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SIMPLE LOW-ORDER AND INTEGRAL-ACTION CONTROLLER
SYNTHESIS FOR MIMO SYSTEMS WITH TIME DELAYS

A.N. GÜNDEŞ1, A.N. METE2

Abstract. A simple finite-dimensional controller synthesis method is developed for some classes
of linear, time-invariant, multi-input multi-output systems that are subject to time delays. The
proposed synthesis procedure gives low-order controllers that achieve closed-loop stability, with
simple modifications, also achieve integral-action.
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1. Introduction

A wide range of dynamical phenomena cannot be modeled sufficiently accurately as finite-
dimensional linear time-invariant (LTI) systems due to being subject to time delays. The effects
of these delays often cannot be ignored and have to be included in the model [3].

This paper presents a stabilizing controller synthesis method for some classes of linear, time-
invariant (LTI), multi-input multi-output (MIMO) systems that are subject to time delays. The
proposed controllers are simple finite-dimensional LTI controllers that achieve closed-loop sta-
bility of the delayed plants. The controller design can be modified easily so that these controllers
also provide integral-action in order to achieve asymptotic tracking of step-input references with
zero steady-state error. For the plant classes considered here, the finite-dimensional part of the
plants may have any (finite) number of poles; while the poles in the stable region are unre-
stricted, those in the unstable region (closed right-half complex plane) have to be ‘small’, i.e.,
close to the origin. There are no restrictions on the number or location of the transmission-zeros
of the finite-dimensional parts of the delayed plants. The controllers designed for these plants
are low-order, and in the SISO case they are either stable (if integral-action is not required in
the design) or have all poles in the open left-half complex plane except a pole at the origin for
integral-action. The simplicity of the designed controllers explains why the plant classes have
restrictions on the poles in the region of instability: these plants are in fact strongly stabilizable.

Stability of delay systems of retarded type and of neutral type was studied extensively and
many delay-independent and delay-dependent stability results are available (see [3], [6]). Most
tuning and internal model control techniques used in process control systems apply to delay
systems [8]. The results on robust control of infinite-dimensional systems apply to the sub-
class of systems with delays [1]. The problem of existence of proportional-derivative (PD) and
proportional-integral-derivative (PID) controllers for time delay systems was also considered and
computational PID-stabilization methods have been extended to cover scalar, single-delay sys-
tems (see e.g., [5, 7]). For MIMO stable plants and for unstable plants whose finite-dimensional
parts have no more than two poles in the unstable region, PD and PID controller synthesis
methods were developed for I/O delays, i.e., delays that affect the plant’s inputs and outputs
(see [4]). The synthesis method developed in this paper allows arbitrary delay terms to affect
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different entries of the plant’s transfer-matrix. The proposed controller design applies under
certain assumptions on the poles of the finite-dimensional parts of the unstable delayed plants:

We use the following standard notation:
Notation: Let C ,R , R+ denote complex, real, and positive real numbers. The extended

closed right-half complex plane is U = {s ∈ C | Re(s) ≥ 0} ∪ {∞}; Rp denotes real proper
rational functions (of s); S ⊂ Rp is the stable subset with no poles in U ; M(S) is the set of
matrices with entries in S . The space H∞ is the set of all bounded analytic functions in C+ .
For h ∈ H∞ , the norm is defined as ‖h‖∞ = ess sups∈C+

|h(s)|, where ess sup denotes the
essential supremum. A matrix-valued function H is in M(H∞) if all its entries are in H∞ ; in
this case ‖H‖∞ = ess sups∈C+

σ(H(s)), where σ̄ denotes the maximum singular value. From the
induced L2 gain point of view, a system whose transfer-matrix is H is stable iff H ∈M(H∞). A
square transfer-matrix H ∈M(H∞) is unimodular iff H−1 ∈M(H∞). We drop (s) in transfer-
matrices such as G(s) where this causes no confusion. Since all norms of interest here are H∞
norms, we drop the norm subscript, i.e., ‖·‖∞ ≡ ‖·‖. We use coprime factorizations over S ; i.e.,
for G ∈ Rp

m×m, G = D−1N denotes a left-coprime-factorization (LCF), where N,D ∈ Sm×m,
detD(∞) 6= 0.

2. Problem description

Consider the feedback system Sys(GΛ, C) in Fig. 1, where C ∈ Rp
m×m is the transfer-function

of the controller and GΛ is the transfer-function of the plant with time delays. It is assumed that
the feedback system is well-posed and that the delay-free part of the plant (i.e, the plant without
the time delay terms) and the controller have no unstable hidden-modes. The finite-dimensional
part of the plant is denoted by G ∈ Rp

m×m.

- h - C - h? - -GΛ
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v
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Figure 1. The feedback system Sys(GΛ, C).

Let G = D−1N be an LCF of G. Suppose that each ij-th entry NΛ
ij of NΛ contains any

arbitrary delay terms and that the delays are known. We assume that GΛ can be written as

GΛ = D−1NΛ , where NΛ
ij = e−hijsNij , i, j = 1, . . . , m. (1)

If the finite-dimensional part G of the delayed plant GΛ is stable, then (1) implies that the entries
of GΛ may contain all different arbitrary known delay terms. If the finite-dimensional part G
of the delayed plant GΛ is not stable, then we assume that the delayed plant transfer-function
GΛ has restrictions on its poles in the unstable region.

In the system Sys(GΛ, C), let u, v, w, y denote the input and output vectors. The closed-loop
transfer-matrix Ĥ from (u, v) to (w, y) is

Ĥ =
[

C(I + GΛC)−1 −C(I + GΛC)−1GΛ

GΛC(I + GΛC)−1 (I + GΛC)−1GΛ

]
. (2)

Let the (input-error) transfer-function from u to e be denoted by Heu and let the (input-output)
transfer-function from u to y be denoted by Hyu ; then

Heu = (I + GΛC)−1 = I −GΛC(I + GΛC)−1 = I −Hyu . (3)

Definition 1. a) The feedback system Sys(GΛ, C) shown in Fig. 1 is stable if the closed-loop
map Ĥ is inM(H∞). b) The controller C stabilizes GΛ if C is proper and Sys(GΛ, C) is stable.
c) The system Sys(GΛ, C) is stable and has integral-action if the closed-loop transfer-function
from (u, v) to (w, y) is stable, and the (input-error) transfer-function Heu has blocking-zeros at
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s = 0. d) The controller C is said to be an integral-action controller if C stabilizes GΛ and
Y (0) = 0 for any RCF C = XY −1.

Let G = D−1N be an LCF of the finite-dimensional part of GΛ, and let GΛ = D−1NΛ; let
C = XY −1 be an RCF, where D, N, Y,X ∈ Sm×m, det D(∞) 6= 0, detY (∞) 6= 0. Then C
stabilizes GΛ if and only if M−1 ∈M(H∞), where

M := D Y + NΛ X . (4)

Suppose that the system Sys(GΛ, C) is stable and that step input references are applied at
u(t). Then the steady-state error e(t) due to step inputs at u(t) goes to zero as t → ∞ if
and only if Heu(0) = 0. Therefore, by Definition 1-(c), the stable system Sys(GΛ, C) achieves
asymptotic tracking of constant reference inputs with zero steady-state error if and only if it
has integral-action. By (4), write Heu = (I + GΛC)−1 = Y M−1D. Then by Definition 2-(d),
Sys(GΛ, C) has integral-action if C = XY −1 is an integral-action controller since Y (0) = 0
implies Heu(0) = (Y M−1D)(0) = 0. Note that the system Sys(GΛ, C) would also have integral-
action if every entry of the MIMO plant has poles at s = 0 since D(0) = 0 implies Heu(0) = 0
even if the controller’s Y (0) 6= 0. However, for robust designs, integral-action is achieved with
poles duplicating the dynamic structure of the exogenous signals that the regulator has to
process; these integral-action controllers obey the well-known internal model principle [2].

We assume throughout that the finite-dimensional part G has no transmission-zeros at s = 0.
In fact, this condition is a necessary condition for existence of integral-action controllers: Let
G ∈ Rp

m×m, with (normal) rankG(s) = m. If GΛ admits an integral-action controller, then G
has no transmission-zeros at s = 0.

3. Controller synthesis

In this section, we propose stabilizing controllers for a class of (MIMO as well as SISO) plants
with time delays. Theorem 1 presents controller synthesis for closed-loop stability. Corollary 1
includes integral-action in the stabilizing controller synthesis.

Let G = D−1N ∈ Rp
m×m have full (normal) rank m. Let G have no transmission zeros

at s = 0, equivalently, rankN(0) = m . Let pj ∈ U , j = 1, . . . , r, denote the poles of G with
non-negative real parts (counting multiplicities). Define

ϕ :=
r∏

j=1

(s− pj) . (5)

Since the set { pj }r
j=1 includes all U-poles of G, for any α ∈ R+ , ϕ

(s+α)r is a largest invariant-
factor of the denominator D. Therefore, ϕ

(s+α)r G ∈ M(S), equivalently, ϕ
(s+α)r D−1 ∈ M(S).

Hence, ϕ
(s+α)r GΛ ∈M(H∞).

Theorem 1. (Stabilizing controller synthesis): Let GΛ = D−1NΛ be as in (1), with ϕ as in
(5). Define

Φ :=
1
s
[ NΛ(s) N(0)−1 − I ] . (6)

Suppose that
r∑

j=1

pj < ‖Φ‖−1 . (7)

Choose α ∈ R+ such that
α ≥ |pj | for j = 1, . . . , r , (8)

and

α <
1
r

( ‖Φ‖−1 −
r∑

j=1

pj ) . (9)
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Then a controller that stabilizes GΛ is given by

C =
[ (s + α)r − ϕ ]

ϕ
N(0)−1D(s) . (10)

Proof of Theorem 1. Since the order of the polynomial term d := [ (s + α)r − ϕ ] is r − 1,
the term X := [ (s+α)r−ϕ ]

(s+α)r N(0)−1 ∈ M(S) (it is in fact strictly-proper and stable). The term
Y := ϕ

(s+α)r D−1 ∈M(S) since ϕ contains all U-poles of G. Therefore, C = XY −1 is an RCF of
the proposed controller in (10). By (4), C stabilizes GΛ if and only if M−1 ∈M(H∞), where

M = D Y + NΛ X =
ϕ

(s + α)r
DD−1 +

[ (s + α)r − ϕ ]
(s + α)r

NΛ N(0)−1

=
ϕ

(s + α)r
I +

[ (s + α)r − ϕ ]
(s + α)r

NΛ N(0)−1 = I +
[ (s + α)r − ϕ ]

(s + α)r
[NΛ N(0)−1 − I ]

= I +
s [ (s + α)r − ϕ ]

(s + α)r

[NΛ N(0)−1 − I ]
s

= I +
s [ (s + α)r − ϕ ]

(s + α)r
Φ = I +

s d

(s + α)r
Φ .

A sufficient condition for M to be unimodular is that ‖ s d
(s+α)r Φ ‖ < 1. Under the condition

α > |pj |, the norm ‖ s d
(s+α)r ‖ is:

‖ s d

(s + α)r
‖ = ‖

s [ (s + α)r −
r∏

j=1
(s− pj) ]

(s + α)r
‖ = rα +

r∑

j=1

pj . (11)

Since α satisfies (9), ‖ s d
(s+α)r Φ ‖ ≤ ‖ s d

(s+α)r ‖‖Φ ‖ = (rα +
r∑

j=1
pj )‖Φ ‖ < 1. Therefore, M is

unimodular and hence, C stabilizes GΛ.

We now prove (11): For all r ≥ 1,
(

s [(s+α)r−ϕ]
(s+α)r

)∣∣∣
s=∞

= rα +
r∑

j=1
pj implies the norm in (11)

is greater than or equal to the right-hand side. We prove the norm in (11) is less than or equal
to the right-hand side by iteration: For r = 1, p1 ∈ R+ and (11) holds since ‖ (α+p1)s

s+α ‖ = α+p1 .
For r = 2,

‖s [(2α + p1 + p2)s + α2 − p1p2]
(s + α)2

‖ = (2α + p1 + p2)

since α2 ≥ p1p2 and hence, (11) holds. For r = 3, let p3 ∈ R+ since at least one of the three

U-poles has to be real. Then ‖ s
s+α‖ = 1 and ‖

2∏
j=1

(s−pj)]

(s+α)2
‖ = 1 for α2 ≥ p1p2 imply that

‖
s [(s + α)3 −

3∏
j=1

(s− pj)]

(s + α)3
‖

≤ ‖ s

s + α
‖ [ ‖

s [(s + α)2 −
2∏

j=1
(s− pj)]

(s + α)2
+ α + p3‖

2∏
j=1

(s− pj)]

(s + α)2
‖ ]

= (2α + p1 + p2 + α + p3)

and hence, (11) holds. Continuing similarly, suppose that (11) holds for r and show that it
holds for (r + 1): Case (i): if at least one of the U-poles of G is real, let p(r+1) ∈ R+. Then
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‖
r∏

j=1
(s−pj)]

(s+α)r ‖ = 1 for α ≥ |pj | implies that

‖
s [(s + α)r+1 −

r+1∏
j=1

(s− pj)]

(s + α)r+1
‖

≤ ‖ s

s + α
‖ [ ‖

s [(s + α)r −
r∏

j=1
(s− pj)]

(s + α)r
+ α + p(r+1)‖

r∏
j=1

(s− pj)]

(s + α)r
‖ ]

= (rα +
r∑

j=1

pj + α + p(r+1))

and hence, (11) holds. Case (ii): if none of the U-poles of G is real, let p(r+1) = p̄r be the complex-

conjugate pair of the pole pr ∈ U . Then ‖
r−1∏
j=1

(s−pj)]

(s+α)r−1 ‖ = 1 and ‖
α(2s+α)(s+α)r−pr p̄r

r−1∏
j=1

(s−pj)

(s+α)r ‖ = 2α

for α ≥ |pj | imply that

‖
s [(s + α)r+1 −

r+1∏
j=1

(s− pj)]

(s + α)r+1
‖

≤ ‖ s

s + α
‖ [ ‖ s

(s + α)

s[(s + α)(r−1) −
r−1∏
j=1

(s− pj)]

(s + α)r−1
‖

+‖
α(2s + α)(s + α)r − prp̄r

r−1∏
j=1

(s− pj)

(s + α)r
‖+ (pr + p̄r)‖ s

s + α
‖‖

r−1∏
j=1

(s− pj)]

(s + α)r−1
‖ ]

= ( [r − 1]α +
r−1∑

j=1

pj + 2α + pr + p(r+1))

and hence, (11) holds.
Corollary 1. (Integral-action controller synthesis): Under the assumptions of Theorem 1,

choose α ∈ R+ satisfying (8) and

α <
1

r + 1
( ‖Φ‖−1 −

r∑

j=1

pj ) . (12)

Then an integral-action controller that stabilizes GΛ is given by

Ci =
[ (s + α)r+1 − sϕ ]

sϕ
N(0)−1D(s) . (13)

Proof of Corollary 1. With X := [ (s+α)r+1−s ϕ ]
(s+α)r+1 N(0)−1 ∈ M(S), and Y := s ϕ

(s+α)r+1 D−1 ∈
M(S), Ci = XY −1 is an RCF of the proposed controller in (13). By (4), Ci stabilizes GΛ if
and only if M−1 ∈M(H∞), where

M = D Y + NΛ X =
sϕ

(s + α)r+1
DD−1 +

[ (s + α)r+1 − sϕ ]
(s + α)r+1

NΛ N(0)−1

= I +
s [ (s + α)r+1 − sϕ ]

(s + α)r+1

[NΛ N(0)−1 − I ]
s

= I +
s [ (s + α)r+1 − sϕ ]

(s + α)r+1
Φ = I +

s d̃

(s + α)r
Φ ,
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where d̃ := [ (s + α)r+1 − sϕ ]. Under the condition α > |pj |, the norm ‖ s d̃
(s+α)r+1 ‖ is:

‖ s d̃

(s + α)r+1
‖ = ‖

s [ (s + α)r+1 − s
r∏

j=1
(s− pj) ]

(s + α)r+1
‖ (r + 1)α +

r∑

j=1

pj . (14)

Since α satisfies (12), ‖ s d̃
(s+α)r+1 Φ ‖ ≤= [(r +1)α+

r∑
j=1

pj ]‖Φ ‖ < 1. Therefore, M is unimodular

and hence, Ci stabilizes GΛ.
Remark 1. a) The controller (10) proposed in Theorem 1 is strictly-proper since the poly-

nomial term d := [(s + α)r − ϕ] is of order r − 1. Similarly, the integral-action controller (13)
proposed in Corollary 1 is strictly-proper.

b) In the case that GΛ is SISO, for any r-th order strictly-Hurwitz polynomial θ(s), the
finite-dimensional part of GΛ can be written as

G =
η

γϕ
=

(ϕ

θ

)−1
(

η

γ θ

)
= D−1N , (15)

where γ is a strictly-Hurwitz polynomial of degree δ(γ), whose roots are the (finitely many)
poles of G in the stable region C\U . The order of G is [r+δ(γ)], and the numerator polynomial
η is of order ≤ [r + δ(γ)]. Therefore, for the SISO case, the controller in (10) becomes

C =
[ (s + α)r − ϕ ]

ϕ
N(0)−1D(s) = γ(0)θ(0)η(0)−1 [ (s + α)r − ϕ ]

θ(s)
, (16)

which is a stable controller of order r, the same as the number of U-poles of G. Therefore, C in
(16) strongly stabilizes SISO plant GΛ.

For the case of SISO plants with time delays, the integral-action controller in (13) becomes

Ci = γ(0)θ(0)η(0)−1 [ (s + α)r+1 − sϕ ]
s θ(s)

. (17)

The controller in (17) is of order r + 1, and has poles in the stable region C \ U except for the
pole at s = 0 providing integral-action.

c) As in the SISO case, whenever the finite-dimensional part G of the MIMO plant GΛ is
such that an LCF G = D−1N is given by

D =
ϕ

θ
I , N =

ϕ

θ
G ,

i.e., rank
(ϕ

θ G
)∣∣

s=pj
= m for each U-pole pj of G, then the controller in (10) becomes

C =
[ (s + α)r − ϕ ]

ϕ
N(0)−1D(s) =

[ (s + α)r − ϕ ]
θ(s)

N(0)−1 , (18)

which is a stable controller, whose poles are the r roots of the arbitrarily chosen strictly-
Hurwitz polynomial θ(s). Delayed plants GΛ in this class are therefore strongly stabilized by
the controller in (18).

d) Any number of the U-poles of G may be at the origin s = 0. In fact, if pj = 0 for
j = 1, . . . , r, then condition (7) is obviously satisfied since 0 < ‖Φ‖−1. In this case, choose
α ∈ R+ in (9) such that α < 1

r‖Φ‖−1.
e) In the MIMO case, the finite-dimensional part G of GΛ may have coinciding poles and

zeros (in the unstable region U as well as the stable region C \ U of the complex plane). The
only assumption is that G has no zeros at s = 0.

f) If the finite-dimensional part G of GΛ has only one U-pole (although it may obviously
have any number of poles in the open left-half complex plane), then the controller (10) and the
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integral-action controller in (13) become

C =
[ (s + α)− (s− p1) ]

s− p1
N(0)−1D(s) =

( α + p1 )
s− p1

N(0)−1D(s) , (19)

Ci =
[ (2α + p1)s + α2 ]

s (s− p1)
N(0)−1D(s) . (20)

Following Remark-(b), if G can be factorized as in (15), i.e., D = (s−p1)
θ I, where θ is a first-order

strictly-Hurwitz polynomial, then the controller (19) and (20) become PD and PID controllers,
respectively:

C =
( α + p1 )

θ
N(0)−1 , (21)

Ci =
[ (2α + p1)s + α2 ]

s θ
N(0)−1 . (22)

4. Conclusions

The main result (Theorem 1) presented a simple LTI controller synthesis method to achieve
closed-loop stability for some classes of LTI, MIMO plants that are subject to time delays.
The procedure is modified in Corollary 1 to include integral-action in the controller design so
that asymptotic tracking of step-input references with zero steady-state error is also achieved in
addition to closed-loop stability. The results apply to plants whose finite-dimensional part has
restrictions on the poles in the unstable region of the complex plane. Performance implications
for choices within the controller parameters can also be explored for specific applications of the
synthesis methods presented here.
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