
Chapter 2
Design of First Order Controllers for Unstable
Infinite Dimensional Plants

Hitay Özbay and A. Nazlı Gündeş

Abstract A design method for first order controllers is presented for a class of
unstable infinite dimensional plants, including systems with time delays, fractional
order systems, and systems represented by PDEs. The design restricts the controllers
to be in the form of PI, PD and lead or lag controllers. The approach is based on the
small gain theorem and requires minimization of an H∞ norm of a transfer function
over a low number of parameters. The gain margin optimization problem is solved
for PD controllers. For PI controllers, optimization of the integral action gain is also
discussed.

2.1 Introduction

This work deals with the design of different types of first order controllers for infinite
dimensional plants whose transfer functions contain single unstable pole. In this
context PI, PD, lead and lag controllers are investigated. The basic idea is to put
the characteristic equation of the feedback system into a form where the small gain
theorem can be applied. For this purpose, algebraic manipulations similar to those
used in [6, 17] play a crucial role. Once the controller structure is fixed, the range
of allowable controller gain is estimated by computing the H∞ norm of an infinite
dimensional transfer function which contains a free parameter. Optimization of this
free parameter is helpful for reducing the conservative results obtained in [17].
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It should be noted that when there are only small number of free parameters in the
controller, classical stability checks (e.g. Nyquist criterion) can be used to determine
the set of all stabilizing controller parameters. However, this brute force method may
not be numerically very attractive, especially when the plant considered is unstable
and infinite dimensional.

In particular, for time delay systems there are several numerically feasible meth-
ods for finding low order controllers, see e.g. [4, 5, 14, 19]. For applications to
communication networks see [11] and [20]. The method of [17] has been extended
to cover fractional order systems with time delays in [16], see also [3].

This chapter is organized as follows. Section 2.2 contains several examples of
engineering applications where plant model falls within the framework of the present
study. A sufficient condition for the stability of the feedback system (based on the
small gain theorem) is derived in Sect. 2.3. Then in Sect. 2.4 different types of
controllers are designed based on this condition. Conclusions and future works are
given in Sect. 2.5.

2.2 Problem Definition and Examples of Plants Considered

As mentioned above, the plants considered here have transfer functions in the form

P(s) = 1

s − p
G(s) (2.1)

where p ≥ 0 is the unstable pole and G ∈ H∞ is the stable part of the plant. Note
that G(s) can be irrational (plant is infinite dimensional). The factorization in the
form (2.1) also implies that the plant is strictly proper.

The controllers to be designed have the following common structure

C(s) = K p + Kd s

τ s + 1
+ Ki

s
, K p, Kd , Ki ∈ R, τ ≥ 0. (2.2)

Note that PD, PI, lead and lag controllers are special case of (2.2):

C pd(s) = K p (1 + ˜Kd s), ˜Kd = Kd

K p
, (2.3)

C pi (s) = K p

(

1 + ˜Ki

s

)

, ˜Ki = Ki

K p
, (2.4)

C�(s) = K p

(

1 + α τ s

1 + τ s

)

, ατ = τ + ˜Kd . (2.5)

ClearlyC� is a lead controller if ˜Kd > 0 and it is a lag controller if 0 > ˜Kd > −τ .
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Definition 1 The feedback system formed by the controller C and the plant P is
stable if S := (1 + PC)−1, CS and PS are stable, i.e., they are transfer functions in
H∞. If this is the case, then the controller C is said to stabilize the plant P . The set
of all controllers stabilizing a given plant P is denoted by C (P).

The goal of this chapter is to determine controllers C(s), in the form (2.3)–(2.5),
stabilizing a given unstable infinite dimensional plant P(s) whose transfer function
is given by (2.1). There are several applications where plant transfer functions have
this structure; specific examples are given below.

Example 1 Integrating systems with transport delay:

P(s) = K e−hs

s
, K > 0, h > 0 , (2.6)

i.e., in this case, p = 0 and G(s) = K e−hs . There are many application examples
and control methods for this plant, [12, 21]. Application examples include oil/gas
pipelines, communication networks, manufacturing plants, storage systems, etc., see
e.g., [13, 18].

Example 2 Abstract model of an aircraft:

P(s) = e−hs

s − p
, h > 0, p > 0, G(s) = e−hs . (2.7)

This model is used for the purpose of controlling the high frequency longitudinal
dynamics (short period) of an aircraft. Dynamics due to elasticity, sensor, actuator,
sampling, contribute to the time delay. The product h · p represents how difficult it
is to control this open loop unstable system. Depending on the operating regime, it
is observed that 0.06 < h · p < 0.37 for an X-29 aircraft [2].

Example 3 Flexible beam with non-collocated actuator and sensor: Typically,math-
ematical models of flexible beams are given by partial differential equations, [1], and
their transfer functions are irrational. For the free-free beammodel (with normalized
material parameters) shown in Fig. 2.1, the following infinite product expansion of
G(s) converges in H∞ (see [9, 10]):

P(s) = 1

s
G(s) , G(s) = 2e−hs

(τvs + 1)

∞
∏

n=1

(

1 + εs − s2/ω2
n

1 + εs + s2/ω̃2
n

)

, (2.8)

where τv > 0 is the sensor parameter, h > 0 is the input delay, ε > 0 is the
damping parameter of the beam and ωn, ω̃n > 0 with ωn → 2

(

π
4 + nπ

)2 and

ω̃n → (

π
2 + nπ

)2 as n → ∞.
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Fig. 2.1 Flexible beam control loop under delayed point force input and velocity feedback

Example 4 Interconnected systems with time delays:

P(s) = e−hs

s + 2

(

s + 1 + 2(s − 1)e−2s

s + 1 − 2e−0.4s

)

= 1

s − p
G(s), (2.9)

where h > 0 and p ≈ 0.5838 is the unique root of (s + 1− 2e−0.4s) = 0 in C+. So,

G(s) = e−hs
(

(s + 1) + 2(s − 1)e−2s

s + 2

) (

s − p

s + 1 − 2e−0.4s

)

.

Example 5 A non-laminated magnetic suspension system: The following fractional
order plant model is taken from [8]:

P(s) =
(

(sα)5 + (sα)4 − c
)−1

, α = 0.5, c > 0. (2.10)

It has been shown that P can be factored as in the standard form (2.1), see [7]:

P(s) = 1

s − p
G(s) with p = r2, G(s) = (sα + r)(sα − r)

(sα)5 + (sα)4 − c

where r > 0, is the unique root of (z5 + z4 − c) = 0 on R+.

2.3 A Sufficient Condition for Feedback System Stability

In this section the controller is taken to be in the form C pd or C�. Such a controller is
stabilizing a plant in the form (2.1) if and only if there exists a constant a > 0 such
that Ua is unimodular (i.e. Ua, U−1

a ∈ H∞):
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Ua(s) := s − p

s + a
+ K p

s + a
G(s)C0(s),

where C0(s) := 1+ατ s
1+τ s when C = C pd or C0(s) := (1 + ˜Kd s) when C = C�.

Define

K p := (p + a)G(0)−1 and G0(s) := G(s)G(0)−1 (2.11)

then

Ua(s) = 1 + (p + a)
s

s + a
Ψ0(s) where Ψ0(s) = 1

s
( G0(s)C0(s) − 1 ) .

Thus, using the fact that

∥

∥

∥

∥

s

s + a

∥

∥

∥

∥∞
≤ 1, Ua is unimodular if

(p + a) < ‖Ψ0‖−1∞ . (2.12)

The condition (2.12) was derived earlier in [6, 17]. Clearly, a less conservative
condition for Ua to be unimodular is

(p + a) < ‖Ψa‖−1∞ , (2.13)

where

Ψa(s) := 1

s + a
( G0(s)C0(s) − 1 ) .

Note that
‖Ψa‖∞ ≤ ‖Ψ0‖∞ ∀ a > 0.

Therefore, the controller defined as above is a stabilizing controller for the
plant if

pG(0)−1 < K p < (p + ao)G(0)−1,

where ao > 0 is the largest a > 0 satisfying (2.13).

In order to illustrate the computations involved in the above discussion, let us con-
sider the plant defined by (2.6) with K = 1 and h > 0. Let C0(s) = 1 (i.e., consider
proportional control only). The exact value of the upper bound of the controller gain
can be easily computed as

K p = a <
π

2h
≈ 1.57h−1.
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Fig. 2.2 The graph of 1/‖Ψa‖∞ for different values of h: the largest a satisfying (2.13) is 1.48/h

If one uses the condition (2.12), the conservative upper bound of the controller
gain is

K p = a <
1

‖Ψ0‖∞
= h−1.

On the other hand, if (2.13) is used, then

K p = a < τoh−1 with τo ≈ 1.48,

where τo is computed as shown in Fig. 2.2.
Clearly, whenC0(s) 
= 1, for example,C0(s) = 1+ατ s

1+τ s orC0(s) = (1+ ˜Kd s), the
free parameters (α, τ ) or ˜Kd can be used to further maximize ao, the largest a > 0
satisfying (2.13).

Remark 1 There are some plants which do not admit a feasible stabilizing controller
in the form C pd or C�. For example, if the plant does not satisfy the parity interlacing
property (PIP), then there does not exist a stable stabilizing controller. In order to
illustrate this point, consider the plant

P(s) = 1

s − p

(

1 − s/z

1 + τ s

)

p > 0 , z > 0, τ > 0,
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for which there exist a stable stabilizing controller if and only if p < z. If the
proportional controller is defined as C(s) = K p = (p + a) then, using the notation
set above,

Ψa(s) = −s (τ + z−1)

(s + a)(1 + τ s)
⇒ 1/‖Ψa‖∞ = z

(

1 + τa

1 + τ z

)

.

So, the condition (2.13) becomes

p + a < z

(

1 + τa

1 + τ z

)

= z

1 + τ z
+ τ z

1 + τ z
a,

which is stronger than the PIP, i.e., p < z.

2.4 PD and PI Controller Designs

2.4.1 PD Controller Design

Recall that for the plant (2.1), a PDcontroller is in the formC pd (s) = K pC0(s)where
K p = (p + a)G(0)−1 and C0(s) = (1+ ˜Kd s). Based on the results of Sect. 2.3 the
largest a > 0 satisfying (2.13) should be computed depending on ˜Kd ∈ R. For this
purpose define G0(s) = G(s)G(0)−1, Q := ˜Kd ∈ R and

γ (Q, a) :=
∥

∥

∥

∥

G0(s) − 1

s + a
+ Q

s

s + a
G0(s)

∥

∥

∥

∥∞
. (2.14)

In order to maximize the gain margin (GM) of the system one should try to mini-
mize γ (Q, 0) (the conservative approach) or try to find the largest a satisfying (2.13).
See [17] for a detailed discussion on the computation of the optimal Q minimizing
γ (Q, 0) for the conservative approach. The main idea can be extended to the case
a > 0 easily; see the algorithm given below.

Initialize: Determine a range of Q ∈ [Qmin , Qmax] ⊂ R

Step 1. For each fixed Q in this interval
if it exists find the largest amax(Q) such that

(p + a) < 1/γ (Q, a) ∀ a < amax(Q).
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Fig. 2.3 (p + a) and 1/‖Ψa‖∞ versus a for the plant (2.7) with h = 0.1 and p = 1

Step 2. Plot Q versus amax(Q) find the maximum of amax(Q) and define

Qopt := arg max{amax(Q)}.

End: An allowable range of the controller gain K p is

pG(0)−1 < K p < (p + ao)G(0)−1 with ao := amax(Qopt ).

For p > 0, gain margin optimizing (see [15]) PD controller parameters are

˜Kd,opt = Qopt , K p,GMopt = √

p (p + ao)G(0)−1.

Alternatively, one can choose the least fragile proportional gain

K p,LF =
(

p + ao

2

)

G(0)−1.

Step 1 of the algorithm involves drawing a graph like the one shown in Fig. 2.2.
To illustrate the numerical computations, consider the plant (2.7) with h = 0.1 and
p = 1. If proportional controller is used, then Q = 0 and amax(0) = 13.2 as seen in
Fig. 2.3; that means the allowable range of the gain is 1 < K p < 14.2.
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Fig. 2.4 amax versus Q for the plant (2.7) with h = 0.1 and p = 1

On the other hand, it is possible to enlarge this interval by adding a derivative
action. Figure 2.4 shows how amax change as a function of Q. Clearly, the optimal
choice is ˜Kd,opt = Qopt = 0.02 and that leads to ao = max amax(Q) = 15.2 which
means that the allowable gain is in the interval 1 < K p < 16.2 and

C pd,GMopt(s) = 4.025 (1 + 0.02 s) and C pd,LF(s) = 8.6 (1 + 0.02 s).

Remark 2 On Lead-Lag Controller Design.
Recall that for the lead or lag controller design C0(s) is in the form

C0(s) = 1 + Q1 s

1 + Q2s
with Q1 := ˜Kd > −τ, Q2 := τ > 0.

Then, similar to the PD controller design, the parameter a which determines the
controller gain should be such that (p + a) < 1/γa , where

γa(Q1, Q2) =
∥

∥

∥

∥

G0(s) − 1

s + a
+

(

Q1

1 + Q2 s

)

s

s + a
G0(s)

∥

∥

∥

∥∞
.

So, to find amax(Q1, Q2), in Step 1 of the corresponding gainmargin optimization
algorithm, the computations are done for two parameters in nested loops. Then in
Step 2, a surface plot of amax(Q1, Q2) is obtained and its maximum is determined.
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2.4.2 PI Controller Design

Consider the design of a PI controller in the form

C pi (s) = C1(s) + Ki

s
, (2.15)

whereC1(s) = K p is such thatC1 ∈ C (P). In other words, a controllerC1 is already
designed to stabilize P and now the integral action is to be added to the controller.
The following discussion is valid for C1 = C pd as well, in that case the addition of
integral term will give a PID controller C2 = C pid .

Since C1 ∈ C (P) the following statement holds:

H1(s) := P(s)

1 + C1(s)P(s)
is in H∞.

The characteristic equation of the feedback system formed by C2 and P is

1 + C1(s)P(s) + Ki

s
P(s) = (1 + C1(s)P(s))

(

1 + Ki

s
H1(s)

)

= 0 .

Using the fact that C1 ∈ C (P) it can be concluded that

C2 ∈ C (P) ⇐⇒ V −1
1 ∈ H∞ with V1(s) =

(

1 + Ki

s
H1(s)

)

.

Now define
b := Ki H1(0) ,

then V1 can be re-written as

V1(s) =
(

1 + b

s

)

(

1 +
(

1 + b

s

)−1

b

(

H1(s)H1(0)−1 − 1

s

)

)

. (2.16)

Let us now assume that b > 0 (this is without loss of generality, since the sign of
Ki can be adjusted according to the sign of H1(0)). Then, note that

(

1 + b

s

)−1

= s

s + b
∈ H∞ with ‖ s

s + b
‖∞ = 1.

The following result can be derived from the small gain theorem: V −1
1 ∈ H∞,

i.e., C2 ∈ C (P), if b satisfies

0 < b < 1/‖Φ0‖∞ where Φ0(s) =
(

H1(s)H1(0)−1 − 1

s

)

. (2.17)
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In fact, a careful examination of (2.16) shows that, rather than (2.17), the following
less conservative sufficient condition on b can be used for C2 to be in C (P):

0 < b < 1/‖Φb‖∞ where Φb(s) =
(

H1(s)H1(0)−1 − 1

s + b

)

. (2.18)

Clearly, there is an analogy between Ψa and Φb, and the conditions (2.13) and
(2.18). Note thatΦb depends on K p which is assumed to be inC (P). So, the optimal
PI controller C pi,opt (s) = K p,opt + (Ki,opt/s) can be designed as follows.

For each fixed K p ∈ C (P), find the largest allowable b > 0 satisfying
(2.18) and let it be denoted as bmax(K p). Accordingly, define

K p,opt := arg max { bmax(K p) : K p ∈ C (P) }.

Then, the least fragile integral action gain is

Ki,opt = bmax(K p,opt )

2
H1(0)

−1.

In order to illustrate the computations involved in the design method described
above, let us consider once more the plant (2.7) with h = 0.1 and p = 1. Recall
from Fig. 2.3 that C1(s) = K p is a stabilizing controller if K p ∈ (1 , 14.2). For
each fixed K p in this interval, define

H1(s) = e−0.1s

s − 1 + K pe−0.1s
, clearly H1(0) = 1

K p − 1
.

Simple computations give Φb as:

Φb(s) = H1(s)H1(0)−1 − 1

s + b
=

(

1

s + b

) (

1 − s − e−0.1s

s − 1 + K pe−0.1s

)

.

Following the above procedure, for each K p ∈ (1, 14.2) and b > 0, the H∞-
norm ‖Φb‖∞ is computed. Then, from the graph of 1/‖Φb‖∞ versus b, the largest
b, denoted by bmax(K p), satisfying (2.18) is determined. Figure 2.5 shows bmax(K p)

versus K p. Clearly, the largest bmax(K p) = 5.7 is achieved at K p = K p,opt = 4.8.
For the least fragile integral gain, let Ki,opt = H1(0)−1bmax(K p,opt )/2 = 10.8. The
resulting controller is

C pi,LF(s) = 4.8 + 10.8

s
.
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2.5 Conclusions and Future Extensions

In this chapter of the book, a method is proposed for the design of stabilizing first
order controllers (PD, PI and lead or lag controllers) for a class of infinite dimensional
plants. The main assumption is that the plant has a single unstable pole (at the
origin, or on the positive real axis). Examples from several applications are given
to justify the plant model considered. These examples include systems with time
delays, fractional order systems, and systems represented by PDEs.

The approach is based on the small gain theorem and requires minimization of
the H∞ norm of an infinite dimensional stable transfer function over a low number
of parameters.

Anotherway to obtainC�(s) = K pC0(s)with a large gainmarginwould be to find
a first order approximation of an infinite dimensional stable controller determined
from the following H∞ control problem. For a fixed a > 0, first, solve the one block
problem

γo(a) = inf
Q∈H∞

‖ 1

s + a
(1 − G0(s)Q(s)) ‖∞.

If

(p + a) < 1/γo(a), (2.19)



2 Design of First Order Controllers for Unstable Infinite Dimensional Plants 29

then define

Qa(s) := arg γo(a).

Now, all controllers in the form K0G(0)−1Qa(s) stabilize the plant, which is
given by P(s) = 1

s−p G(s), provided that the gain is in the interval

p < K0 < (p + a).

Thus, to maximize the allowable controller gain the maximum a defined below
should be determined:

amax = arg max{ a : a ∈ R+ and (2.19) holds }.

The least fragile stable controller, in this framework, is

Cs,L F (s) = (p + â)G(0)−1Qâ(s) where â := amax

2
.

Approximation of Qâ(s) by a first order controller, then, gives a lead or lag
controller in the form C�(s). The above approach (and other alternative methods
of approximating the plant first and then designing a low order controller) must be
further compared with the proposed design of Sect. 2.4.1 on practical application
examples. Currently, this is left open for a future study.
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