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Abstract— Finite-dimensional controllers are developed for
interconnected systems, where arbitrary time delays occur in
the transmission loops. Various cascade or feedback intercon-
nections are considered, with time delay terms appearing in
numerator or denominator matrices of the transfer-functions
of the plants to be controlled. The proposed designs achieve
low-order and integral-action controllers. The methods are
applied to load frequency control of single-area and multi-area
interconnections of power systems.

I. INTRODUCTION

Many control applications involve information exchange
of control and feedback signals over communication net-
works in the form of data packages. Applications that include
data networks in a control loop also introduce network-
induced delay effect in data transfers between the controller
and the remote system. A continuous-time signal transmitted
over a network is sampled and digitally encoded; the data
transmitted over the network is decoded at the receiver.
The overall delay between sampling and decoding include
network access delays due to a shared network’s data accep-
tance time, and transmission delays while data is in transit
inside the network depending on congestion and channel
quality. Time delays may destabilize the system and degrade
performance, and their effects cannot be ignored in control
applications [7]. Stability of systems subject to time delays
has been investigated extensively. Several delay-independent
and delay-dependent stability results were obtained. For
some linear, time-invariant (LTI) plant classes and fractional-
order systems subject to time delays, proportional-integral-
derivative (PID) controllers were proposed [1], [2], [5], [9],
[3], [8]. This work presents finite-dimensional stabilizing
controller synthesis methods for LTI, single-input single-
output (SISO) or multi-input multi-output (MIMO) system
interconnections subject to time delays. The proposed low-
order controllers are simple, and in most cases they pro-
vide integral-action so that step-input references are tracked
asymptotically with zero steady-state error. Delay terms may
appear in various different parts of a system’s mathematical
description. Systems that are subject to input and output
delays contain time delay terms in the numerators of their
transfer-functions; cascade interconnections of systems with
delayed information transfer between components are in
this category of systems. Section III is devoted to finite-
dimensional controller design for these systems, with the
assumption that the poles of the delay-free parts of the plants
are at the origin and the open left-half complex-plane, and
their zeros are completely unrestricted. Some systems have
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delay terms in the denominators of their transfer-functions as
in the case of feedback interconnections with transmission
delays. Section IV deals with designs under the assumption
that the zeros are either at infinity or the open left-half plane,
but the poles are completely unrestricted. The proposed
design methods are applied to load frequency control of
single-area and multi-area power systems in Section V [4].

The notation used here is standard: C ,R , R+ denote
complex, real, and positive real numbers. The extended
closed right-half complex plane is U = {s ∈ C | Re(s) ≥
0} ∪ {∞}; C− is the open left-half complex-plane. The set
of real proper rational functions (of s) is Rp ; S ⊂ Rp

is the stable subset with no poles in U ; M(S) is the set
of matrices with entries in S . The space H∞ is the set
of all bounded analytic functions in C+ . We drop (s)
in transfer-matrices such as G(s) when this is clear from
the context. The (m ×m) diagonal matrix whose diagonal
entries are a1 , . . . , am is diag [a1 , · · · , ak]. The (m ×m)
identity matrix is Im . For h ∈ H∞ , the norm is defined
as ‖h‖∞ = ess sup

s∈C+
|h(s)|; ess sup is the essential

supremum. Since all norms of interest here are H∞ norms,
the subscript is dropped, i.e., ‖ · ‖∞ ≡ ‖ · ‖. A matrix-
valued function H is in M(H∞) if all its entries are in
H∞ ; ‖H‖∞ = ess sup

s∈C+
σ(H(s)), where σ̄ denotes the

maximum singular value. A system whose transfer-matrix
is H is stable if H ∈ M(H∞). A square H ∈ M(H∞)
is unimodular if H−1 ∈ M(H∞). For G ∈ Rp

m×m,
coprime factorizations over S are used; i.e., G = Y −1X

is a left-coprime factorization (LCF), G = X̃Ỹ
−1

is a
right-coprime factorization (RCF), X,Y, X̃, Ỹ ∈ S

m×m,
detY (∞) 6= 0, and det Ỹ (∞) 6= 0. For the delayed plant,
coprime factorizations over H∞ are used; i.e., G = Y−1X

is an LCF, G = X̃ Ỹ
−1

is an RCF, X ,Y , X̃ , Ỹ ∈ H∞
m×m.

Let G = Y−1X = X̃ Ỹ
−1

have full normal-rank m. The

transmission-zeros of G = Y−1X = X̃ Ỹ
−1

in U are so ∈

U such that rankX (so) < m, equivalently, rankX̃ (so) < m.
The blocking-zeros of G in U are so ∈ U such that
G(so) = 0, equivalently, X (so) = X̃ (so) = 0. Blocking-
zeros of G are also transmission-zeros. These zeros in U
are called U-zeros when a distinction between transmission-
zeros and blocking-zeros is not crucial.

II. PROBLEM DESCRIPTION

Consider the feedback system Sys(G, C) in Fig. 1; G is
the plant’s transfer-function with time delays, C ∈ Rp

m×m

is the finite-dimensional controller’s transfer-function. It
is assumed that the feedback system is well-posed, and
the plant and the controller have no unstable hidden-
modes. With r, w as input, x, y as output vectors, the
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closed-loop map W from (r, w) to (x, y) is W =[
C(I + GC)−1 −C(I + GC)−1G
GC(I + GC)−1 (I + GC)−1G

]
. The input-output

map from r to y is Hyr = GC(I + GC)−1; the input-error
map from r to e is Her = I −Hyr = (I + GC)−1.

Definition 1: a) The system Sys(G, C) in Fig. 1 is stable
if W ∈ M(H∞). b) Sys(G, C) is stable and has integral-
action if W ∈ M(H∞), and Her(0) = 0. c) C is a
stabilizing controller if C is proper and H ∈ M(H∞). d) C
is an integral-action controller if C is a stabilizing controller,
and D̃(0) = 0 for any RCF C = ÑD̃

−1
. �

Fact 1: Let G = Y−1X be an LCF, G = X̃ Ỹ
−1

be
an RCF of the plant G. Let C(s) = D−1N be an LCF,

and C(s) = ÑD̃
−1

be an RCF of the controller C. Define
M ∈ M(H∞) and M̃ ∈ M(H∞) as in (1):

M := Y D̃ +X Ñ , M̃ := D Ỹ +N X̃ . (1)

Then the feedback system Sys(G, C) in Fig. 1 is stable if and

only if M−1 ∈ M(H∞), equivalently, M̃
−1

∈ M(H∞). �

Let Sys(G, C) in Fig. 1 be stable. Let r(t) = K1(t),
K ∈ R

m, and 1(t) is the unit step function. The steady-state
error ess = limt→∞ e(t) = lims→0Her(s)R(s) = Her(0)K
is zero for all K ∈ R

m if and only if Her(0) = 0. By Defini-
tion 1-(b), the stable system achieves asymptotic tracking of
constant reference inputs with zero steady-state error if and
only if it has integral-action. By (1), Her = D̃M−1Y =

(I − X̃ M̃
−1
N). By Definition 1-b, the system has integral-

action if C = ÑD̃
−1

is an integral-action controller since
D̃(0) = 0 implies Her(0) = (D̃M−1Y)(0) = 0. If G ∈
M(H∞), then the system has integral-action if and only if
C is an integral-action controller. If Y(0) = 0, then integral-
action is ensured for the system, but it is included in the
controller for robustness by the internal model principle.

Fact 2: If the stable system Sys(G, C) has integral-
action, then G has no transmission-zeros at s = 0. �

Due to the necessary condition in Fact 2 for Sys(G, C) to
have integral-action, it is assumed that the plant G does not
have transmission-zeros or blocking-zeros at s = 0 whenever
the design requirements include integral-action.

Fact 3: a) Let β ∈ R+ . Define χ :=
s [ (s+ β)q − sq ]

(s+ β)q
.

For any integer q ≥ 0, ‖χ ‖ = q β . b) Let α ∈ R+ . Define

χ̃ :=
(s+ α)r − αr

s (s+ α)r
. For any integer r ≥ 1, ‖ χ̃ ‖ =

r

α
. �

III. PLANTS WITH UNRESTRICTED ZEROS

This section considers systems that have all delay terms in
the numerator of the plant’s transfer-function (matrix) given
by either an LCF or an RCF:

Case 1) Let G = Y −1X be the plant with all delay terms
in the numerator X ∈ M(H∞), and Y ∈ M(S) is delay-
free; G ∈ M(H∞) if and only if Y −1 ∈ M(S). Let X kℓ de-
note the (k, ℓ) entry of X ; each X kℓ may contain any known
delay terms. It is assumed that X =

[
X kℓ

]
k,ℓ∈{1,...,m}

=[
e−shkℓXkℓ

]
k,ℓ∈{1,...,m}

, where hkℓ ≥ 0 is time delay

in seconds. Let G have full (normal) rank m, and have

no zeros at s = 0, equivalently, rankX (0) = m. De-
fine Xo := X (0) = (Y (s)G(s) )|s=0; then X−1

o =

(G−1
(s)Y −1(s) )|s=0. It is assumed that Y −1 may have

poles anywhere in C− , but the only U-poles are all at
s = 0; equivalently, rankY (0) ≤ m , but rankY (s) = m
for all s ∈ U \ {0}. If Y −1 has poles at s = 0, then
Y −1(s) /∈ M(S). The entries of Y −1 may have different
multiplicities of poles at s = 0; some entries may have
only poles in C− . Let Ykℓ(s) denote the (k, ℓ) entry of
Y −1(s) = [Ykℓ(s) ]k,ℓ=1,...,m. Define qkℓ ≥ 0 as the number
of poles of Ykℓ(s) at s = 0, and qℓ := max

1≤k≤m
qkℓ as the

largest number of poles at s = 0 of the entries in the ℓ-th
column of Y −1(s). If all entries in the ℓ-th column of Y −1

are stable, then qℓ = 0. Although Ykℓ 6∈ S when qkℓ 6= 0 ,
(Ykℓ(s)

sqℓ

(s+β)qℓ ) ∈ S for any β ∈ R+ .

Case 2) Let G = X̃ Ỹ
−1

be the plant, with the delay

terms all in X̃ ∈ M(H∞); Ỹ ∈ M(S) is delay-free;

G ∈ M(H∞) if and only if Ỹ
−1

∈ M(S). The en-

tries X̃ kℓ , Ỹ kℓ are similar; X̃ =
[
X̃ kℓ

]
k,ℓ∈{1,...,m}

=
[
e−shkℓX̃kℓ

]
k,ℓ∈{1,...,m}

, Ỹ
−1

(s) =
[
Ỹ kℓ(s)

]
k,ℓ=1,...,m

.

Define X̃o := X̃ (0) = (G(s)Ỹ (s) )|s=0 ; then X̃
−1

o =

(Ỹ
−1

(s)G−1
(s) )|s=0 . The poles of Ỹ

−1
are similar;

rankỸ (0) ≤ m, but rankỸ (s) = m for all s ∈ U \ {0} .
Define qkℓ ≥ 0 as the number of poles at s = 0 of the

entries Ỹ kℓ(s) of Ỹ
−1

(s). Define qk := max
1≤ℓ≤m

qkℓ as the

largest number of poles at s = 0 of the entries in the k-th

row of Ỹ
−1

(s). If all entries in the k-th row of Ỹ
−1

are
stable, then qk = 0. Although Ỹ kℓ(s) 6∈ S when qkℓ 6= 0 ,
( sqk

(s+β)qk Ỹ kℓ(s)) ∈ S for any β ∈ R+ .
Theorem 1 presents finite-dimensional stabilizing con-

troller synthesis for the two classes of MIMO plants. Theo-
rem 1-(b) includes integral-action in the stabilizing controller.

Theorem 1: MIMO stabilizing controller synthesis:
Case 1) Let G = Y −1X . a) Choose β ∈ R+ such that

β < (max
ℓ

qℓ ‖
1

s
[X (s)X−1

o − I ] ‖ )−1. For ℓ = 1, . . . ,m,

define ψℓ(s) := [ (s+ β)qℓ − sqℓ ] . Then the controller C in
(2) stabilizes G:

C = X−1
o diag

[
ψ1(s)

sq1
, · · · ,

ψm(s)

sqm

]
Y (s) . (2)

b) Choose β̃ ∈ R+ such that β̃ < ( (1 +

max
ℓ

qℓ) ‖
1

s
[X (s)X−1

o − I] ‖)−1. For ℓ = 1, . . . ,m, define

ψ̃ℓ(s) := [ (s + β̃)1+qℓ − s1+qℓ ] . Then the integral-action
controller CI in (3) stabilizes G:

CI =
1

s
X−1

o diag

[
ψ̃1(s)

sq1
, · · · ,

ψ̃m(s)

sqm

]
Y (s) . (3)

Case 2) Let G = X̃ Ỹ
−1

. a) Choose β ∈ R+ such that

β < (max
k

qk ‖
1

s
[ X̃

−1

o X̃ (s)− I ] ‖ )−1. For k = 1, . . . ,m,

define ψk(s) := [ (s+β)qk − sqk ] . Then the controller C in
(4) stabilizes G:

C = Ỹ (s) diag

[
ψ1(s)

sq1
, · · · ,

ψm(s)

sqm

]
X̃

−1

o . (4)
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b) Choose β̃ ∈ R+ such that β̃ < ( (1 +

max
k

qk) ‖
1

s
[ X̃

−1

o X (s)−I ] ‖ )−1. For k = 1, . . . ,m, define

ψ̃k(s) := [ (s + β̃)1+qk − s1+qk ] . Then the integral-action
controller CI in (5) stabilizes G:

CI =
1

s
Ỹ (s) diag

[
ψ̃1(s)

sq1
, · · · ,

ψ̃m(s)

sqm

]
X̃

−1

o . (5)

�

In Theorem 1 Case-(1a), if qℓ = 0 for some ℓ ∈
{1, . . . ,m}, then the corresponding ψℓ = 0. If G ∈
M(H∞), then Y −1 ∈ M(S) and hence, ψℓ = 0 for
all ℓ ∈ {1, . . . ,m}. Therefore, the controller C = 0 in
(2). Theorem 1 Case-(1b) gives a non-zero integral-action

controller CI =
β̃

s
X−1

o Y (s). as in (3). A more general

design for the case when G ∈ M(H∞) is proposed in
Theorem 2. These are (realizable) PID controllers of the form

Cpid(s) = Kp +
s

τ s+ 1
Kd +

1

s
Ki , (6)

where τ ∈ R+ (typically very small).
Theorem 2: Controller synthesis when G is stable:

Let G ∈ M(H∞). a) Choose any τ ∈ R+ , Kp ∈
R

m×m, Kd ∈ R
m×m, Q ∈ S

m×m, Ki = 0, and β ∈ R+

such that β < ‖G (Kp+
s

τ s+ 1
Kd )Q ‖−1 . Then the stable

controller C in (7) stabilizes G:

C = β (Kp +
s

τ s+ 1
Kd )Q . (7)

b) Choose any τ ∈ R+ , Kp ∈ R
m×m, Kd ∈ R

m×m. Let
Ki = G(0)−1. Choose Q ∈ S

m×m such that Q(0) = I , β ∈

R+ such that β < ‖G(Kp+
s

τ s+ 1
Kd+

1

s
Ki)Q−

1

s
I ‖−1.

Then the integral-action controller CI in (8) stabilizes G:

CI = β (Kp +
s

τ s+ 1
Kd +

1

s
Ki )Q . (8)

�

If Q ∈ S
m×m is chosen as Q = Im , then the stable C in

(7) becomes a PD controller, and the integral-action CI in
(8) becomes a PID controller. Examples of interconnections
where Theorem 1 can be applied are given next.

A. Systems with input or output delays

Systems subject to input or output delays are the simplest
systems containing delay terms in only the plant’s numerator.
Let E =

[
e−shkℓ

]
k,ℓ=1,...,m

∈ H∞
m×m denote a matrix of

arbitrary delay terms, where e−shkℓ represents a delay of
hkℓ seconds. Let G ∈ Rp

m×m be delay-free, and have no
zeros at s = 0. Let G have poles anywhere in C− , but the
only U-poles are at s = 0. In Fig. 2, E represents input
delays in the system Gi = GE . With an LCF G = Y −1X ,
the system Gi = Y −1(XE) has all delay terms in X :=
(XE) ∈ M(H∞), and Y ∈ M(S) is delay-free. Therefore,
the controller design results of Theorem 1-Case (1) can be
applied by substituting X = (XE). With E(0) = Im ,
we have Xo = X(0) = (Y (s)G(s) )|s=0 . Similarly, E
represents output delays in the system Go = E G. With an

RCF G = X̃Ỹ
−1

, the system Go = (EX̃)Ỹ
−1

has all delay

terms X̃ := (EX̃) ∈ M(H∞), and Ỹ ∈ M(S) is delay-
free. Therefore, the controller design results of Theorem 1-
Case (2) can be applied by substituting X̃ = (EX̃). With
E(0) = Im , we have X̃o = X̃(0) = (G(s)Ỹ (s) )|s=0 .

B. Interconnected systems with cascade delay

The interconnected system Gc in Fig. 3 has
delay-free subsystems P,G ∈ Rp

m×m. Let
E =

[
e−shkℓ

]
k,ℓ=1,...,m

∈ M(H∞) denote
arbitrary delay terms. Define G := PEG. The
(m × 2m) transfer-function from (u, v) to y is
Gc = (I + PEG)−1

[
PEG P

]
= (I + G)−1

[
G P

]
.

In Gc , the delay-free P and G may have poles anywhere
in C− , but the only U-poles, if any, are all at s = 0; they
have no U-zeros at s = 0.

Case 1) Suppose for some LCF G = D−1
g Ng , P =

D−1
p Np that i) Dg =

sµ

(s+ a)µ
Im , µ ≥ 0 is an integer,

a ∈ R+ , or that ii) Np , Dg , E are all diagonal. Condition (i)
onDg also includes stable G since Dg = I for µ = 0 implies
G ∈ M(S). The U-poles of D−1

p , D−1
g , if any, are at s = 0.

Furthermore, rankNp(0) = m, rankNg(0) = m since P , G
have no zeros at s = 0. Both conditions imply Dg commutes
with NpE , and G = PEG = (DgDp)

−1(NpENg ) =
Y −1X . Then G = Y −1X has all delay terms in the
numerator X := (Np ENg) ∈ M(H∞), and the U-poles
of the entries of Y −1 = (DgDp)

−1 are all at s = 0. The
interconnected system Gc in Fig. 3 is then described as
Gc = (I + G)−1

[
G P

]
= (Y + X )−1

[
X DgNp

]
=

(DgDp +Np ENg)
−1Np

[
ENg Dg

]
.

Case 2) Let P = D−1
p Np be an LCF, where rankNp(0) =

m since P has no transmission-zeros at s = 0. Suppose that

Dp =
sρ

(s+ a)ρ
Im , where ρ ≥ 0 is an integer, and a ∈ R+ .

This condition also includes the case of stable P since Dp =

I for ρ = 0 implies P ∈ M(S). Let G = ÑgD̃
−1

g be an
RCF, where rankÑg(0) = m since G has no transmission-
zeros at s = 0. Under these assumptions, G = PEG =

(Np EÑg )(DpD̃g)
−1 = X̃ Ỹ

−1
. Then G = X̃ Ỹ

−1
has all

delay terms in X̃ = Np EÑg ∈ M(H∞), and the U-poles

of Ỹ
−1

= D̃
−1

g D−1
p are all at s = 0. The interconnected

system Gc in Fig. 3 is then described as Gc = (I +

G)−1
[
G P

]
=

[
X̃ (Ỹ + X̃ )−1 D̃g(Ỹ + X̃ )−1Np

]
.

Proposition 1 designs controllers that stabilize the inter-
connected system Gc as shown in the feedback configuration
Sys(Gc, Cg) of Fig. 3 based on the two cases of Theorem 1.

Proposition 1: (Design for interconnections with cascade
delay): Consider the system Sys(Gc, Cg).
Case 1) Let G satisfy the assumptions of Case (1). Let C
stabilizing G be as in (2), and let CI stabilizing G be as
in (3). Then Cg = (C − I ) is a controller that stabilizes
Gc, and CIg = (CI − I ) is an integral-action controller that
stabilizes Gc in the feedback configuration Sys(Gc, Cg).
Case 2) Let G satisfy the assumptions of Case (2). Let C
stabilizing G be as in (4), and let CI stabilizing G be as
in (5). Then Cg = (C − I ) is a controller that stabilizes
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Gc, and CIg = (CI − I ) is an integral-action controller that
stabilizes Gc in the feedback configuration Sys(Gc, Cg). �

IV. MIMO PLANTS WITH UNRESTRICTED POLES

This section considers systems where the delay terms
are all in the denominator of the plant’s transfer-function
(matrix). As in Section III, there are two cases that describe
such plants given by either an LCF or an RCF:

Case 1) Let G = Y−1
X be the plant, with all delay terms

in Y ∈ M(H∞), and X ∈ M(S) is delay-free. Let Yn(s) ∈

M(S), det Yn(∞) 6= 0, Yd =

ν∑

i=1

e−shiQi(s), Qi(∞) =

0, hi ≥ 0, i = 1, . . . , ν. Define Yn(∞) := Y(∞) =

(X(s)G−1
(s))|s→∞ ; Yn(∞)−1 = (G(s)X−1(s) )|s→∞ .

The zeros of G are all in C− , and at infinity; equivalently,
rankX(∞) ≤ m , but rankX(s) = m for all s ∈ U \
{∞}. Therefore, X−1 has no poles in s ∈ U \ {∞},
but may have poles at infinity, i.e., if rankX(∞) < m,
then X−1 /∈ M(S) because it is improper. With nkℓ , dkℓ
as numerator and denominator polynomials of the (k, ℓ)

entry, write X−1(s) =

[
nkℓ(s)

dkℓ(s)

]

k,ℓ∈{1,...,m}

. Define the

integers rkℓ :=

{
δ(nkℓ)− δ(dkℓ) , if δ(nkℓ) > δ(dkℓ)
0 , if δ(nkℓ) ≤ δ(dkℓ)

,

rℓ := max
1≤k≤m

rkℓ , ℓ = 1, . . . ,m . Let ξℓ(s) be any monic

rℓ-th order strictly Hurwitz polynomial, ℓ = 1, . . . ,m; e.g.,
ξℓ(s) = (s+a)rℓ for a ∈ R+ . If rℓ = 0, then ξℓ = 1. Define
∆(s) := diag

[
ξ1(s) , · · · , ξm(s)

]
. Although X−1 /∈

M(S) when rankX(∞) < m, the order of ξℓ is chosen
to make each entry nkℓ(s)

dkℓ(s)ξℓ(s)
proper; hence, X−1∆−1 is

stable since the polynomials ξℓ and dkℓ are strictly Hurwitz.

Case 2) Let the delayed plant be G = X̃Ỹ
−1

; the
delay terms are all in Ỹ ∈ M(H∞), and X̃ ∈ M(S)

is delay-free. Let Ỹ = Ỹ n + Ỹd , Ỹ n(s) ∈ M(S) ,

det Ỹ n(∞) 6= 0, Ỹd =

ν∑

i=1

e−shiQ̃i(s), Q̃i(∞) =

0. Define Ỹ n(∞) := Ỹ(∞) = (X̃(s)G−1
(s))|s→∞ ;

Ỹ n(∞)−1 = (G(s)X̃
−1

(s) )|s→∞ . The zeros of G are
similar; rankX̃(∞) ≤ m , but rankX̃(s) = m for all

s ∈ U \ {∞}. Therefore, X̃
−1

has no poles in s ∈ U \ {∞},
but may have poles at infinity, i.e., if rankX̃(∞) < m,

then X̃
−1

/∈ M(S) because it is improper. With ñkℓ , d̃kℓ
as numerator and denominator polynomials of the (k, ℓ)

entry, write X̃
−1

(s) =

[
ñkℓ(s)

d̃kℓ(s)

]

k,ℓ∈{1,...,m}

. Define the

integers rkℓ :=

{
δ(ñkℓ)− δ(d̃kℓ) , if δ(ñkℓ) > δ(d̃kℓ)

0 , if δ(ñkℓ) ≤ δ(d̃kℓ)
,

rk := max
1≤ℓ≤m

rkℓ , k = 1, . . . ,m. Let ξk(s) be any monic

rk-th order strictly Hurwitz polynomial, k = 1, . . . ,m; e.g.,
ξk(s) = (s+a)rk for a ∈ R+ . If rk = 0, then ξk = 1. Define

∆(s) := diag
[
ξ1(s) , · · · , ξm(s)

]
. Although X̃

−1
/∈

M(S) when rankX̃(∞) < m, the order of ξk is chosen

to make each entry ñkℓ(s)

d̃kℓ(s)ξℓ(s)
proper; hence, ∆−1X̃

−1
is

stable since ξk and d̃kℓ are strictly Hurwitz.
For the two classes of plants described as G = Y−1

X of

Case (1), and G = X̃Ỹ
−1

of Case (2), Theorem 3 presents
finite-dimensional controller synthesis methods for closed-
loop stability. These controllers all have integral-action.

Theorem 3: MIMO stabilizing controller synthesis:
Case 1) Let G = Y−1

X = (Yn + Yd)
−1X . Define

ρℓ :=

{
1 , if rℓ = 0
rℓ , if rℓ ≥ 1 .

, ℓ = 1, . . . ,m. Let α ∈ R+ be

such that α > max
ℓ
ρℓ ‖ s [ Y(s)Yn(∞)−1 − I ] ‖. Define

ϕℓ(s) := [ (s+α)ρℓ−αρℓ ], ℓ = 1, . . . ,m. Then the controller
C in (9) stabilizes G:

C = X−1(s) diag

[
αρ1

ϕ1(s)
, · · · ,

αρm

ϕm(s)

]
Yn(∞) . (9)

Case 2) Let G = X̃Ỹ
−1

= X̃(Ỹ n + Ỹd)
−1. Define

ρk :=

{
1 , if rk = 0
rk , if rk ≥ 1 .

, k = 1, . . . ,m. Let α ∈ R+

be such that α > max
k

ρk ‖ s [ Ỹ n(∞)−1Ỹ(s) − I ] ‖ .

Define ϕk(s) := [ (s+α)ρk −αρk ], k = 1, . . . ,m. Then the
controller C in (10) stabilizes G:

C = Ỹ n(∞) diag

[
αρ1

ϕ1(s)
, · · · ,

αρm

ϕm(s)

]
X̃

−1
(s) . (10)

�

In Theorem 3, C in (9) (and C in (10) has integral-action
since the diagonal terms all have poles at s = 0. The terms
corresponding to rℓ = 0 are

α

s
; those corresponding to rℓ ≥

1 are (
αrℓ

(s+ α)rℓ − αrℓ
), with one pole at s = 0, and the

remaining (rℓ − 1) poles all in C− .

A. Interconnected systems with feedback delay

The interconnected system Gf in Fig. 4 has delay-free
subsystems P,G ∈ Rp

m×m. Let E =
[
e−shkℓ

]
k,ℓ=1,...,m

∈

M(H∞) be a matrix of delay terms. Define G := (I +
PGE)−1PG; then Gf = (I + PGE)−1 [PG P ] =[
G (I − GE)P

]
is the transfer-function from (u, v) to y.

The delay-free subsystems P and G have unrestricted poles
anywhere in C. The only transmission-zeros and blocking-
zeros of P and G are all in C− , and at infinity.

Case 1) Suppose that any of the following three conditions
hold for some LCF G = D−1

g Ng , and P = D−1
p Np :

i) Np =
1

(s+ a)̺
Im , ̺ ≥ 0 is an integer, a ∈ R+ ,

or ii) Dg = dgIm , dg ∈ S , or iii) Np and Dg are
diagonal. Let (NpNg)(∞) = 0. If Np , Dg satisfy any of
the three given conditions, then they commute, NpD

−1
g =

D−1
g Np . Under these assumptions, G = (I+PGE)−1PG =

(DgDp +NpNgE)−1(NpNg) = Y−1
X has all delay terms

in Y = (DgDp + NpNg lE) ∈ M(H∞), and the U-zeros
of X = (NpNg ) are all at infinity. Furthermore, Y =
(Yn + Yd ); Yn = (DgDp ) is delay-free, and Yd(∞) =
(NpNg E)(∞) = 0 since (NpNg)(∞) = 0. Therefore,
G = Y−1

X . The system Gf in Fig. 4 is described as
Gf = (I + PGE)−1 [PG P ] = Y−1

[X DgNp] =
(DgDp +NpNg E)−1Np [Ng Dg].
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Case 2) Let P be stable. Let G = ÑgD̃
−1

g be an
RCF of G. Let (PÑg)(∞) = 0. Under these assumptions,

G = PG(I + EPG)−1 = PÑgD̃
−1

g (I + EPÑgD̃
−1

g )−1 =

(PÑg )(D̃g + EPÑg)
−1 = X̃Ỹ

−1

has all delay terms in

Ỹ = (D̃g + EPÑg) ∈ M(H∞), and the U-zeros of X̃ =

(PÑg ) are all at infinity. Furthermore, Ỹ = (Ỹ n + Ỹd );
Ỹ n = D̃g is delay-free, and Yd(∞) = (EPÑg)(∞) = 0

since (PÑg)(∞) = 0. Therefore, G = X̃Ỹ
−1

is in the form
of Theorem 3-Case 2. The system Gf in Fig. 4 is described

as Gf =
[
G (I − GE)P

]
=

[
X̃ P

] [
Ỹ EP
0 I

]−1

.

Based on the two cases of Theorem 3, Proposition 2 de-
signs controllers stabilizing the interconnected system Gf as
shown in the feedback configuration Sys(Gf , C) of Fig. 4.

Proposition 2: (Design for interconnections with feedback
delay): Consider the system Sys(Gf , C).
Case 1) Let G be satisfy the assumptions of Case (1). A
controller C as in (9) that stabilizes G also stabilizes Gf in
the feedback configuration Sys(Gf , C).
Case 2) Let G satisfy the assumptions of Case (2). A
controller C as in (10) that stabilizes G also stabilizes Gf

in the feedback configuration Sys(Gf , C). �

V. LOAD FREQUENCY CONTROL WITH DELAYS

The goal of power system control is to maintain stabil-
ity, performance and system integrity after failures occur,
or when system disturbances such as short circuits and
loss of generation are present. Time delays arising during
transmission become important for maintaining stability. The
controllers developed in the previous sections can be applied
to single-area and complex multi-area interconnections of
power systems. The designs can be tested using typical
values of the model parameters given in e.g., [6], [10], [12].
Single-area load-frequency control with delays: Consider
the load-frequency control problem of one generator
supplying power to a single service area as in Fig. 5: A
linearized low-order model of the plant for purposes of
system frequency analysis and control synthesis consists
of three main parts. The transfer-functions of the load and
machine, speed governor, and turbine of the j-the service
area are Fpj(s), Fgj(s), Ftj(s). The speed regulation due
to governor action is represented by the constant speed
droop characteristic Rj . Let Tpj , Tgj , Ttj , Trj be the
time-constants of the load, governor, non-reheated turbine,
and reheated turbine; κpj is a constant inversely proportional
to the generator damping coefficient, crj is a constant for
reheated turbine. For all types of turbines, the load transfer-
function is Fpj(s) =

κpj

Tpjs+1 . For non-reheated and reheated
turbines, the governor transfer-function is Fgj(s) =

1
Tgjs+1 ;

for hydraulic turbines, Fgj(s) = 1
(Tgjs+1) ·

(Tcjs+1)

(
Rtj
Rj

Tcjs+1)
.

The governors of hydraulic units include transient droop
compensation for stable speed control performance [6].
The turbine transfer-function is Ftj(s) = 1

Ttjs+1 for non-

reheated turbines, Ftj(s) =
crjTrjs+1

(Trjs+1)(Ttjs+1) for reheated

turbines, and Ftj(s) =
1−Twjs

0.5Twjs+1 for hydraulic turbines,
with Ftj(s) containing a zero in C+ at zo = 1/Twj ∈ U .
Let e−shj represent a delay of hj seconds. Define
Xj := FpjFtjFgj , X j := e−shjXj , Yj := (I + R−1

j Xj).
For all three types of turbines used in generation, assuming
that governor transfer-functions for hydraulic units include
transient droop compensation as needed, Rj is such
that Y −1

j ∈ S. The system in Fig. 5 has transfer-
function F j = (I + R−1

j Xj)
−1

[
(e−shj Xj ) − Fpj

]
=

Y −1
j

[
X j − Fpj

]
M(H∞). Define Gj := (1 +

R−1
j Xj)

−1(e−shjXj ) = Y −1
j X j ∈ H∞ . Since the delay

terms are all in the numerator X = (e−shjXj ), the system

Gj ∈ H∞ is as in Section III. With an RCF Cj = Ñ jD̃
−1

j ,
and Mj = (YjD̃j + X jÑ j), Sys(F j , Cj) is described as
[
xj
fj

]
=

[
Ñ j

−D̃j

]
M−1

j

[
Yj −X j Fpj

]


rj
wj

vj


+

[
0
rj

]
. The

system Sys(F j , Cj) is stable if and only if M−1
j ∈ H∞ ,

equivalently, Cj = Ñ jD̃
−1

j stabilizes Gj ∈ H∞ , and
Cj can be designed following Theorem 2. Choose any
τj ∈ R+ , Kpj ∈ R, Kdj ∈ R, Qj ∈ S. For βj ∈ R+

satisfying βj < ‖Gj(Kpj +
s

τj s+1Kdj)Qj ‖
−1, the stable

Cj = βj (Kpj +
s

τj s+1Kdj )Qj ∈ S stabilizes Gj . Since

e−shj (0) = 1, Xj(0) = X j(0) = Fpj(0) = κpj , and
Gj(0) = (1 + R−1

j κpj )
−1κpj . Let Kij = Gj(0)

−1 =

(κ−1
pj + R−1

j ) . Choose any Qj ∈ S such that Qj(0) = 1.
For βj ∈ R+ satisfying βj < ‖Gj(Kpj + s

τj s+1Kdj +
1
s
(κ−1

j + R−1
j ) )Qj − 1

s
I ‖−1, the integral-action

CIj = βj (Kpj + s
τj s+1Kdj + 1

s
(κ−1

j + R−1
j ) )Qj

stabilizes Gj . For low-order controllers, Qj ∈ S is chosen
as a constant, Qj = 1 ; then the stable Cj becomes a PD,
and the integral-action CIj becomes a PID controller.

Mul ti-area load-frequency control with delays: Consider the
load-frequency control problem for m generators supplying
power to m service areas as in Fig.6. A linearized low-order
model is used for each of the service areas j = 1, . . . ,m,
which may have any of the three types of (non-reheated,
reheated, hydraulic) turbines. In interconnected power sys-
tems, service areas are connected via tie-lines through which
a power exchange occurs when the frequencies in connected
areas are different. The tie-line power flows among the m
areas are represented by VT ∈ H∞

m×m, which may be
subject to delays. These tie-line delays may cause the entries
of VT to contain any arbitrary delay terms; VT (0) ∈ R

m×m

is a constant matrix, which may or may not be nonsingular.
The m×m diagonal transfer-functions for the m-area system
are R = diag [ R1, · · · , Rm], Fp = diag [ Fp1, · · · , Fpm],
Ft = diag [ Ft1, · · · , Ftm], Fg = diag [ Fg1, · · · , Fgm],
B = diag [ B1, · · · , Bm]; the non-zero constants Bj ∈ R

are frequency bias factors for each of the m areas. They sat-
isfy (B+VT (0) ) is nonsingular. The system may be subject
to additional communication delays in each of the m ser-
vice areas, represented by E = diag

[
e−sh1 , · · · , e−shm

]
.

Define the diagonal matrices X := FpFtFg ∈ S
m×m ,

X := XE ∈ H∞
m×m, Y := (I + R−1X) ∈ S

m×m,
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G := Y −1XE = Y −1X ∈ H∞
m×m. For all three types

of turbines used in generation, Y −1 ∈ M(S) assuming
that governor transfer-functions for hydraulic units include
transient droop compensation as needed. Therefore, G =
Y −1X ∈ M(H∞). Let Z := Y +FpΦVT = I +R−1X +

FpΦVT . Choose Φ ∈ R
m×m such that Z−1

∈ M(H∞).
There are many choices for Φ ∈ R

m×m that make Z
unimodular. For example, since Y −1 ∈ M(S), and det(I +

FpΦVTY
−1) = det(I + ΦVTY

−1Fp), Z
−1

∈ M(H∞)
for any Φ ∈ R

m×m such that ‖Φ‖ < ‖VTY
−1Fp‖. The

transfer-function from (u, v) to y is FT = (B + VT )(Y +

FpΦVT )
−1

[
XE − FpΦ

]
= (B+VT )Z

−1 [X − FpΦ
]
.

Define GT = (B + VT ) (Y + FpΦVT )−1XE = (B +

VT )Z
−1X ∈ M(H∞). Since Z−1

is stable, GT ∈
M(H∞) satisfies the assumptions in Section III. Then

FT =
[
GT − (B + VT )Z

−1
FpΦ

]
. With M = (D̃ +

GT Ñ), the system Sys(FT , C) is described as

[
x
y

]
=

[
Ñ

−D̃

]
M−1

[
I −GT (B + VT )Z

−1
FpΦ

]


r
w
v


 +

[
0
r

]
.

Sys(FT , C) is stable if and only if M−1 ∈ M(H∞),
equivalently, C stabilizes GT ∈ M(H∞), and C can be
designed following Theorem 2. Choose any τ ∈ R+ , Kp ∈
R

m×m, Kd ∈ R
m×m, Q ∈ S

m×m. For β ∈ R+ satisfying
β < ‖GT (Kp + s

τ s+1Kd)Q‖−1, the stable C = β(Kp +
s

τs+1Kd)Q ∈ S
m×m stabilizes GT . Since E(0) = Im , we

have X(0) = X (0) = Fp(0) = diag[κp1, · · · , κpm ] =:
κ, and GT (0) = (B + VT (0) )Z(0)−1X (0) = (B +
VT (0))(I + R−1

κ + κΦVT )
−1
κ. Let Ki = GT (0)

−1 =
(κ−1 + R−1 + ΦVT )(B + VT (0))

−1. Choose any Q ∈
S
m×m such that Q(0) = I . For β ∈ R+ satisfying β <

‖GT (Kp +
s

τs+1Kd +
1
s
Ki )Q − 1

s
I‖−1, the integral-action

controllerCI = β[Kp+
s

τs+1Kd+
1
s
(κ−1+R−1+ΦVT )(B+

VT (0) )
−1 ]Q stabilizes GT . The finite-dimensional con-

trollers here contain design parameter choices, which can
be used to satisfy performance objectives.
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- e-Cg
- e? - e- G E- - e?- -P

6−6−

r x u

v

y

w

+

+ ++ +

+

Gc

Fig. 3. The system Sys(Gc, Cg) with interconnected cascade delay
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Fig. 4. The system Sys(Gf , C) with interconnected feedback delay
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Fig. 6. Multi-area power system FT with a tie-line network VT
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