady state.

Proposition 3 develops a decentralized controller design with

integral action for the multiarea interconnected system .#* con-
nected with a tie-line matrix W. The design provides reliable
stabilization in the sense that the stability of individual service
areas is maintained, even when the tie-line is disconnected.

Proposition 3: Integral Action Controller Design for Multi-

area Systems With Time Delays. If (V + Y ~'G,U)~! € SF*F,
then let o = 1. Otherwise, let &« € Ry be such that (V +
QY 1G,U)"' € 8"F Define ©, L, , Ly, and Lz € S¥** as

O :=(I+=B "Ur)(I+ Y 'G,¥r)"! (37)
~ k
Ly := diag |:hjﬂj(1 + SQj)Pj]j:l S} (38)
k
LQ = 3*1 |:d1ag [(1 —|— SQj).Pj:IjZI @ - @0:| (39)
~ - k
L3 = 5_1 [dlag |:,[)7j[)j - ﬁj(l + SQj)Pj:|j=1 :| (40)
k
where ©, = diag [pj} . 0(0).
j=

k
a) The integral action controller C' = diag [Cj] is de-
i=1

signed such that C; in the jth service area is

BB;(1 + 5Q;)

i = = (41)
Bj[(s + BBjp;) — BBi(1 + sQ;) Py
where 3; € R, and 3 € (0, 1] satisty the following:
. 1
Bj < (42)

hjl|(1 4 sQ;) P |

1
| Li|| + || L2 + Ls||”

B < 43)

b) Special Case (PID Controllers): For any K;, Kg4; € R,

and7; € Ry, let Bj € R satisfy the norm condition (19)
as follows:

K P. — p.;
LP; =

Bi < [y + 2Py =

+ hi||(K,ys + Kajs” )P 44)
J ri® Tis+ 1 J ’

Define Ly, Ly, and L3 as (38)—(40) with @); defined as in
(26), i.e.,

deS

(K
Q] (pj+7']b+].

deS
Tis+1

)P

(45)
Let g € R, satisty (43). Then, a special case of the
controller in (41) is a PID controller as

)[1 + Bj(Kpj

B5; Kgis 1
K, -1 4
Bj p]+7'j5+1+8 (6)

Chia =

(|

Remarks 2:
a) The design procedure in Proposition 3 requires

(V+aY 'G,U) to be unimodular, ie., (V +
aY 'G,U) "t € S**. For the given tie-line matrix
coefficients, (V + oY ~'G,U) is generally unimodular
for a = 1. It should be noted that (V + oY 'G,U)
depends on the system parameters Y 'G), and on the
tie-line matrix s™'¥ = UV !, but it does not depend
on the designed controllers. In the special case of two
service areas discussed in Remark 2-b), a sufficient
condition is given in (49) for choosing @ € R to make
(V +aY 'G,U) unimodular.

b) Special Case: Controller Design for a Two-Area Sys-

tem With Time Delays. The multiarea controller design
in Proposition 3 is simplified for the special case of
two-area interconnected systems. For k = 2, the interac-

tion through the tie-line is given as ¢; = gwj (f1 = f2),
s
where ¢; > 0 for j = 1, 2. The tie-line matrix is

Up = 47)

1~
—tpo Yo |

For any a <€ R4, a right-coprime-factorization of
1

(=W7) = UV~ asin (32)is

S

1

Wy =UVl = !

(s+a)
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A sufficient condition for © € M(S), equivalently, (V' +
oY ~'G,U) unimodular, is to choose any o € R satis-
fying the following:

2
a<|s {Z%(leGm - m)} [ (49)
j=1

The controllers Cy and Cy are designed as (41) in Proposi-
tion 3, where 3; > O satisfies (42), and § € (0, 1] satisfies
(43), where © in (37) becomes

2
a _ _ o~
0=(1+ < z;zpjyj LG~ tW (50)
J=

where

Ww=r+2
S

Y1 (Y; "Gy — By ) .
(V1Y 'Gp1 + 2By )

¢) The norm condition (42) in Proposition 3-a) and the norm
condition (44) in Proposition 2-b) determine a conser-
vative bound on the controller parameter [3; for fixed
time delays h; in each of the service areas. As in the
case of individual service areas explained in Remark 1,

the value of h; used for these norm computations can

be regarded as guaranteed upper bounds on the time
delays, but the designed controllers robustly stabilize the
multiarea system for any time delays smaller than h; as
well. Due to the conservatism in the small-gain condition,

the designed decentralized controllers may actually result

in delay margins larger than the prespecified /; values for
each service area. |
Proof of Proposition 3: Let 3; = f33;. With C; as in (41), the

controller is C' = D™ N, where

(2Yy 'Gpa + 1 By")
1/12(Y2_1Gp2 - Bz_l)

k

D = (sl +6,) 'diag [(S + Bjpi) — Bi(1 + SQj)Pj]jzl

&
N = B(sI + ©,) diag [5}(1 ¥ st)Bj—l} - (51)
j=

Since 3 <1 implies 3; = Bﬁj and satisfy (15), by Proposi-
tion 1-b), each C; stabilizes the jth service area. By The-
orem 1, with Dand N as in (51), the interconnected sys-
tem .#* is stable if and only if W € M(,) is unimod-
ular. With (V +aY 'G,U)™' € M(S) implying © = (V +
aBU)(V 4+ aY 1G,U) "1 € M(S), the system is stable if
and only if W(V + oY ~'G,U)~! is unimodular, where

W(V + ayfleU)fl =D+ NEPB®O
k
= (sI + ©,) diag [(s + Bjpj) — B (1 + st)Pj]Fl

+ (s +©,) ‘diag {Bj(l + st)] EPO

k
=1

—1 | q; (e ="i-1)]"
= T4 Bs(sl +0,)  diag || Lyt Lo+ L)
(52)

Using the norm equalities ||(h;s) (e *" — 1) =1 and
ls(sI +©,)7t|| = 1, for 3 satisfying (43), it follows that

—h75_ k
Bls(sI +©,)"! [ [—@ — 1>]j:1 Ly+ Lo+ La ||

< BULal +[[L2 + Ls) < 1. (53)

Therefore, W € M (7,) is unimodular, and hence, the pro-
posed decentralized controller structure stabilizes the intercon-
nected system. (]

I1l. NUMERICAL STUDIES

Consider a multiarea interconnected system with two service
areas, with a nonreheated turbine as in (3) in service area 1, and a
reheated turbine as in (4) in service area 2. The plant parameters
are typical values as in, e.g., [5], [6], [12], [13], and [20].

Let the plant as in (8) in service area 1 have a nonrcheated
turbine as in (3), where the load, governor, turbine, and droop
model parameters in (1) and (3) are given as

Ky =120, Ty =20, Tyy = 0.3, Ty = 0.08, Ry = 2.4

120
X0) = B0 T 1085 T D(0.08s 7 1)
Pi(s) = oY

T 04853 + 7.6245% + 20.385 + 51

Service area 2 has a reheated turbine as (4), with the parame-
ters of service area 1, and T.o = 4.2 and ¢,9 = 0.35. From (6),
we have

120(1.47s + 1)
(20s +1)(0.3s +1)(0.08s + 1)(4.2s + 1)

120(1.47s + 1)

~ 2.0165% + 32.500857 + 93.225% + 98.08s + 51
(55)

Xo(s) =

Py(s)

Then, p; = pa = p = 120/51. Let the frequency bias factors
be By = By = 0.425. Let the two-area system be connected
through a tie-line as shown in Fig. 2, where the tie-line matrix is
given by (47), with 11 = 1p9 = 0.545. For these tie-line gains,
(V+ Y‘leU ) is unimodular. Therefore, « = 1 works; but a
more conservative choice for & € R is obtained from the suf-
ficient condition (49), which is satisfied for oo < 0.2856. In the
controller design, we choose o = 0.285 in the definition of ©.

a) Following Proposition 3-a), C'; and Cy are designed as
in (41). The parameters (); and ()2 can be chosen to sat-
isfy various design specifications. In this design, there are
no requirements other than closed-loop stability in the pres-
ence of time delays and zero frequency deviation outputs in
steady state due to constant load disturbances. Other values
for (); can be explored to satisfy additional constraints and
possibly for larger delay margins. For ()1 = 0, (42) holds for
B1 < 0.3508h7*. Similarly, for Qo = 0, (42) holds for 8y <
0.3351h, L With Q; =0, (38)—(40) can be written as fol-

k "

lows: L, = diag [hijPjL_l O, Ly = s ![diag {Pj]j_l 0 —
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Fig. 3. Frequency deviation outputs f1 and f2 with load disturbances
v = vg = 0.01, with no time delays h; = ho = 0.

- - k
0,), and L3 = s~ 'diag [ﬁjpj — ﬁij] - where O, = pls.
]:

For hy = hy =2 s and Bl = 32 = 0.33h; !, the norms are
computed as || L || = 1.0949, || L2 + Ls|| = 0.4669. Then, (43)
is satisfied for 8 < 0.6403. Using § = 0.64, the integral action
controllers Cy = N¢1 /D1 and Cy = Neo /Do, as givenin (41),
are

N1 = 0.2485(0.485" + 7.6245” + 20.38s + 51)
Dey = 5(0.4800s” + 7.74335% + 22.2743s + 56.0638)

632
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Fig. 4. Frequency deviation outputs f; and f> with load disturbances

v1 = v = 0.01, with time delays of hy = ho = 2s.

Neo = 0.2485(2.0165* + 32.50085° 4 93.225°
+98.08s + 51)
Do = 5(2.0160s* 4 33.0017s% + 101.29555>

+ 121.2424s 4 56.7422). (56)

Applying load disturbances v; = v = 0.01 in each of the ser-
vice areas, the frequency deviation outputs f; and f5 are plotted
inFig. 3 for the case of no time delay in the service areas. Fig. 3(a)
shows the frequency deviation outputs of each service area
with disconnected interconnection tie-line between the channels,
where each controller C; stabilizes the jth service area. Fig. 3(b)
shows the frequency deviation outputs with oo = 0.285 satisfy-
ing the sufficient condition (49) to make the interconnection
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Fig. 5. Frequency deviation outputs fi and fo with load disturbances
v1 = vy = 0.01, with no time delays and with time delays of b1 = ho = 2
s using PID controllers.

stable with the tie-line. Fig. 3(c) shows the frequency deviation
outputs with a = 1,since (V + Y ~'G,U) is unimodular. Due to
the integral action in the controllers, the steady-state frequency
deviations are zero for each channel with any amount of delay
as expected.

Fig. 4 repeats the plots of Fig. 3 but with delays of hy = hy =
2 s in each channel. Fig. 4(a) shows the frequency deviation
outputs f; and f5 of each service area with load disturbances
v1 = vy = 0.01, where the interconnection tie-line between the
channels is disconnected. Fig. 4(b) shows the frequency devi-
ation outputs with a = 0.285 satisfying the sufficient condi-
tion (49) to make the interconnection stable with the tie-line.
Fig. 4(c) shows the frequency deviation outputs with o« = 1 since
(V + Y 'G,U) is unimodular. Due to the integral action in the
controllers, the steady-state frequency deviations are zero for
each case as expected. b) The integral action controllers C; and
(5 designed with parameters as in (56) are fourth- and fifth-order
controllers. Now, for the same service areas defined by P; in
(54) and P, in (55), following Proposition 3, we design the
alternate PID controllers given in (46). Choosing K, = 0.2,
Kg1 =0.8, K, =04, Kgo =1, and 7, = 7 = 0.005, condi-
tions (19) and (43) are satisfied by choosing ﬁ,@l /B; = 0.2 and
BB2/Bs = 0.1. The PID controllers are

o 0.1602s% 4 0.041s + 0.2
b $(0.005s + 1)

(57)

~0.10025% + 0.04055 + 0.1
T $(0.005s + 1)

With these PID controllers, applying load disturbances vy =
vo = 0.01 in each of the service areas, the frequency deviation
outputs f1 and f5 are plotted in Fig. 5. The case of no time
delay in the service areas is shown in Fig. 5(a), and Fig. 5(b)
shows the frequency deviation with delays of 2 s in each service
area. In both cases, the tie-line is connected with o = 1. Due to
the integral action in the controllers, the steady-state frequency
deviations are zero for each channel with any amount of delay
as expected.

A comparison of the frequency deviation outputs shown in
Fig. 5 with the previous simulation results shown in Figs. 3 and 4
shows that the PID controller with the chosen parameters results
in a longer settling time than the higher order controllers C and
C5 with the chosen parameters and (1 = Q2 = 0. On the other
hand, the PID design does not have any significant overshoot
even for the case of 2-s delays in each service area. If specific
time-domain constraints are given in the design requirements,
then different values of ()1 and Q2 can be explored to satisfy
those constraints.

(58)

V. CONCLUSION

A simple and systematic decentralized controller design pro-
cedure was developed for closed-loop stability and integral ac-
tion large scale multiarea power system interconnections subject
to time delays. Proposition 1 developed a general controller pa-
rameterization for individual service areas, where the parameters
Q; € S canbe chosen to satisfy additional design specifications.
The parameter selections allowed low-order controller imple-
mentation, which was treated in Proposition 2 for the special
cases of PD and PID controllers. The controller gains can be ad-
justed to ensure robust stability and steady-state accuracy for all
expected time delays. Then, the decentralized controller design
for the individual subsystems was modified in Proposition 3-a)
so that closed-loop stability and integral action were maintained
when the service areas were interconnected via a tie-line in a
large scale multiarea configuration. The proposed design was
based on the necessary and sufficient stability conditions stated
in Theorem 1, where the individual service areas interacted due
to the tie-line connection, and each subsystem may be subject
to different time delays. Similar to the case of individual service
areas, Proposition 3-b) specialized the multiarea design to PID
controllers. The frequency deviation outputs due to constant
load disturbances in all service areas go to zero due to the
integral action in the designed controllers. The customization
of controller parameters for specific applications and additional
performance objectives can be explored further.
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