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ABSTRACT

We consider a block-diagonal linear ( not necessarily
time-invariant) map P with a right-coprime factorization
ND™! (or a left-coprime factorization D~!N ). We show
that the individual blocks in P have right-coprime factori-
zations ( left-coprime factorizations, respectively) if and
only if the denominator map D ( D ) has a special
block-triangular structure. We apply this condition to the
stable linear feedback system S (P, Py).

L INTRODUCTION

Consider the linear (not necessarily time-invariant)
feedback system S (P, P ) shown in Figure 1. If the system
Py 0 € 321

: (=
0 Py | e Y2
has both a right-coprime fraction representation ,
and a left-coprime fraction representation (D ,N ), where
N ,D ,D and N are linear causal stable maps. This result
was proven in [Vid.1] for the case where P has elements in
the quotient field of an entire ring. However, the conditions
for existence of individual right-coprime fraction represen-
tations and left-coprime fraction representations of the sub-
systems P, and P ,, was left as an open question.

To show that the stability of the closed-loop does not
imply that P, and P, individually have coprime factoriza-
tions, a special non-unique factorization domain was con-
structed in [Ana.1]; scalar p, and p, in the quotient field of
this particular ring have no stable coprime factorizations

P 0
although |

is stable, then the map P :=

Ps has a right-coprime factorization.

In this paper, we consider this problem from a general
input-output approach, where the multiinput-multioutput
subsystems P ; and P, are represented by linear (not neces-
sarily time-invariant) maps defined over extended spaces.
Generalizing the concepts of factorizations and coprime
factorizations, we obtain right- and left-coprime fraction
representations of the map P when the system S (P, Py) is
stable. The main result is Theorem 3.3, which states that:
given coprime factorizations of P, individual coprime fac-
torizations for P ; and P, exist if and only if a right-coprime
factorization of P has a lower block-triangular "denomina-
tor" D and a left-coprime factorization of P has an upper
block-triangular "denominator” D . Note that Theorem 3.3
answers the question posed in [Vid.1]; the example con-
structed in [Ana.1] is only one case where the conditions of
Theorem 3.3 fail. In the linear time-invariant case where P
and P, have rational function entries, the necessary and
sufficient conditions in Theorem 3.3 are satisfied due to the
existence of triangular ( Hermite ) forms [Vid.2].
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IL NOTATION AND DEFINITIONS
For similar notation see, for example, [Wil.1, Saf.1, Des.1].

Let T € R andlet V be a normed vector space. Let
L:={F IF:T—V]} be the vector space of V-valued
functions on T. For any T € T, the projection map

C - C is defined by T F (1) =
F(@) ,1sT,teT
O T, teT where O is the zero element in {.

t A < { be a normed vector space which is closed
under the family of projection maps { ITy }; ¢ 7. For any
F e A, let the norm |IIL.\F Il :T— R, be a nonde-
creasing function. The extended space A, is defined by
A, ={Fel | ¥TeT, II;F e A}.

Amap F :A, - A, is said to be causal iff for all
TeT, II; commutes with TI;F; equivalently,
HTF = HTF HT‘

We define two function spaces closely related to A,
(the superscripts i and o refer to "input" and "output”,
respectively): Let A, and A9 be extended function
spaces analogous to A, except that their functions take
values in the normed spaces V' and V°, respectively; the
associated projections Il are redefined accordingly.
Definition (Well-posed system): A feedback system is
said to be well-posed iff for all possible inputs, all signals in
the system are (uniquely) determined by causal maps.
Definition (Finite-gain stability): (1) A causal map
H: A‘ — AS is called finite-gain ( f.g. ) stable iff there
existsm >0 such that I|1He 1Sm lle |l ,foralle € A,

(2) A well-posed feedback system is called f.g. stable iff
for all possible inputs, all signals in the system are deter-
mined by causal f.g. stable maps.

Definition (Finite-gain unimodularity): A causal f.g.
stable map M : A, = A, is said to be f.g. unimodular iff
M is bijectiveand M~ : A, — A, is causal f.g. stable.
Definition (Coprime factonzatnons) (e.g. [Fei.1, Man.1])
Let N:AL A%, D:Al —A, N :AL -5 A% and
D :A% — A% be causal lmear f.g. stable maps.

(1) The pair (N D) | (D N ) 1is called right-coprime
(r.c.) [ left-coprime (l.c.) ] iff there exist causal linear f.g.
stable maps U : A, S AL andV AL S5 AL

[T :A% - AL andV : A° — A% 1 suchthat

UN+VD =I5 [DV +NU =153, ()

where 5 [1pq ] istheidentitymapon Al [AS] .
(2) The pair(N,D) [(D ,N)] iscalled a right fraction
representation (rf.r.) [ left fraction represensation (1fr.) ]
of the causal linear map P : Ag — AY iff @ D [D]is
bijective with a causal inverse DAL S AL

[D':AS 5 A% 1,and ()P =ND™' [P=D"'N]
(3) The pair W,D) [ O ,N) ] is called a righs-
coprime fraction representation (r.cfr.) [ left-coprime
fraction representation (I.cf.r.) ] of the causal linear map



P:AL A% iff G) OV, D)isrc. [(D,N)isle.] ,
and (u) (N D)isanrfr. [ O ,N)isanlfr.] of P.
III. MAIN RESULTS

Consider the system S(P;,P,) shown in Figure 1:
Py:A% 5 AL andP,: AL — A2 are causal linear maps.
iy

4yt~ p
_T ! ¥

Figure 1: The feedback system S (P, Po).
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Y2
causal /inearmap P : e |-y be defined by

X ) Py 0
P:AS XA, -ALxAS , P=[ 0 Pz] , @

Plel+(k2
where Pe = Ocy+Poe,
3.1. Fact:

Let the well- linear system S(P,, P,) be
f.g. stable. Then the map P defined in equation (2) has an
r.c.fr. and an lcfor. -
3.2.Lemma;: Let(N,D)beanrcfr.and (D,N)bean
Lc.fr. of the linear map P ; then

i @, B)xsalsoanrcf.r of P if and only if there exists
an f.g. unimodular map R : A,—)A¢ such that A =NR ,
B =DR;

G &, Z)lsalsoanl.c.f.r of P if and only if there exists
an fg unimodular map L: Al -5 A5 such that
B =1D ,A =IN.

Comment With suitable interpretations, conclusion
3.2.(i) above holds for nonlinear maps {sce e.g. Ham.1,
Des.2].

33. Theorem (i) Let (A,B) be an rcfr. of

P, 0
P -Lo P, ; then P, and P, have r.cfrs (Ny;,Dyy)
and (N, D53), respectively, if and only if there exists an
f.g. unimodular map R such that

BR:[Dzl Dzz] ’ ®
where Dj :Al »Al and Dyp:A —-A%, and
Nj Ny
AR =t | Ny sz] '

P, 0
(i) Let (B,A) be an Lefr. of P=[ 0 ,,2] ; then Py

and P, have lcfrs (D, Ny,) and Dy, N3, respec-
tively, if and only if there exists an f.g. unimodular map L
such that

_ [Du Dy
LB =\ 0 Dyl °

where Dy : A% =A% and Dy : AL - AL,

ind LA Ny Ny
7] Ny Nypp -

Comments: (1) Equation (3) is a structure test on the

“)
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"denominator” map: P must have an r.c.fr. (N¥,D) where
D is of the specific lower block-triangular form. In order to
find the individual r.c.f.r.s of the subsystems from the given
refr. (A,B) of P, we only need to determine D ; and
D 4, ; D, is not necessary for the calculation. Similar com-
ments apply for the upper block-triangular form in equation
(4). (2) Theorem 3.3 can be restated for n subsystems
when P = diag(P, ' -+ P,) has an rc.fr. or an lcfir.

(3) If condition (i) of Theorem 3.3 holds, then P has the
structure in Figure 2.

== -=~==—== 3
' =
' 1
L P1
Dy Ny
2,
- 14
zzl Ny ' Y2

Figure 2

Since Ny =NpDZD,,, P is in fact decoupled into two
subsystems P, and P,. In other wonds, the blocks D,
and N, can be removed for a simpler r.cfr. of P . (4)
By Fact 3.1, the map P in any well-posed f.g. stable linear
system has an r.c.fr. (Lcfr. ). The individual subsystems
also have r.cfr.s ( Le.fir.s ) if and only if the condition
stated in Theorem 3.3 is satisfied.
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