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Abstract— Two important design objectives in feedback con-
trol are steady-state error minimization and delay margin
maximization. In general these two objectives work against each
other. This paper starts with an initial controller designed to
satisfy the steady-state error requirement, and shows how one
can modify it to improve the delay margin without changing
the steady-state error.

I. INTRODUCTION

In feedback control theory, one of the most important
stability robustness measures is the delay margin (DM).
Classical control techniques, such as lead-lag and PID con-
troller designs, try to meet a given desired phase margin
requirement, [1], [2]; but these do not directly guarantee
the amount of delay uncertainty that can be tolerated by
such designs. In order to tackle this issue directly, many
studies in recent years have been devoted to the delay margin
optimization problem, [5], [9], [10]. More precisely, for a
given nominal plant we would like to compute the largest
possible DM one can obtain over all stabilizing controllers.
Finding the optimal controller maximizing the delay margin
is still an open problem for the general class of unstable
plants with multiple poles in the right half plane, [10].
Therefore, recent publications on this topic consider some
special class of plants, or investigate upper and lower bounds
of the largest achievable delay margin, see e.g. [4], [5], [9].

In this paper we consider the delay margin improvement
problem, over an initially designed stabilizing controller,
which takes care of the steady state error requirement. This
is similar to lead-lag controller design, where one modifies
an initially designed controller to improve the phase margin.
For stable plants, typically lag controllers increase the phase
margin and decrease the crossover frequency, [1]. Hence,
for such systems the delay margin can be improved by
lag controllers. However, for unstable plants delay margin
improvement is not as simple.

The paper is organized as follows. In Section II the delay
margin (DM) is defined; then, its computation and lower
bounds are discussed. The trade-off with DM maximization
and tracking error minimization is also illustrated. In Sec-
tion III it is assumed that an initial controller is designed
to make the steady-state error zero when unit step reference
input is applied. Then, a new method is proposed to modify
this controller to improve the delay margin without changing
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the poles of the controller at s = 0. Conclusions and a
discussion on future directions can be found in the last
section. This brief version of the paper outlines the proposed
method for controller design for DM improvement without
technical details. For proofs and and further discussion with
more illustrative examples we refer to the full version, [3].

Notation: The closed right-half-plane (RHP) is C+ = { s ∈
C | <e(s) ≥ 0 }, and the open left-half-plane (LHP) is
C− = { s ∈ C | <e(s) < 0 }. The region of instability
U is the extended closed RHP, i.e., U = C+ ∪ {∞}.
Real and positive real numbers are denoted by R and R+ ,
respectively; Rp denotes real proper rational functions of
s; S ⊂ Rp is the stable subset with no poles in U . The
space H∞ is the set of all bounded analytic functions in
C+ . A matrix-valued function H is in M(H∞) if all its
entries are in H∞ . For f ∈ H∞ , the norm ‖ · ‖ is defined
as ‖f‖ := ess sups∈C+

|f(s)|, where ess sup denotes the
essential supremum. The degree of the polynomial d is
denoted by δ(d). For simplicity, we drop (s) in transfer
functions such as P(s) when this causes no confusion.

II. PROBLEM DEFINITION AND PRELIMINARY
REMARKS

Consider the feedback system S (e−shP,C) in Fig. 1.
The rational transfer function P ∈ Rp represents a given
nominal plant (without time delays), and C ∈ Rp is the
rational transfer function of the controller. With u, v, w, y
as inputs and outputs, the closed-loop map H is

H =

[
CHeu −CHeue

−shP
Hyu Heue

−shP

]
(1)

where the input-output map from u to y (complementary
sensitivity function) is denoted by Hyu ; the input-error map
from u to e (sensitivity function) is denoted by Heu :

Hyu = e−shPC(1 + e−shPC)−1

Heu = (1 + e−shPC)−1 = I −Hyu. (2)

- f - C(s) - f?- -e−shP(s)
6−

u e
v

w y

Fig. 1. The feedback system S (e−shP,C).

Definition 1: a) The feedback system S (e−shP,C)
shown in Fig. 1 is stable if H is in M(H∞).
b) The controller C ∈ Rp is a stabilizing controller for
e−shP if S (e−shP,C) is stable.
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c) The system S (e−shP,C) is stable and has integral-action
if the closed-loop map H is stable, and the (input-error)
transfer function Heu has zeros at s = 0.
d) The controller C is an integral-action controller if C
stabilizes e−shP and C has at least one pole at s = 0.
e) Let C ∈ Rp be a stabilizing controller for the delay-
free plant P . The minimum time-delay hm > 0 such that
the closed-loop system S (e−shmP,C) becomes unstable is
called the delay margin (DM). �

An initial controller Co(s) is designed to stabilize the
delay-free feedback system S (P,Co). The input-output
transfer function Hyu with the controller Co is defined as

Ho := PCo(1 +PCo)
−1 . (3)

Assumption. Throughout the paper we assume that the
stabilizing controller Co is designed so that the open-loop
system Go = PCo is strictly proper. Consequently, the
closed-loop transfer function Ho is also strictly proper. This
design makes sure that the characteristic equation of the
feedback system is a retarded quasi-polynomial. Hence we
do not have to worry about the possibility of neutral chain
of poles asymptotically approaching a vertical line in C. �

By continuity, the feedback system S (e−hsP,Co) with
delayed plant is stable for all h ∈ [0, hm) for some hm > 0.
The largest possible hm satisfying this property is the delay
margin (DM) of the feedback system S (P,Co).

In what follows we use the delay margin lower bound
determined from

DM > ‖sHo‖−1 (4)

which can be computed easily from the H∞-norm of a
rational transfer function (the related Matlab command is
hinfnorm). It should be also noted that for any rational
minimum phase transfer function wh(s) satisfying

|wh(jω)| ≥ ψh(ω) , ∀ ω , ∀h > 0 ,

a lower bound of the delay margin is given by the largest
h > 0 that satisfies

‖whHo‖ < 1 . (5)

Obviously wh(s) = hs is a special case that satisfies (5).
Various possible choices of wh(s) can be found in [8], [10].
Thus, once the controller Co is free in Ho, a lower bound
of the largest achievable delay margin can be computed by
solving a Nevanlinna-Pick interpolation problem resulting
from (5) (see Theorem 4.4 of [10], and also Section 5.1.2
of [8]). However, the controller obtained from this design
may have poor step response performance. As an example,
consider a simple case where P(s) = (s+ a)/(s− p), with
a > 0 and p > 0. This corresponds to a single interpolation
condition and a lower bound of the delay margin is the largest
h > 0 satisfying |wh(p)| < 1 with the corresponding optimal
controller

Copt(s) =
wh(p)

(s+ a)

(
(s− p)

wh(s)− wh(p)

)
.

This controller, which is designed to maximize a lower
bound of the delay margin, typically does not have high
gain at low frequencies; hence it will lead to a large steady-
state error ess for step-like reference inputs, where ess =

lim
s→0

(
1− wh(p)

wh(s)

)
. Note that the steady-state error is non-

zero whenever wh(0) 6= wh(p). Typically, wh is chosen to
have very small values at s = 0, so this means that the
steady-state error gets large as p gets large.

III. DELAY MARGIN IMPROVEMENT
A. Delay Margin Improvement for Stable Plants

Proposition 1: Let P ∈ S . Let Co be a controller that
stabilizes P, i.e., for Q̃ ∈ S, let

Co = Q̃ (1−P Q̃)−1 . (6)

In order to satisfy the standing Assumption stated above, the
following restriction is imposed on Q̃.
a) In (6), for any Q ∈ S and a ∈ R+ , let Q̃ ∈ S be such
that (PCo)(∞) = 0, i.e., let

Q̃ :=

{
Q , if P(∞) = 0
1
s+aQ , if P(∞) 6= 0

(7)

i) Let the controller Co in (6) be pre-specified, i.e., Q̃ ∈ S
is fixed. A lower bound on the delay margin is given by τm :

τm = ‖sPQ̃‖−1 . (8)

The controller Co in (6) stabilizes e−shP for all h ∈ [0, τm).
ii) For a given delay h = τ ∈ R+ , the controller Co in (6)
can be designed to stabilize e−sτP by choosing Q ∈ S in
(7) such that

‖Q‖ <

{
τ−1 ‖sP‖−1 , if P(∞) = 0
τ−1 ‖ s

s+aP‖
−1 , if P(∞) 6= 0 .

(9)

This means that arbitrarily large delay margin can be
achieved by the controller choice determined via (9).
b) Integral-action controllers: Assume that P(0) 6= 0. For
any QI ∈ S and a, b ∈ R+ define

Q̃I :=
b

s+ b
P(0)−1(1 +

s

(s+ a)
QI ) . (10)

With Q̃I as in (10), the controller CI given by (11) is an
integral-action controller that stabilizes P:

CI = Q̃I (1−P Q̃I)
−1 . (11)

i) Let the controller CI in (11) be pre-specified, i.e., Q̃I ∈ S
in (10) is fixed. A lower bound on the delay margin is given
by τmI defined as

τmI =
1

b
|P(0) | ‖ s

(s+ b)
P(1 +

s

(s+ a)
QI)‖−1 . (12)

The controller CI in (11) stabilizes e−shP for all h ∈
[0, τmI).
ii) For a given delay h = τ ∈ R+ , the controller CI in (11)
can be designed to stabilize e−sτP by choosing any QI ∈ S,
and b > 0 in (10) such that

0 < b <
1

τ
|P(0) | ‖P(1 +

s

(s+ a)
QI ) ‖−1 . (13)
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Furthermore, once b is chosen as in (13), the corresponding
lower bound τmI can be found as in (12), and τmI ≥ τ .
Therefore, the controller CI in (11) also stabilizes e−shP
for all h ∈ [0, τmI), where τmI ≥ τ . �

Example 1: For P ∈ S given in (14), since P(0) 6= 0, it
is possible to design integral-action controllers as in (11):

P =
(s2 − 8s+ 20)

(s+ 3)(s+ 4)
. (14)

Choosing QI = 0 and b = 0.9, with |P(0)|−1 = 0.6,
the integral-action controller in (11) and the corresponding
delay-free closed-loop transfer function Hyu become

CI =
10.8(s+ 3)(s+ 4)

s (20s2 + 147.2s+ 452.4)
(15)

Hyu =
0.54(s2 − 8s+ 20)

(s+ 0.9)(s+ 3)(s+ 4)
.

i) By (12), τmI is

τmI =
1

b
P(0) ‖ s

(s+ b)
P‖−1 = 1.4371 . (16)

Then the controller CI in (15) stabilizes e−shP for all h ∈
[0, τmI). The exact delay margin is 2.5481 s.
ii) For a fixed τ > 0, ‖P‖ = P (0) implies that (13) is
satisfied for 0 < b < τ−1. For example, suppose that τ = 2;
then (13) is satisfied for 0 < b < 0.5. The choice of b < 1
then determines τmI , and the controller CI in (15) stabilizes
e−shP for all h ∈ [0, τmI). For example,

b = 0.5 gives τmI = 2.3132 > τ ,

and
b = 0.2 gives τmI = 5.3366 > τ .

Small values of b makes the lower bound of the delay margin
large, but this leads to a slower step response. This is a
fundamental trade-off in controller design. �

B. Delay Margin Improvement for Unstable Plants

Consider an unstable plant whose transfer function P is
factored into numerator and denominator polynomials as

P(s) =
n(s)

ds(s) d(s)
. (17)

The roots of d and ds are the C+-poles and the C−-poles
of P, respectively, and d is a monic polynomial. Since P
is unstable, it has at least one C+-pole. Therefore, δ(d) :=
ν ≥ 1, where ν is the number of unstable poles of P.

Suppose that pi ∈ C+ , i = 1, . . . , ν are the C+-poles of
P , ordered as follows: The first k poles are at zero, where
0 ≤ k ≤ ν , The next ` of the C+-poles are real, 0 ≤ ` ≤
(ν − k) . The remaining C+-poles are m complex-conjugate
pairs pi,i+1 = <e(pi)± j=m(pi), where 2m = ν − (k+ `).
Therefore, d can be expressed as

d(s) = sk
k+∏̀
i=k+1

(s− pi)
k+`+m∏
i=k+`+1

(s2 + 2αis+ ω2
i ) . (18)

where αi := <e(pi) > 0 and ωi := | pi | for complex
conjugate poles. For βi ≥ 0, i = 1, . . . , ν, define

χβ(s) :=

ν∏
i=1

(s+ βi + |pi| ) . (19)

Lemma 1: Suppose that pi ∈ C+ , i = 1, . . . , ν. Let β0 >
0 and βi ≥ 0 be real constants satisfying (βi + | pi |) > 0,
i = 1, . . . , ν. With d(s) and χβ(s) defined as in (18)-(19),
the following norm equalities hold:

‖ s
(

1− d(s)

χβ(s)

)
‖ =

ν∑
i=1

(βi + pi + | pi |) =: ψ (20)

‖ s
(

1− s d(s)

(s+ β0)χβ(s)

)
‖ = β0 + ψ . (21)

�
The main result of the paper given below proposes a

controller design method to improve the DM over an existing
stabilizing controller, without changing its poles at s = 0.

Proposition 2: DM improvement for unstable plants.
Suppose that P /∈ S . Let pi ∈ C+ , i = 1, . . . , ν, be the
C+-poles of P, where these poles are ordered as in (18).
a) Let Co be a stabilizing controller for P such that Ho =
PCo (1+PCo)

−1 is strictly proper. Then the controller Co

stabilizes e−shP for all h ∈ [0, τm), where

τm := ‖ sHo ‖−1 . (22)

b) Let Co be as in part a). Define W as

W (s) :=

{ s

s+ β0
, if k = 0

1 , if k 6= 0
(23)

where β0 > 0. For i = 1, . . . , k, choose βi > 0, and for
i = k + 1, . . . , ν, choose βi ≥ 0. Define U :=W d/χβ and
let

Cβ = (1− U) (1 + UCoP)−1Co . (24)

With Cβ , the closed-loop input-output transfer function is

Hβ := PCβ (1 +PCβ)
−1 = (1− U)Ho . (25)

Then the controller Cβ in (24) stabilizes e−shP for h ∈
[0, τβm), where τβm given by (26) is a lower bound on the
delay margin:

τβm = ‖ sHβ ‖−1 . (26)

Furthermore, the delay margin lower bound satisfies

τβm ≥

(
ν∑
i=ς

βi +

ν∑
i=1

(pi + | pi |)

)−1
‖Ho ‖−1 (27)

where ς = 0 if k = 0 and ς = 1 if k 6= 0. A sufficient
condition for the delay margin lower bound τβm to exceed
the previous delay margin lower bound τm is(

ν∑
i=k+1

(pi + | pi |)

)
‖Ho ‖
‖ sHo ‖

< 1 . (28)

2912



If (28) holds, then choose βi as follows: If k = 0, choose
β0 > 0; otherwise, choose β0 = 0. For i = 1, . . . , k, choose
βi > 0, and for i = k + 1, . . . , ν choose βi ≥ 0 such that

ν∑
i=ς

βi <
‖ sHo ‖
‖Ho ‖

−

(
ν∑

i=k+1

(pi + | pi |)

)
. (29)

Then we have τβm > τm . �

A special case of Proposition 2 is when the only C+-poles
of P are at s = 0 as stated in Corollary 1. These types of
plants are of special interest in various applications, [6].

Corollary 1: Plants with a chain of integrators:
Suppose that P /∈ S . In (18), let d(s) = sν . Let Co be

a stabilizing controller for P such that Ho = PCo (1 +
PCo)

−1 is strictly proper. Then by Proposition 2-(a), the
controller Co stabilizes e−shP for all h ∈ [0, τm), where
τm = ‖ sHo ‖−1 . For i = 1, . . . , ν, choose βi > 0. Let

Cβ = ( 1− sν∏ν
i=1(s+ βi)

) (1+
sν∏ν

i=1(s+ βi)
CoP)−1Co .

(30)
Then, the new complementary sensitivity is

Hβ = PCβ (1+PCβ)
−1 = ( 1− sν∏ν

i=1(s+ βi)
)Ho . (31)

i) The controller Cβ in (30) stabilizes e−shP for h ∈
[0, τβm), where τβm = ‖ sHβ ‖−1. Furthermore,

τβm ≥

(
ν∑
i=1

βi

)−1
‖Ho ‖−1 . (32)

A sufficient condition for τβm to exceed τm is the choice of
βi ∈ R+ , i = 1, . . . , ν such that

ν∑
i=1

βi <
‖ sHo ‖
‖Ho ‖

. (33)

ii) For any given delay h = τ ∈ R+ , the controller Cβ in
(30) can be designed to stabilize e−sτP by choosing βi ∈
R+ , i = 1, . . . , ν, to satisfy

ν∑
i=1

βi < τ−1‖Ho ‖−1 . (34)

Furthermore, once βi ∈ R+ , are chosen, the corresponding
lower bound τβm = ‖ sHβ ‖−1 can be found, where τβm ≥
τ . Therefore, the controller Cβ in (30) also stabilizes e−shP
for all h ∈ [0, τβm), where τβm ≥ τ . �

Example 2: Plant with double integrator: Consider

P(s) =
n(s)

d(s) ds(s)
=

(s2 + 16)

s2(s+ 4)
. (35)

Since P is strictly proper, the transfer function Ho is strictly
proper for every stabilizing controller Co . The first order
controller Co given in (36) below stabilizes P:

Co =
2 (s+ 0.25)

(s+ 5)
. (36)

a) The controller Co is guaranteed to stabilize e−shP for all
h ∈ [0, τm), where

τm = ‖ sHo ‖−1 = 0.5 s

(the actual DM is 0.6056 s).
b) Using Co given in (36), for the delay-free closed-loop
transfer function we have ‖Ho ‖ = 1.2969 and ‖ sHo ‖ = 2.
So, by choosing χβ = (s+ β1)(s+ β2) with

(β1 + β2) <
2.0

1.3
= 1.54,

we can have τβm ≥ τm. For example, with β1 = 0.5, β2 =
0.75, the controller (24) becomes

Cβ =
2.5(s+ 4)(s+ 0.25)

(s+ 9.525)(s2 + 2.426s+ 5.442)
. (37)

This leads to a new DM lower bound

τβm = ‖sHβ‖−1 = 0.75 s

(with the actual DM of 0.98 s). The controller Cβ in (37)
stabilizes e−shP for h ∈ [0, τβm). Figure 2 shows y(t) for a
unit-step input at u(t) with Co (closed-loop is Ho) and Cβ
(closed-loop is Hβ).

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ho

Hb

Step Response

Time (seconds)

A
m

p
lit

u
d

e

Fig. 2. Closed-loop step response of Example 2 for h = 0, with Co (Ho)
and Cβ (Hβ ).

The trade-off for delay margin improvement by using Cβ

is seen by comparing the step responses for Ho and Hβ in
Figure 2. Increasing the DM has also increased the settling
time from about 8 s to 10 s.

IV. CONCLUSIONS
In this paper we proposed a method to modify an initially

designed stabilizing controller to improve a lower bound of
the delay margin. The initial controller is assumed to be
designed in such a way that steady-state tracking perfor-
mance objectives are met. The modified controller is obtained
by introducing some parameters, β0, . . . , βν , where ν is
the number of unstable poles of the plant. The modified
controller order is (ν + 1) higher than the initial controller
order. The freedom in the design parameters affect the speed
of the step response, and hence there can be additional
optimization constraints in this design.

Detailed proofs and additional illustrative examples are
given in the full version of the paper [3].
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