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Controller Design for Diagonal Decoupling and Integral Action
A. N. Glindes

Abstract—In the standard linear, time-invariant feedback sys-
tem, controllers that achieve diagonal decoupling and closed-loop
stability exist if and only if the plant satisfies the diagonal denomi-
nator condition or has no coinciding poles and zeros in the region
of instability. A simple and systematic decoupling design proce-
dure is presented under each of these conditions. The closed-loop
poles can be placed at any desired points, and free parameters are
included for satisfying additional design objectives. The designs
are also extended to provide integral action in order to track step
inputs with zero steady-state error.

Index Terms—Control design, decoupling control, integral-
action, tracking controller.

|. INTRODUCTION

The removal of the interaction between inputs and outputs while
achieving internal stabilization of the closed-loop system is a very
important controller design objective for linear time-invariant (LTI),
multi-input multi-output (MIMO) systems. The complete elimination
of this coupling results in a diagonal and nonsingular complementary
sensitivity transfer function. Research on diagonal decoupling has a
very long history. This problem has been studied under different solv-
ability conditions using various state-feedback and output-feedback
approaches, (e.g., [4], [8], [15], [17]). and in some cases with configu-
rations that may include a precompensator in the feedback loop [3].

Decoupling controller designs that also achieve internal stability
were proposed using two-parameter compensation schemes (e.g., [1],
[9]). The problem becomes challenging when the output being decou-
pled is the one used in feedback, and the controller is expected to
achieve both internal stability and diagonal decoupling. In this one-
degree-of-freedom configuration, diagonally decoupling controllers
exist for LTI, MIMO plants with no right-half plane (RHP) pole-zero
coincidences [7], [10], [14]. Various conditions were also explored for
plants that do not satisfy this well-known sufficient condition [6], [11],
[13], [16].

This article establishes that the decoupling problem can be solved
if and only if at least one of two conditions holds; if the plant RHP
pole-zero coincidences, then it can be decoupled if and only if it
satisfies the diagonal denominator condition. The significance of this
article is the simple and systematic design methods that provide explicit
controller parameterizations for diagonal decoupling with internal sta-
bilization. Additionally, integral action can be included in the designed
controllers. There is no need to obtain coprime factorizations or to
solve additional Bézout identities for the proposed controller designs.
The closed-loop poles are assigned as desired, and additional free
parameters are included to be used for satisfying other design objectives.
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Unity-feedback system . (P, C).

Fig. 1.

The problem is formally stated in Section II. The two decoupling
conditions and the main Theorem 1 are stated in Section III. The
constructive proof of existence of decoupling controllers is given by
Propositions 1 and 2, which develop the new decoupling controller
design method without using coprime factorization computations. In
Section 1V, these design procedures are extended to include integral
action in addition to internal stability and decoupling, so that the
steady-state errors for constant reference inputs go to zero asymptoti-
cally. Several examples of the proposed decoupling and integral-action
designs are given in Section V.

The following standard notation is used: The region of instability is
the extended closed RHP, C U {o0} = { s € C|Ze(s) > 0} U {c0};
the open left-half plane (OLHP) is C_ . Real and positive real numbers
are R and R ; Ry, denotes real proper rational functions; S C Ry, is
the stable subset with no poles in /. The set of matrices with entries
in S is M( S ). The identity matrix is . For simplicity, we drop (s)
in transfer matrices such as P(s). Let M := {1,...,m}. A diagonal

matrix, with diagonal entries D , j € M, is denoted by diag [Dj] -
jE
or diag [Dl, ey Dm]. Transmission zeros and blocking zeros of an
MIMO plant are simply called zeros here; we are only interested in
the zeros in C; U {oo}. The degree of the polynomial p(s) is denoted
by deg(p). A polynomial that has all roots in C_ is called a Hurwitz

polynomial (HP).

Il. PROBLEM DESCRIPTION

The standard LTI, MIMO unity-feedback system .&(P,C') is in
Fig. I; P € Rp,"™*™, and C' € R,™""™ are the plant’s and the con-
troller’s transfer functions, and rank P = m . The objective is to design
simple stabilizing controllers that achieve diagonal decoupling, and
asymptotic tracking of step-input references with zero steady-state
error. The closed-loop transfer function H from (u, v) to (w, y) is:

C(I+PC)yt —C(I+PC)'P

H=lpci+poyr (1+Po)pP | o

Let H,,, denote the input-output (complementary sensitivity) transfer
function from « to y. Let H., denote the input-error (sensitivity)
transfer function from w to e.

Definition 1: i) The system .7 (P, C') is stable if the closed-loop
transfer function H € M( S ). The controller C'is called a stabilizing
controller if C'is proper and H € M( S ). ii) The stable . (P, C') is
diagonally decoupled if H,,, is diagonal and nonsingular. A stabilizing
controller is called a decoupling controller if . (P, C') is diagonally
decoupled. iii) The system .& (P, C') has integral action if it is stable,
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and H.,(0) = 0. A stabilizing controller C'is an integral-action con-
troller if it has poles at s = 0. iv) The controller C' is a decoupling
controller with integral action if C' stabilizes P, has poles at s = 0,
and the stable system ./ (P, C') is both diagonally decoupled and has
integral action. |

For stable .7 (P, C), the steady-state error e(t) for constant inputs
applied at u(t) goes to zero asymptotically if and only if the sys-
tem has integral action, i.e., H.,(0) = 0. The controller is designed
with poles at zero to achieve integral action (see the internal model
principle [5], [12]). A necessary condition for diagonal decoupling
is that P € Rp™"™ is full rank m since the rank of nonsingular
H,, = PC(I + PC) ' is m. When the design includes integral ac-
tion, it is also assumed that I has no zeros at s = 0.

Ill. DECOUPLING CONTROLLER DESIGN

Let P € Rp,™ ™, rank P = m.If there exist controllers such that the
system . (P, C') is diagonally decoupled, then for some diagonal, non-
singular ¥ € S™™ H = PC(I+PC)'=TandH € M(S)
in (1)

Py —plyp
H= . (@)
v (I-0)P
All decoupling controllers C' € R,™*™ are expressed as
C=P'w(I-v)" (3)

Since W is designed so that P~"¥ € M( S ), the controllers in (3) are
properif (I — ¥)~! € M(R,). The closed-loop poles are assigned by
choosing the denominators freely in the diagonal matrix W. Write the
entries of P € Rp,™ "™ in polynomial factored form

P= {7 i ] )
Y7i3Y 5 1 jenr

x;; is the numerator, (y°;;4*;;) is the monic denominator polynomial
of theijthentry of P. Theroots of y*,; are the C . —poles of P. Allroots
of y*;; arein C_. For i € M, define y; as the monic least-common-
multiple of all y*;; in the ith row. Let ¢; be any monic HP such
that deg(y;) = deg(y;). Define Y; € S and the diagonal Y € §"*™
as (5)

yo=lemy’,, jeM; Vi=2 vy =dagly] . ®

wi ieM

Therefore, (y*,;) 'y, €S.Y; :” €S = Y P e S"™*". The terms
ij
Y ;(00) = 1.If all mentries in the ith row of P are stable, then Y, = 1.

Write the entries of P~ in polynomial factored form

P = [7”3 ] ©)
di5d"i; | jenr

n;; is the numerator, (d*;;d";;) is the monic denominator polynomial
of the (possibly improper) ijth entry of P~*. All roots of d";; are in
C; all roots of d°;; are in C_.

Since rank P = m, (Y P) ! exists, and it may be proper or im-
proper. Write the entries of (Y P) ! in factored form

(YP)' = [7 e } = {757”’; ﬁ} ™)
Foiftiilijen L0585 Y515 e

e;j is the numerator, (f*,; f*;;) is the monic denominator polynomial
of the 7jth entry of (Y P)~". All roots of f*,; arein C. and all roots

of f*,; arein C_.For j € M, define f; as the monic least-common-
multiple of all f*;; in the jth column; therefore, (f*;;)"'f; € S

fj=lem f*;;, i€ M. (8)

ij

The expression for P~ " in (6) is a special case of (7) when P € M( S ),
since Y = [ in that case.

An important sufficient condition for existence of decoupling con-
trollers is obtained in terms of the C., -zeros of f; as stated in Condi-
tion 1 below: The system . (P, C') can be decoupled if y/; has no zeros
coinciding with the C y -zeros of the corresponding f; . This sufficient
existence condition is equivalent to each (y, , f;) pair being coprime.
Furthermore, if P does not satisfy Condition 1, then the only way it can
be decoupled is if P has no coinciding RHP poles and zeros, which is
stated as Condition 2.

Condition 1. Diagonal denominator condition: For £ = 1,..., i ,
let zj, € C be the p; distinct roots of f;, where 0 < ju;. The
multiplicity of zj, is mye. For je M, if y;(zj) #0 for all
Zj1, 2525 - Zjuy € C. then P satisfies the diagonal denominator
condition. ]

If P does not satisfy the diagonal denominator condition, i.e., for
some j € M, y;(zje) = 0 for any of the 2, zjo, ... Zin; € Cq s
then this z;, € C is also a pole of P. Define v € S as the monic
least-common-multiple of all y*,; in all entries of P in (4)

vi=lemy",; =lemy,;, i,j€ M. 9)

Deﬁn¢ A as the monic least-common-multiple of all d;; in all entries
of P~!in (6)

A =lemdy, i,j€ M. (10)

Therefore, (d%;;)'» € S. If P~" has no finite C_-poles, then all
d";; = 1, which implies A = 1.

Condition 2. No RHP pole-zero coincidence condition: For ¢ =
1,...,u,letz, € Cp bethe p distinctroots of A where 0 < 1, where
the multiplicity of z, is my,. If y(2,) # 0 for 21, 22, ... 2z, € Cy,
then P satisfies the no RHP pole-zero coincidence condition. |

Theorem 1: Necessary and sufficient conditions for decoupling: Let
P eR,™™, rankP = m. There exist decoupling controllers if and
only if P satisfies at least one of the two conditions: Condition 1
(diagonal denominator condition) or Condition 2 (no RHP pole-zero
coincidence condition). O

Proof of Theorem 1: Necessity: Suppose that Conditions 1 and 2
both fail. Let z € C; be a common zero of y; and f, for some j.
Then, P has a pole at s = z that appears in the jth row, and s = z is
also a pole that appears in some column of P~ . By (2), for closed-loop
stability, P~'¥ € M(S)and P'UP = (YP)'W(YP) € M(S)
imply either 1;(z) = 0 or that every entry of ¥ is the same, which
requires that P has no coinciding RHP poles and zeros. But also by (2),
(I —W)P e M(S) implies (1 —1);(s)) must have a zero at s = z
to cancel the pole of P in the jth row. This is a contradiction since
1j(z;) = 0. Therefore, the transfer function H,, = ¥ of the stable
closed-loop system cannot be diagonal when both conditions fail. W

The sufficiency of each condition in Theorem 1 is proved by explicit
construction. Propositions 1 and 2 give detailed construction of a
complete set of decoupling controllers for P satisfying the diagonal
denominator condition and the no RHP pole-zero coincidence condi-
tion, respectively. These designs also allow placing the closed-loop
poles at any desired locations in the OLHP.

Proposition 1: Decoupling controller design procedure for P sat-
isfying the diagonal denominator condition.

Step 1: For each entry of (Y P) ™!, define the integers p;; > 0, and
p; as the largest of all p;; in the jth column as (11). If the 7jth entry
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of (Y P)~" is proper, then p;; = 0
pij = max{0,deg(e;;) —deg (f*;; i)}

pj = max p;, 1,j € M.
i=1,...m

(1)
For j € M, let £; be any monic HP, deg(&;) = p; + deg(f;). Define
F'; € S and the diagonal F' € S™*™ as (12)

fi

=
F; €S = (YP)"'F € S™*™ If p; # 0, then F,

P, F = diag [F]}jeM . (12)
€ij
f*i
has p; zeros at infinity.

Step 2: Define 6; €S as (13); Y;(o0) =1=6;(c0) =

By (12),

[12,(1 =Y ;(z50) )™t if pj = 0;0,(0c) = 0if p; # 0
i
0; 0= (1 =Y, [[(A=Y;(z0) 'V )™e, jeM.  (13)
=1

Step 3: Define U = diag [z/)j] . € S™*™, where 1; € S have
jeM

one of three possible values as (14)—~(16)
DIfY; =1, then withg; € S

Vi =Fiq;, q; #0, q;(c0) # Fy(00) ™ (14)
and ¢; (1 — ;)" = Fjq;(1 — Fjq5) "
i) IfY; # 1,but I'; = 1, then with ¢; € S,
Yy =1-q;Y;), gq(cc)#0 (15)
and ¢ (1 — ;) ' = (1 - ¢;Y; )(q;Y;) ' = (Yi'g; " — 1)
iii) IfY; # 1, and F'; # 1, then with g; € S
V5 = (0; + ¢ F;Y;), q;(0) # (1 —0;(00))Fj(c0)™"  (16)

(1 —=y) = (0;+q;F;Y;)(1 - 0; — q;F;Y ;)%
Then, C = P10 (I — ¥)~" in (17) is a decoupling controller:

C = P Mdiag [¢;(1— ;)] - an

The corresponding diagonal input—output transfer function is Hy, =
W . The closed-loop poles are the roots of the polynomials ¢; in Y
and &; in I}, and the poles of ¢; . ]

Remarks 1: Justification of Proposition I: For all three cases (14)—
(16), v; is constructed so that (YP) ' F e M(S) = (YP) 'U €
M(S). Also, (I — W)Y € M(S) by construction. With C' as in
(17), the stability of H in (1) is shown as follows: Since the diagonal
U and Y commute, and YP € M(S), (YP) 'W e M(S), we
have H,, = P U = (YP) ' UY € M(S), Hyp = —H, P =
—-(ypP)'vyPe M(S), H,,=PH,, =Y € M(S), H,, =
(I-U)P=(I—-0)Y 'YPc M(S).In(14)<(16), the constraints
on g;j(co) ensure that (1 —1);)t € Ry, and hence, C' in (17)
is proper. Therefore, C' is a stabilizing controller, and the corre-
sponding input-output transfer function H,, = V¥ is diagonal and
nonsingular. O

Remarks 2: Special Case: Decoupling design for stable plants:
If PeS™ ™, rankP=m, then y*;; =1=y,, YV;=1, Y =1
Therefore, (YP)! = P7!, ie., d“;; = f*;; in (6) and (7); hence,
the diagonal denominator condition holds for stable plants. The de-
coupling controller design in Proposition 1 is simplified by choosing
1; = Fjq; asin (14) of part (i) as follows: Let Q = diag[q; |jenm €
S™*™ be any stable, nonsingular, diagonal matrix, with q; € S, ¢; #
0, g;(c0) # F;(c0) . Let ¥ = diag[ F;q; | jenr = FQ. The decou-
pling controllers in (17) become

C=P'FQ(I —-FQ)™". (18)

The corresponding diagonal input—output transfer function is H,, =
U = diag [ F;q; | jens » where g; € S satisfies g; # 0, and g;(oc0) #
F;(c0)™! to ensure propernes of C. The closed-loop poles are the
roots of the polynomial &; in F'; and the poles of g; . ]

Remarks 3: Special Case: Decoupling design for inverse-stable
plants: It P ¢ M(S), but P~' € S™™ then (Y P)™ ' € M(S).
Therefore, F'; = 1,and F' = I in (12); hence, the diagonal denomina-
tor condition holds for inverse-stable plants. The decoupling controller
design in Proposition 1 is simplified by choosing v; = (1 — ¢;Y; )
as in (15) of part (ii) as follows: Let ) = diag [qj]jEM € |Smxm

be any stable, nonsingular, diagonal matrix, with g; € S satisfying
qj(00) # 0. Let ¥ =diag[ (1 — ¢;Y;) ]jens . The decoupling con-
trollers in (17) become

C=P'I-QV)QV) ' =P (Y 'Q'~-1). (19

The diagonal input—output transfer function is H,, =¥ = (I —
QY') = diag[1 — ¢;Y;]em, where g;(c0) # 0 so that C' is proper.
The the closed-loop poles are the roots of the polynomial ¢; in Y';
and the poles of g; . ]

The diagonal decoupling controller design in Proposition 1 only ap-
plies to plants satisfying the assumption y;(z;¢) # 0 for the C  -zeros
zje € Cy of f;,for £ =1,...,p;. If at least one y; has zeros that
coincide with z;, of the corresponding f ; , itis still possible to decouple
the system . (P, C) if the plant’s C -zeros do not coincide with its
poles. Proposition 2 gives a procedure similar to the method in Propo-
sition 1. Although decoupling for the case of plants with noncoincident
C . -zeros and poles has been studied extensively (e.g., [6], [7], [10]),
the procedure given here provides a much simpler and complete design
without computing coprime factorizations.

Proposition 2: Decoupling controller design procedure for P sat-
isfying the no RHP pole-zero coincidence condition.

LetP € R,™ ™, P ¢ M(S),P ' ¢ M(S),rankP = m. With
Y; € Sasin(5), suppose that, for at leastone y; , j € M, y;(z¢) =0
for at least one of the C,-zeros zj; € C of f;, £=1,... p;. If
~(z¢) # 0 at each C -zero z, of A, then:

Step 1: Let ¢ be a monic HP such that deg(y) = deg(+y); define
res

I':= l.
v

Step 2: Define the integers p;; > 0 for each entry of P!, and p as

the largest of all j;; . If P~ is proper, then p = 0.

pij = max{0,deg(n;;) — deg(d";;d";;) }.

(20)

p= max jy, ije€M. @1
L

i,5=1,..
Let & be any monic HP such that deg(£) = p + deg(1). Define A € S
as in (22); then AP~! € S™*™

A
A=—. 22
€ (22)
Step 3: Define 8 € S as (23); I'(c0) =1 ==0(o0) =[]/_, (1 —
T(ze) )™ if p=0;0(c0) = 0if p #£ 0.
I
0:=1-1) [[(1—T(z)'T)™. (23)
=1
Step 4: Define 1) € S as
Y= (0+qAT), ¢ €8, g(o0) # (1—60(00)A(cc) . (24)
Then, C'in (25) is a decoupling controller
C=uv(I—¢)'P ' =0 +q¢AT)(1 -0 —gAT)"'P~ . (25)
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The corresponding diagonal transfer function is H,, = ¥I. The
closed-loop poles are the roots of the polynomials ¢, £, and the poles
of q. O

Remarks 4: Justification of Proposition 2: With 1 as in
(24), and C given by (25), APt € M(S) implies yP !¢
M(S) since the Cy-zeros of # and of A are the same. Fur-
thermore, (1 —1) = RI' for some R €S implies (1—)P €
M(S). Then, in H of (1), Hy, =¢P ' e M(S), Hy, =
—H P =—-yI € M(S),H,, =PH,, =¢I € M(S), H,, =
(I —4¢)P e M(S). In (24), the constraint on g(oo) ensures that
(1 —1) ' € Ry, and hence, the decoupling controller C' in (17) is
proper. g

Remarks 5: Plants that satisfy both sufficient conditions: Some
plants with no coinciding €, -poles and zeros also satisfy the assump-
tions of Proposition 1. The controller design procedure first checks if
Condition 1 holds, and applies Proposition 1 to such plants. The plant
in Example 3 is an example of a plant satistying both conditions. [

IV. INTEGRAL-ACTION DECOUPLING CONTROLLERS

The necessary condition for existence of integral-action controllers
is that P has no zeros at s = 0. Under this assumption, the proposed
decoupling controller designs are extended to include integral action in
Propositions 3 and 4.

Proposition 3: Integral-action decoupling controllers for P satis-
fying the diagonal denominator condition.

Under the assumption of Proposition 1, let P have no zeros at s =
0. The decoupling controller in (17) becomes also an integral-action
controller C'; = P~'W; (I — W )" if the entries Pir €Sof Uy =
diag [wj [] . € S™*™ has one of three possible values

DIFY, = 1, then forany a; € R,

~ s
(jj S S, (L(OO) # Fj(OO)71 — FJ(O)il.
i) IfY; # 1, but F'; = 1, then for any or; € R
S ~ ~ ~
vir = (1 - mtbyj) , 4; €8, Gj(0) #0 (27)
Pir(1 =)t = (LY gt — ).
iii) If Y; # 1, and F'; # 1, then for any o; € R
_ S ~
Vi =0; + F;F;(0)1(1-60;) + T%%ijj (28)

4; €8, g;(00) # (1= 0;(00))(Fj(00)* — F;(0)1).
With 1);7 as in (26)—(28) of cases (i)—(iii), an integral-action decou-
pling controller C'; is

C; = P ldiag [@,(1 - wj,)—l] (29)

jem
For case (ii), g; = 0 is not a possible choice for 1), in (26) and (27). If
all entries are as in case (iii) for all j € M, then by (29), ¢; = 0 gives
the “nominal” integral-action decoupling controller C'¢ as (30)

C(} _ P’ldiag [(1 _ 9]_)—1(1 _ Fij (0)—1)*1 _ 1] (30)

jeM
The decoupled closed-loop transfer function with integral action is
H,,; = ¥, and the dc-gain of the input-error transfer function is
HeuI(O) =I- \III(O) =0. g

Remarks 6: Justification of integral action for Proposition 3: For
11 asin(26)-(28), ¥;(0) = I. Therefore, C'; in (29) has poles at s =
0. In (26)—(28), the constraints on §;(co) ensure that (1 —,7)~! €

Ry ; Cin (17) is a proper decoupling controller with integral action,
and H,,;(0) = I — ¥(0) = 0, i.e., the system . (P, C) is decoupled
and has integral action. (]

Remarks 7: Special Case: Integral-action decoupling controllers
for stable plants: 1If P € S™*™ has no zeros at s = 0, i.e., rank P(0) =
m, then the integral-action decoupling controller design in Proposition
3 is simplified, and the decoupling C' in (18) is also an integral-action
controller if the diagonal ) = diag[q; |jear € S™ ™ satisfies (31) for
any o € R and any diagonal Q; = diag[§; ]jens € S™*™

S
=di F (0t + —/—g,
Q 1ag J() +8+a%

(31

jeM
Gj €8S,Gj(00) # Fj(oco)t = F;(0) !, forj € M. With@ € S™*™
asin (31), the integral-action decoupling controller C'; is given by (29),
with ¢;; as in (26). For ¢; = 0 in (31), the “nominal” integral-action
decoupling controller C{ is

C7 =P diag [F;F;(0) (1 - F;F;00 )., (32
The diagonal input—output transfer function H,,; is
E
Hyur =diag | F; (F;(0) ' + T 33
yul g | £ (F;(0) s—i—(xqj) ey (33)
g; € S satisfy g;(c0) # Fj(co)™t — F;(0)71. O

Remarks 8: Special Case: Integral-action decoupling design for
inverse-stable plants: If P ¢ M('S), but P~' € S™*™ _ then P has
no zeros at s = 0, i.e., rank P(0) = m. The integral-action decoupling
controller design in Proposition 3 is simplified, and the decoupling C'
in (19) is also an integral-action controller if the diagonal ) € S™*™
satisfies (34) forany o € R

S S

Q:s—I—aQI:s-l-

For diagonal @y € S™*™ as in (34), the integral-action decoupling
controller C'; and the diagonal input—output transfer function H,, s
are

S+ «

Cr=P ' [2(QuY) " — 1], Hyur =1 = = Q1Y (39)

S
O
Proposition 4: Integral-action decoupling controllers for P satis-
fying the no RHP pole-zero coincidence condition.
Under the assumption of Proposition 2, let P have no zeros at s = 0.
Forany o € R, ,letvy; € S be:
S
=0+ AA0) (1 —0) + ——GAT 36
i =0+ ANO)H(1-0)+ ——4 (36)
G €S, G(c0) # (1 —0(x))(A(c0)™t — A(0)~1). Then, with ), asin
(36), C'r in (37) is a decoupling integral-action controller

Cr=v¢r(1—¢n) P (37)

For ¢ = 0, the integral-action decoupling controller becomes
Ci=[1-0)""1-AAO0) ) —1] PN (38)
Then, Hyur=%¢rI, and Heyr = (1—¢)I =[(1-0)(1—

AA(0)1) — 2= gATIL O

Remarks 9: Justification of integral action for Proposition 4: For
P asin (36), (1 —1;(0)) = 0 implies C'; in (37) has poles at s = 0,
and H,;(0) = (1 —;(0))I = 0. The constraint on §(co) ensures
that (1 —¢;)~* € M(R,,); therefore, C in (37) is proper. O
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V. EXAMPLES =(s—1), he :=(s—11). With y; = (s —2), y, = (s —4),
Example 1: P satisfies Condition 1; has one coinciding RHP ~ choosing @1 = (s+3), 2= (s+5), Y =diag [Zi ) %]
s—1 s—1 2y21 —$2
_ . _ | s—2 (s—2)(s+4) _ _ “hiho “ho
pole-zero: The plant P = |:S+f i4 ] has C-poles at 1.2, (y p)-1 = [@’111(’5114) W(}?H)} The zeros of f; = hihy are
L Bs N hyh ;
and‘(CJr-zeros at 1,5, and infinity. Then, y, = (s — 2), y, = (s — 1). 21 =1,210 = ﬁzzthe zeroof fo, = hs is le =11. With p; = py =
Define  hy = (s+4), hy=(s—5). Choose 1 =(s+3), 1, choosmg &1 =¢% and & = @2, F, = 51, Fy= f2 . By (13),
2oy 22 _ 1 1y —125h h
yoha ha 92 = (1 - YQ)(I - Yg(ll)_1Y2) = 78122.

The zeros of f, =wy,hy are z;; =1,z =>5; the zero of
fo=ha is z21 =5. With p; =po =1, & 1is a third order and
&> is a second-order HP; Iy = Jg—i and Fy = f;. By (13),

0= (1=Y)(1 =Y (1) 'Y ) (1= Ya(5) Yy) = 22l
2= (1-Y2)(1-Y3(5) 1Y) = _%2-

a) By (16), F';(c0) =0

for j=1,2 implies ; =(0;+¢;F;Y;) for any g; €8S.
Let = (382 + 158s — 353), gs 1= (582 + 18s 4 297).
Choose ¢q1 =q2=0; H,, = diag [91 , 92]~ By 17), C=
—250y9 9
P ding [0l 0ls] [L 333?]
b) Choose §1 = 901’ 52 (pz, q1 = q2 =0; b-{—eztogg (5445 +

1521s% + 34938s — 2187), g4 := (14s% + 185s + 125). By (30),

—2Y293 94

C9 = | soroz sHIN(H20) | g an jntegral-action controller.
p193h1 —gahi
59192 s(s+15)(s+20)

Example 2: P satisfies Condition 1, has two coinciding RHP
poles zeros: Define hy = (s — 1), ha = (s —2), hs = (s +5), hy =

—hiho hihg —hihohy
(s+(2)(s;&»4)2 hg((s+4))22 (s+2)(s+4)2
_ s+2 —(s+2 12
(s+ 7). The plant P = halatd) Ta et 7 =
+4
0 hslhB 0

has coinciding C -poles and zeros at s = 1 and s = 2. With y, = 1,

Yo = ho,ys = h1.p1 = 1, choose w3 = (s +2), v3 = (s + 4); then
®2 L2
h1 ®3

Y = diag [1, y—i, E] (YP)t=1] 0 0  hg|.ByProposi-
-3 o=

hihg

tion 1, f; = hiha, fo =1, f3 = hy. The (C+-zero off3 is z1 = 2;
Y3(z1) # 0.By(13),05 = (1 — Y3)(1 — Y3(2)"1Y3) = 'fjhz From
3

(14~(16), 1 = Frqr = 221, 4hy = (1= Yaqa) = (1 — 22¢y),
s = (252 + 2 q3): a1, 42, 43 €S, qu(00) # 0. gz2(00) #0;
&1, &3 are second-order HPs.

a) Choose &1 = ¢3(s+5),q1 = 0.5, ¢2 = 1, g3 = 0. Define g; :=
(s+19), g2 := (s + 34), g3 := (335 + 464s + 128). By (17), C =

ha 4hg 0
1 hal 4 251 n w2es 25hsol
“di vy 4 —=oha ) — Z25hahg | -
P diag [4’291 ? h2? higz } 0 0 $392 is a de
) -4 2505
. g1 P23 ©392
coupling controller.
b) In (26)-(28), choose & =2, G1=43=0, Go=
10h1h 8(s+1
L, az=4 Then, ¢1;=—"¢"2 = %, Par =
—h>g5 _ —10h1 ho 8(s+1) —hogs
Aps ’ CI - P dlag [33(33—13)’ shy ° sh1g2(s+16)]
—10pshy  8ha(s+1) 0
3s(3s—13) spaps
_ —hogshg
- 0 R 0 sp392(s+16) O
1093 —8(s+1) —293
3s(3s5—13) spo@3 sp3g2(s+16)
Example 3: P satisfies both Conditions 1 and 2: The
s=1 s—1
plant P = :_i <3*2)2(3+4) has Cj-poles at 2,4, and none
s—4 s+4

coinciding with the C,-zeros at 1,11, and infinity. Define

7<p2

a) By (16), Fj(c0) =0 implies t; = (8, +q,;F;Y ;) for
any ¢; €S. Let ¢ =¢g2=0, g¢1:=(97s%+224s—809),
g2 :=(7s+179), g3 :=(117s* +72s+621); by (17), C=

hih i e o

—1 3 —125h —81h _

P~ diag [ a1 yll 2 y;] = | 12505(s+4)  —s1(ata)
g1 92
b) Choosing ¢ = (jz =0, define g4 = (1132‘: + 681352 +
710645 — 6561), (10665 + 126855 +4375), g =
o __ —1 h1h- —gsh
(115 + 135). By (30), €9 = P ldiag [S;ﬂg;yf , 5959552]
—294Y2 g5
o134y gated%y | 1s an integral-action controller. O
59193 59296

Example 4: P satisfies Condition 2 but not Condition 1: De-

fine hy = (s + 1), ha = (s — 1), hg = (s* — 65+ 3), hy = (s — 3),
(s+2) 1

g1 =(s—4),g92 = (s+4). The plant P = [_}E;TQ) »2 | hasno
hohg hohyg

coincident C -poles and zeros. Then, y; = ha, y5 = y;hs . Choose

@1 =(s+2), ¢o=pi1g2; then Y = diag [% %] (YP) ! =
hihs  —Zhigs
ot v | The Co-zeros of fy = f,=giy, are ziy =
9191 giyi1

291 = 1,219 = 299 = 4. Since y1(211) = 0 and y5(221) = 0, P does
not satisfy Condition 1 required for the decoupling controller de-
sign in Proposition 1. Check the alternate Condition 2:P~* =
hihs  —hihg
gﬁl gﬁl . Then, A = ¢g; has only one C,-zero at z; = 4.
g1 g1
With v =y,, P satisfies the no RHP pole-zero coincidence con-
dition since (4) # 0. Let ¢ = ¢, and since p =1, choose & as

any second-order HP; for example, £ = ¢. Then, I' = %, A= 2

3
By (23), 6 = (1 —)(1 —[(4)7'T) = 2222002 ) Follow-
ing Proposition 2, choosing g=0,by (25, C=0(1-0)"'P "' =
—251(2s+1)(35-2) p— o o _ —25)(2s5+1)(3s-2)
(21 1665788) Pl and Hy, =1 =01 = RS A 1.b)
Since P has no zeros at s = (, integral-action decoupling controllers

are obtained by Proposition 4. For ¢ =0, by (37), C'; becomes

(152544119953 — 14652 —2085+128) hlh b
o __ - s s°— 5 —208s w01 _
Cr = 75(s+8)(52+1665+88) h1 he | and Hy,; =
—1(1525* 4119953 —14652 2085+ 128) 7. _ sy(s+8)(s241665+88)
) (512)3(s14)3 Iithen Heyp = et
18 zero at s =

Example 5: P cannot be decoupled: The plant P =

[ 1 1
s+1 s5+2
1 s

(s—1)(s+1) §57‘1)€s+2)' )

[16], has a coinciding C_-pole and zero at s = 1. With y, =1,

], which was considered in [11], [15],

Yo = (s—1), choosing =(s+5), Y =diag [1, j;é],
s(s+1) —(s+1)(s+5)
(YP) ' = | L (5 |- The only Cy-zero of
s—1 s—1

fi=fa=(s—1) is z11 = z21 = 1. The diagonal denominator
condition is not satisfied since y,(1) = 0. Since both Condition 1
and 2 fail, by Theorem 1, there are no decoupling controllers for
P. O
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VI. CONCLUSION

Simple decoupling controller design procedures were proposed for
all plant classes that can be diagonally decoupled. The designs include
the option of integral action in the controllers, which implies that steady-
state errors for constant reference inputs go to zero asymptotically. The
controllers are derived from the inverse of the plant’s transfer function,
without using coprime factorizations. With minor modifications, the
designs can be applied to non-square full row-rank plants by using
right inverses.
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