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Simultaneous and strong simultaneous stabilisation of some classes of MIMO systems

A.N. Gündes� *

Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA

(Received 19 May 2010; final version received 2 June 2011)

Sufficient conditions are derived for simultaneous stabilisability of any finite number of linear, time-invariant,
multi-input multi-output (MIMO) systems. Four general MIMO plant classes with arbitrary finite number of
plants are shown to be simultaneously stabilisable using simple proportionalþ derivative controllers. For some of
these plant classes it is also possible to achieve simultaneous stabilisation and asymptotic tracking of step-input
references with zero steady-state error by using integral-action controllers. Three of these general MIMO plant
classes are shown to be strongly simultaneously stabilisable.

Keywords: simultaneous stabilisation; integral action; PID control; robust asymptotic tracking

1. Introduction

Control problems involving simultaneous stabilisation
of a finite family of plants arise in many practical
applications. For example, linearisation of nonlinear
process models at various operating points results in a
set of models to be controlled simultaneously. The
requirement of maintaining stability under sensor or
actuator failures also leads to dynamic models
corresponding to failure modes to be all controlled
using a common controller for reliable operation
(Stoustrup and Blondel 2004). The robust control
problem deals with controller design for an infinite
number of plant models all within a neighbourhood of
a nominal model, which represent perturbations of the
nominal plant. Simultaneous control deals with finitely
many plants that may or may not be topologically
close (Sourlas and Manousiouthakis 1999).

The simultaneous stabilisation problem is recog-
nised as one of the hard open problems in linear
systems theory. Conditions for the existence of
simultaneously stabilising controllers have been
explored extensively, e.g. Vidyasagar (1985) and
Blondel (1994). The well established result that the
simultaneous stabilisation of n plants is equivalent to
strong stabilisation of (n� 1) plants leads to explicit
conditions for existence of simultaneously stabilising
controllers for n¼ 2: two plants are simultaneously
stabilisable if and only if a related system is strongly
stabilisable, i.e. can be stabilised using a stable
controller. Strong stabilisability of this single system
can in turn be checked via the parity interlacing

property (PIP) of the positive real poles and (blocking)

zeros (Youla, Bongiorno, and Lu 1974; Vidyasagar
1985; Blondel 1994). Unlike the case of two plants,

there are no necessary and sufficient conditions

available for simultaneous stabilisability of three or

more plants (Blondel, Campion, and Gevers 1993;

Blondel 1994; Blondel, Gevers, Mortini, and Rupp

1994). An algorithm for simultaneous stabilisation of

four scalar plants in groups is given in Jia and

Ackermann (2001). Closed-loop performance issues

in addition to simultaneous stabilisation have also been

explored to a lesser extent, e.g. Sourlas and
Manousiouthakis (1999).

The problem considered here is the simultaneous

stabilisation of a finite class of linear, time-invariant

(LTI) multi-input multi-output (MIMO; unstable or

stable) plants using linear time-invariant output-feed-

back controllers. Since it is not always possible to

stabilise two or more plants with a common LTI

controller, alternative strategies such as time-varying

or sampled-data controllers have been developed to

overcome the limitations (see e.g. Kabamba and Yang

(1991) and Miller and Kennedy (2002)). This work
deals with the problem using time-invariant control-

lers. Recognising the fact that explicit existence

conditions for the general case of three or more

arbitrary plants are not possible to obtain (Blondel

1994), the goal of this work is to identify some

important classes of practically relevant plants such

that simultaneous stabilisation is achievable. An

additional objective is to design the common stabiliser
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as a low-order LTI controller with integral-action,
which provides asymptotic tracking of constant
reference inputs.

Simultaneous stabilisation is challenging even with-
out the order constraint on the controller. The
question we attempt to answer here is the following:
can we identify any classes of plants that can be
simultaneously stabilised using up to second-order
controllers such as proper ProportionalþDerivative
(PD) controllers or proper Proportionalþ Integralþ
Derivative (PID) controllers? In order to avoid
confusion regarding the use of the ‘derivative’ term,
we define the form of the controller considered
throughout this article as the (realisable) PID form
given in (1),

CPID ¼ KP þ
KI

s
þ

KDs

�sþ 1
, ð1Þ

where (the matrices) KP, KI, KD are called the
proportional constant, the integral constant, and the
derivative constant, respectively Goodwin, Graebe,
and Salgado 2001. A (fast) pole is included in the
denominator of the derivative term (with �40) so that
the transfer-function CPID in (1) is proper. Any
controller designed with poles at s¼ 0, duplicating
the dynamic structure of the exogenous signals that the
regulator has to process, obeys the well-known internal
model principle (Francis and Wonham 1975). So if the
integral term is non-zero, the PID controller has
integral-action and hence, a system stabilised by
using a PID controller achieves asymptotic tracking
of step-input references with zero steady-state error.
Equivalently, constant output disturbances are rejected
asymptotically due to the integral term in the PID
controller. Restricting the controller order to be one or
two by using PD/PID controllers makes the problem
clearly more difficult than simultaneous stabilisation
without the order constraint. The use of PD controllers
(or proportional controllers when also KD¼ 0) further
implies that the problem becomes strong simultaneous
stabilisation using a (stable) controller whose order is
restricted to be at most one.

Although PID controllers are widely used and
preferred due to their simplicity, they can stabilise only
certain plants. A basic necessary (but not sufficient)
condition for PID stabilisability is strong stabilisability
(Gündes� and Özgüler 2007). While several rigorous
PID design methods exist mostly for single-input
single-output (SISO) systems or using numerical
methods (see e.g. Aström and Hagglund (1995),
Silva, Datta, and Bhattacharyya (2002) and Lin,
Wang, and Lee (2004)), simultaneous stabilisation
while achieving asymptotic tracking or PID designs
that achieve simultaneous closed-loop stability of
MIMO systems have not been explored extensively.

A simultaneous PID controller synthesis for stable
plants was presented in Gündes� (2008). Since strong
stabilisability is necessary for the plant classes we aim
to simultaneously PID stabilise, we expect that there
will be certain restrictions on the positive real-axis
zeros and poles due to the PIP. On the other hand,
satisfying the PIP is not even sufficient. For example,
the simple SISO plant G ¼ 1

ðs�pÞ3
is not PID stabilisable

for any non-negative p although G is strongly
stabilisable for all p. Although a second-order con-
troller cannot be found, there exist third-order
controller (with integral-action) that stabilises G.
Since the goal is to identify plants that can be
simultaneously stabilised using controllers up to
second-order, we are imposing constraints on the
transmission-zeros in the extended right-half complex
plane (RHP), and we are limiting the number of zeros
at infinity. There are no limitations on the open
left-half plane (OLHP) zeros and the poles may also be
anywhere in the complex plane.

Three classes of plants are shown to be simulta-
neously PID stabilisable; another class is simulta-
neously PD stabilisable. The first is the class of plants
that have no extended RHP zeros, which is strongly
simultaneously stabilisable using PD controllers and
also simultaneously stabilisable using PID controllers.
The second class has any number of plants all with one
zero at infinity (i.e. relative degree one in the SISO
case) but no other RHP zeros; this class is strongly
simultaneously stabilisable using PD controllers and
under a sufficient condition, also simultaneously
stabilisable using PID controllers. The third class
allows the plants to have two zeros at infinity
(i.e. relative degree two in the SISO case) but no
other RHP zeros; this class is simultaneously stabili-
sable using PID controllers under a sufficient condi-
tion, but the methods used here cannot determine if
such plants are simultaneously PD stabilisable in the
general case. The fourth class includes plants with one
positive real-axis zero, which may be at the origin. We
also consider unions of these classes and determine
simultaneous PD/PID stabilisability of a finite set that
combines plants from some of these classes. In all cases
considered, there are no restrictions on the number or
location of the plant poles anywhere in the complex
plane; the sets to be simultaneously stabilised may
include any finite number of stable and unstable
plants. The zeros of these plants in the OLHP are
similarly unrestricted. In Propositions 1, 2, 3, 4, we
develop systematic methods of simultaneous PD/PID
synthesis for each of these plant classes. The synthesis
approach does not depend on numerical algorithms
and is not restricted to three or four plants; any
number of plants within the specified classes are
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simultaneously PD/PID stabilised. The PD/PID con-
trollers proposed here provide robust simultaneous
stabilisation of any finite number of plants in the plant
classes under consideration.

Although we discuss continuous-time systems here,
all results also apply to discrete-time systems with
appropriate modifications.

The following notation is used: U denotes the
extended closed right-half plane, i.e. U ¼ {s2C j

Re(s)� 0}[ {1}; R, Rþ denote real and positive real
numbers; Rp denotes real proper rational functions of
s; S�Rp is the stable subset with no poles in U;M(S)
is the set of matrices with entries in S; M2M(S) is
called unimodular if M�12M(S); Im is the m�m
identity matrix; we use I when the dimension is
unambiguous. The H1-norm of M(s)2M(S) is
denoted by kM(s)k (i.e. the norm k�k is defined as
kMk :¼ sups2@U ��ðMðsÞÞ, where �� is the maximum
singular value and @U is the boundary of U). For
simplicity, we drop (s) in transfer matrices such as G(s)
where this causes no confusion. We use coprime
factorisations over S; i.e. for G2Rp

m�m, C2Rp
m�m,

G¼Y�1X denotes a left-coprime-factorisation (LCF),
C¼ND�1 denotes a right-coprime-factorisation
(RCF), where X,Y,N,D2Sm�m, detY(1) 6¼ 0,
detD(1) 6¼ 0. Let rankG(s)¼ r�m; then z2U is a
transmission-zero of G if rankX(z)5r and it is a
blocking-zero of G if X(z)¼ 0. We refer to poles and
zeros in the region of instability U as U-poles and
U-zeros.

2. Problem description

Consider the standard LTI, MIMO unity-feedback
system Sys(G,C) shown in Figure 1, where G2Rp

m�m,
and C2Rp

m�m denote the plant’s and the controller’s
transfer-functions, and it is assumed that the feedback
system is well-posed, G and C have no unstable hidden-
modes, and rankG(s)¼m. The objective is to design a
single stabilising controller C that achieves asymptotic
tracking of step-input references with zero steady-state
error for a finite class of plants simultaneously.

Let G¼Y�1X be an LCF and C¼ND�1 be an
RCF, where Y,X,D,N2Sm�m, detY(1) 6¼ 0, det
D(1) 6¼ 0. Then C stabilises G2M(S) if and only if

M :¼ YDþ XN ð2Þ

is unimodular (Vidyasagar 1985; Gündes� and Desoer
1990). Let the (input-error) transfer-function from r to
e be denoted byHer and let the (input–output) transfer-
function from r to y be denoted by Hyr; then

Her ¼ ðIþ GCÞ�1 ¼ I� GCðIþ GCÞ�1

¼ I� GHwr ¼ I�Hyr: ð3Þ

Definition 1:

(i) The system Sys(G,C ) is said to be stable if the
closed-loop transfer-function from (r, v) to
( y,w) is stable.

(ii) The stable system Sys(G,C ) is said to have
integral-action if Her has blocking-zeros at
s¼ 0.

(iii) The controller C is said to be an integral-
action controller if C stabilises G and the
denominator D of any RCF C¼ND�1 has
blocking-zeros at s¼ 0, i.e. D(0)¼ 0.

Suppose that Sys(G,C ) is stable and that step input
references are applied to the system. Then the steady-
state error e(t) due to all step input vectors at r(t) goes
to zero as t!1 if and only ifHer(0)¼ 0. Therefore, by
Definition 1, the stable system Sys(G,C ) achieves
asymptotic tracking of constant reference inputs with
zero steady-state error if and only if it has integral-
action. Write Her¼ (IþGC )�1¼DM�1Y. Then by
Definition 1, Sys(G,C ) has integral-action if
C¼ND�1 is an integral-action controller since
D(0)¼ 0 implies that Her(0)¼ (DM�1Y )(0)¼ 0.

The simplest integral-action controllers are in PID
form (with KD¼ 0 for first-order and KD 6¼ 0 for
second-order controllers). Here we only consider the
proper PID controller form given in (1), where a pole is
typically included in the derivative term due to
implementation issues so that CPID in (1) is proper.
The only U-pole of the PID controller in (1) is at zero.
The constants KP, KD, KI may be negative; in the scalar
case, this would imply that the zeros of CPID may be in
the unstable region U. The integral-action in the PID
controller is present when KI 6¼ 0. Subsets of the PID
controller in (1) are obtained as CPI, CPD, CID, CI, CD,
CP, by setting one or two of the three constants KP, KI,
KD equal to zero.

3. Simultaneous controller synthesis

We now explore the problem of simultaneous PD/PID
stabilisation for finite sets of plants. The plant classes
we consider have restrictions on their U-zeros. The
poles are completely unrestricted, and there are no
restrictions on the OLHP zeros. The sets of systems
to be simultaneously stabilised include stable and

� C � �� G �
�−

v
r e w y

Figure 1. Unity-feedback system Sys(G, C).
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unstable plants. Four specific plant classes are inves-
tigated in the next four sections.

3.1 Simultaneous controller synthesis for plants with
no U-zeros

Consider a finite set Gno of plants that have no U-zeros.
The plants in this set have no zeros in the extended
right-half complex plane U including infinity; in the
SISO case, this implies that the relative degree is zero
for these plants. There is an arbitrary number of plants
in this finite class and they may have poles anywhere in
C. These plants may have (transmission and blocking)
zeros anywhere in C nU. There may be any number of
stable as well as unstable plants in the set under
consideration.

The plants in Gno are strongly simultaneously
stabilisable using PD controllers and they are also
simultaneously PID stabilisable as shown in
Proposition 1, which presents a systematic simulta-
neously stabilising PD and PID controller synthesis
procedure for this plant class.

Proposition 1 (PD/PID synthesis for simultaneous
stabilisation of Gk2G

no): Let Gno be a finite set of
plants with no U-zeros. Simultaneously stabilising PD
controllers and PID controllers exist for all plants
Gk2G

no, and can be designed as follows: Choose any
KD2R

m�m, � 2Rþ. Choose any non-singular
K̂P 2 R

m�m. Choose any g2Rþ. Define �k2M(S)
and �n2Rþ as in (4):

�k :¼ G�1k þ
s

�sþ 1
KD

� �
K̂�1P ,

�n :¼ max
Gk2G

no
k�kk:

ð4Þ

For any �4�n, the PD controller CPD given by (5)
and the PID controller CPID given by (6) both
simultaneously stabilise all plants Gk2G

no:

CPD ¼ �K̂P þ
s

�sþ 1
KD, ð5Þ

CPID ¼ CPD þ
1

s
KI ¼ �K̂P þ

s

�sþ 1
KD þ

� g

s
K̂P:

ð6Þ

Remarks: In Proposition 1, the choice of g2Rþ is
completely arbitrary in the integral constant KI :¼
�gK̂P . This is interesting because (6) implies that any
integral term can be added to a stabilising PD
controller to make it into a stabilising PID controller
as long as the sign of KI remains the same as that of the
proportional constant KP :¼ �K̂P .

In the PD controller (5) and the PID controller (6)
of Proposition 1, the choice of the derivative constant

matrix KD is completely free. For KD¼ 0, (5) is a P

controller and (6) is a PI controller.
A major advantage of the simultaneous PD/PID

controller synthesis method in Proposition 1 is that if

additional plants join the original set Gno, then the

design does not need to start over. Instead, only the

scalar � has to be adjusted as needed in (5) and (6) by

calculating k�kk for the newly added plants. Another

implication is that the controllers CPD and CPID

stabilise any number of other plants that have no

U-zeros and whose k�kk is less than the � chosen to

simultaneously stabilise the original plant set.

Similarly, plants can be deleted from the set to be

simultaneously stabilised without any need to modify

the controller; if desired, a smaller � value can be

selected if �n¼k�dk of a deleted plant Gd.

Example 1: Consider the set Gno¼ {G1,G2,G3,G4,G5}

of non-strictly-proper (relative-degree zero) SISO

plants given in (7):

Gk ¼
ð�1Þkðsþ 6Þk

ðs� 3Þk
, k ¼ 1, 2, 3, 4,

G5 ¼
�0:1ðs2 þ 8sþ 25Þ

ðs� 2Þðs� 5Þ
:

ð7Þ

Following Proposition 1 to design PD/PID controllers

for Gno, choose KD¼ 5, �¼ 0.05, K̂p ¼ 20 completely

arbitrarily. By (4), �n ¼ maxk¼1,...,5fk�kkg ¼

maxf4, 6, 4, 6, 4:995g ¼ 6; we choose �¼ 84�n. Then

the PD controller

CPD ¼ �K̂p þ
KDs

�sþ 1
¼ 160þ

5s

0:05sþ 1
ð8Þ

as in (5) strongly simultaneously stabilises the plants in

G
no. We add an integral term to this PD controller by

choosing any g2Rþ; for example, if g¼ 2, then

CPID ¼ CPD þ
�g

s
K̂p ¼ 160þ

5s

0:05sþ 1
þ
320

s
: ð9Þ

The design offers flexibility in the various free

parameter choices. With the current parameter choices,

the closed-loop poles of Sys(G1,CPID) are {�1.848,

8.951� j2.543}, of Sys(G2,CPID) are {�13.91, �1.81,

�4.49� j3.52}, of Sys(G3,CPID) are {�1.784,

�3.074� j2.718,�12.659� j 5.616}, of Sys (G4,CPID)

are {�16,�1.76,�6.31� j7.44,�2.53� j2.16}, of

Sys(G5,CPID) are {�8.49,�6.87,�3.26� j0.59}, which

all have reasonable damping.

Now append the plants Gk for k¼ 6, 7, 8 given

in (10) to the set Gno, where

Gk¼
ðsþ5Þðsþ zkÞ

2

ðs2þ16Þðs�10Þ
,

zk¼ 1, for k¼ 6; 0:5 for k¼ 7; 0:4 for k¼ 8:

ð10Þ
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We compute k�6k¼ 5.05, k�7k¼ 6.40, k�8k¼ 10.0.
Since k�6k, k�7k are both less than �¼ 8, the
controllers CPD and CPID in (8), (9) stabilise G6 and
G7 simultaneously with the original set of five plants.
In order to simultaneously stabilise the entire set
including G8, we need �410. For example, choosing
�¼ 16, the controllers 2CPD, and 2CPID simultaneously
stabilise all eight plants.

3.2 Simultaneous controller synthesis for plants with
one zero at infinity

Consider a finite set G11 of plants that all have exactly
one blocking-zero at infinity and no other (transmis-
sion and blocking) U-zeros. There is an arbitrary
number of plants in this set and they may have poles
anywhere in C. These plants may have (transmission
and blocking) zeros anywhere in CnU. There may be
any number of stable as well as unstable plants in the
set under consideration. In the SISO case, the relative
degree is one for these plants. More specifically, what is
meant by one blocking-zero at infinity for the MIMO
case is that the plants Gi2G

11 are expressed as

Gi ¼ Y�1i

1

sþ a
I ¼

1

sþ a
G�1i

� ��1
1

sþ a
I

� �
, ð11Þ

where Gi ¼ Y�1i X is an LCF, with X ¼ 1
sþa I for each Gi,

and Yi ¼
1

sþa G
�1
i is stable for any a2Rþ.

Each individual plant Gi as described in (11) is PD
and PID stabilisable (Gündes� and Özgüler 2007).
However, existence of a single integral-action con-
troller that simultaneously stabilises all plants Gi2G

11

requires additional conditions. For Gi2G
11, let

Yið1Þ
�1
¼ ½ðsþ aÞGiðsÞ 	js!1: ð12Þ

Designate an arbitrary plant Go ¼ Y�1o X 2 G11 as the
nominal plant, with Yo(1)�1¼ [(sþ a)Go(s)]js!1. It is
shown in Proposition 2 that the plants in G11 are
strongly simultaneously stabilisable using PD control-
lers and they are also simultaneously PID stabilisable if
all eigenvalues of Wi are real and positive for all
Gi2G

11, where Wi2R
m�m is given by

Wi :¼ Yið1ÞYoð1Þ
�1
¼ ðG�1i GoÞð1Þ: ð13Þ

Furthermore, the finite set G11[Gno consisting of
plants with one blocking-zero at infinity as in (11) and
plants with no U-zeros is also strongly simultaneously
stabilisable using PD controllers and is also simulta-
neously PID stabilisable under the same assumptions
for Gi2G

11 (no additional conditions are required for
the plants Gk2G

no). Proposition 2(i) presents a
systematic simultaneously stabilising PD and PID
controller synthesis procedure for the plant class G11

and Proposition 2(ii) extends the procedure to the
combined class G11[Gno.

Proposition 2 (PD/PID synthesis for simultaneous
stabilisation of G11 and of G11[Gno):

(i) Let G11 be a finite set of plants as in (11). Let
Go2G

11 be an arbitrary member designated as the
nominal plant. With Yi(1) as in (12) and Wi as in (13),
suppose that all eigenvalues of Wi are real and positive
for all Gi2G

11. Under these assumptions, simulta-
neously stabilising PD controllers and PID controllers
exist for all plants Gi2G

11, and can be designed as
follows: Choose any KD2R

m�m, � 2Rþ. Choose any
g2Rþ. Define �i2M(S) and �12Rþ as in (14); define
�i2M(S) and �12Rþ as in (15):

�i :¼ G�1i þ
s

�sþ 1
KD

� �
Yoð1Þ

�1
� sWi,

�1 :¼ max
Gi2G

11
k�ik,

ð14Þ

�i ¼
s

sþ g
G�1i þ

s

�sþ 1
KD

� �
Yoð1Þ

�1
� sWi,

�1 :¼ max
Gi2G

11
k�ik: ð15Þ

For any �4�1, the PD controller CPD given by (16)
simultaneously stabilises all plants Gi2G

11:

CPD ¼ �Yoð1Þ þ
s

�sþ 1
KD: ð16Þ

For any �4�1, the PID controller CPID given by (17)
simultaneously stabilises all plants Gi2G

11:

CPID ¼ �Yoð1Þ þ
s

�sþ 1
KD þ

�g

s
Yoð1Þ: ð17Þ

(ii) Let G11 be a finite set of plants as in (11). Let
G
no be a finite set of plants that have no U-zeros as in

Proposition 1. Under the assumptions and definitions of
part (i) above, simultaneously stabilising PD controllers
and PID controllers exist for all plants Gi,
Gk2G

11
[G

no, and can be designed as follows: Let
Go2G

11 and Yo be as in part (i) above. Choose any
KD2R

m�m, � 2Rþ. Choose any g2Rþ. Define
�i2M(S), �12Rþ, �i2M(S) and �12Rþ, as in
(14), (15). Let K̂P ¼ Yoð1Þ in the definition (4) of
�k2M(S) and �n2Rþ, and for Gk2G

no, define �n2Rþ

as in (18):

s

sþ g
�k ¼

s

sþ g
G�1k þ

s

�sþ 1
KD

� �
Yoð1Þ

�1,

�n :¼ max
Gk2G

no

s

sþ g
�k

����
����:

ð18Þ

For any �4max{�1, �n}, the PD controller CPD

given by (16) simultaneously stabilises all plants
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Gi, Gk2G
11
[G

no. For any �4max{�1, �n}, the PID

controller CPID given by (17) simultaneously stabilises

all plants Gi, Gk2G
11
[G

no.

In the PD controller (16) and the PID controller

(17) of Proposition 2, the choice of the derivative

constant matrix KD is completely free. For KD¼ 0, (16)

is a P controller and (17) is a PI controller.
In Example 2, we apply the systematic design

procedure of Proposition 2(i) to a set of three SISO

plants each with one zero at infinity. We then combine

this class with the plant set considered in Example 1

and follow Proposition 2(ii) to design PD and PID

controllers stabilising all eight plants.

Example 2:

(i) Consider the set G11¼ {G1, G2, G3} of strictly-

proper (relative-degree one) plants:

G1 ¼
1

20ðs� 3Þ
, G2 ¼

0:1ðsþ 3Þ

ðs� 2Þðs� 5Þ
,

G3 ¼
sþ 10

25ðs2 þ 6sþ 18Þ
:

ð19Þ

The plant G3 is stable and the others are unstable.

Since Y1(1)¼ 20, Y2(1)¼ 10, Y3(1)¼ 25 are all

positive, Wi ¼ Yið1ÞY
�1
o ð1Þ4 0 for any of these

plants that might be designated as the nominal plant.

Let Go¼G1; then W1¼ 1, W2¼ 0.5, W3¼ 1.25. Since

these choices are completely arbitrary, let’s choose

KD¼ 5, �¼ 0.05. By (14), �1¼max{�1,�2,

�3}¼max{3, 3.5261, 2.25}¼ 3.5261; we choose �¼
54�1. Then the PD controller CPD ¼ 100þ 5s

0:05sþ1

as in (16) simultaneously stabilises the plants in G11.

We design a PID controller for the plants in G11 by

choosing any g2Rþ. For example, if g¼ 4,

�1¼max{�1, �2, �3}¼max{5.8722, 93, 90}¼ 93 by

(15); we choose �¼ 1004�1. Then the PID controller

CPID ¼ 2000þ 5s
0:05sþ1þ

8000
s as in (17) simultaneously

stabilises the plants in G11. The closed-loop poles

of Sys(G1,CPID) are {�99.23,�18.38,�4.39}, of

Sys(G2,CPID) are {�196.86,�18.53,�4.96,�2.65}, of

Sys(G3,CPID) are {�76.35,�17.83,�11.85,�3.97}.
(ii) Append the set Gno of five plants as in (10) of

Example 1 to the set G11 of the three strictly-proper

plants in part (i) of this example, and design PD/PID

controllers for the set G
11
[G

no following

Proposition 2(ii). Since our choice of K̂P ¼ 20 in

Example 1 is in fact the same as K̂p ¼ Yoð1Þ here,

the value of �n¼ 6 is the same as computed in Example

1. But the choice of �¼ 5 is no longer valid for the set

G
11
[G

no since �4max{�1, �n}¼max{3.5261, 6}; we

choose �¼ 8. Then the PD controller CPD ¼

160þ 5s
0:05sþ1 as in (16) strongly simultaneously stabi-

lises the plants in G11[Gno. Continuing on to a PID

design with the choice of g¼ 4, we see that the choice
of �¼ 100 is still valid since k s

sþg �kk � k
s

sþg kk�kk ¼

k�kk, and hence, �n��n. With the previous choice of
�¼ 1004max{�1, �n}¼ 93, the same PID controller
CPID ¼ 2000þ 5s

0:05sþ1þ
8000
s as in (17) simultaneously

stabilises the plants in Gno[G11. The closed-loop poles
of Sys(Gi, CPID) for Gi2G

11 in (19) are the same as
above since � has not changed. The closed-loop poles
of Sys(Gk,CPID) for the five plants Gk2G

no in (7) are

{�18.78,�6.27,�3.92},
{�18.84,�3.72,�6.05� j1.48},
{�18.73,�9.28,�3.46,�4.84� j2.05},
{�18.92,�3.22,�8.18� j3.65,�4� j2},
{�18.79,�4.19,�3.98� j2.91}, respectively.

In Example 3, we have a class of 2� 2 strictly-
proper MIMO plants with no transmission-zeros at
s¼ 0. These plants represent linearised models of an
unstable batch reactor with different sensor settings,
each resulting in a different output matrix. This model
was considered as an example of an unstable plant also
in e.g. Munro (1972), Rosenbrock (1974), Green and
Limebeer (1995) and Tabbara, Nešić, and Teel (2007)
only for the case of fi¼ 1, where the goal was not
simultaneous stabilisation.

Example 3: A two-input two-output linearised pro-
cess model of an unstable batch reactor is given by the
state-space representation in (20):

_x ¼

1:38 �0:2077 6:715 �5:676

�0:5814 �4:29 0 0:675

1:067 4:273 �6:654 5:893

0:048 4:273 1:343 �2:104

2
6664

3
7775x

þ

0 0

5:679 0

1:136 �3:146

1:136 0

2
6664

3
7775u,

y ¼
1 0 fi �fi

0 1 0 0

� �
x: ð20Þ

Consider the class of three MIMO strictly-proper
plants G11¼ {Gi : fi¼ 1, 2, 3}. The transfer-matrix is
obtained as a function of fi:

Gi ¼
1

d

g11 þ fih11 g12 þ fih12

g21 g22

� �
,

where

d¼ s4þ 11.6680s3þ 15.7538s2� 88.2911sþ 5.5406,
g11¼ 0.0008s2þ 29.2256sþ 233.6673,
g12¼� (21.1254s2þ 111.0942sþ 26.2766),
g21¼ 5.6790s3þ 42.6665s2� 68.8304s� 106.8024,
g22¼ 9.4304sþ 15.1503, h11¼ 0.0008sþ 29.7745,
h12¼�3.1460 s3� 11.5490s2þ 21.2688s� 5.5279.
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The poles of Gi are {1.9910, 0.0635,�5.0566,�8.6659}.
With Yið1Þ ¼ ½

0 1=5:679
�1=3:146fi 0	, the sufficient condition

on Wi in (13) for Proposition 2(i) is satisfied since fi40
for all Gi2G

11. Choosing Go¼G1 corresponding to
f1¼ 1 as the nominal plant, we have
Yoð1Þ

�1
¼
�
0 �3:146
5:679 0

�
and Wi ¼

�
1 0

0 1=fi
	. We

choose KD¼ 0 and compute

�1 ¼ max
i¼1,2,3

k�ik ¼ maxf13:9450, 20:2716, 32:1792g:

Choosing �¼ 464�1, the proportional controller
Cp ¼ �Yoð1Þ ¼

�
0 8:10
�14:6217 0

�
as in (16) strongly

simultaneously stabilises the plants in G11. For a PI
controller, we choose g¼ 2. Then by
(15), �1 ¼ maxi¼1,2,3 k�ik ¼ maxf5:0585, 6:7951,
8:7595g. Choosing �¼ 464�1, the PI controller
CPI ¼ ð1þ

g
sÞ�Yoð1Þ ¼ ð1þ

2
sÞCp as in (17) simulta-

neously stabilises the plants in G11. Other values for
the various parameters can be chosen based on
additional performance specifications to be satisfied
in addition to closed-loop stability and asymptotic
tracking of constant reference inputs.

3.3 Simultaneous controller synthesis for plants with
two zeros at infinity

Consider a finite set G21 of plants that all have exactly
two blocking-zeros at infinity and no other (transmis-
sion and blocking) U-zeros. There is an arbitrary
number of plants in this set and they may have poles
anywhere in C. These plants may have (transmission
and blocking) zeros anywhere in CnU. There may be
any number of stable as well as unstable plants in the
set under consideration. In the SISO case, the relative
degree is two for these plants. More specifically, what
is meant by two blocking-zeros at infinity for the
MIMO case is that the plants Gi2G

21 are expressed as

Gi ¼ Y�1i

1

ðsþ aÞ2
I ¼

1

ðsþ aÞ2
G�1i

� ��1
1

ðsþ aÞ2
I

� �
,

ð21Þ

where Gi ¼ Y�1i X is an LCF, with X ¼ 1
ðsþaÞ2

I for each
Gi, and Yi ¼

1
ðsþaÞ2

G�1i is stable for any a2Rþ.
Each individual plant Gi as described in (21) is PD

and PID stabilisable (Gündes� and Özgüler 2007).
However, existence of a single integral-action con-
troller that simultaneously stabilises all plants Gi2G

21

requires additional conditions. For Gi2G
21, let

Yið1Þ
�1
¼ ½ðsþ aÞ2 GiðsÞ 	js!1: ð22Þ

Designate an arbitrary plant Go ¼ Y�1o X 2 G21 as the
nominal plant, with Yo(1)�1¼ [(sþ a)2Go(s)]js!1. It
is shown in Proposition 3 that the plants in G21 are

simultaneously PID stabilisable if all Yi(1) are equal

for all Gi2G
21, i.e.

Wi ¼ Yið1ÞYoð1Þ
�1
¼ ðG�1i GoÞð1Þ ¼ I: ð23Þ

Furthermore, the finite set G21[Gno consisting of

plants with two blocking-zeros at infinity as in (21) and

plants with no U-zeros is also strongly simultaneously

stabilisable using PID controllers under the same

assumptions for Gi2G
21 (no additional conditions

are required for the plants Gk2G
no). Proposition 3(i)

presents a systematic simultaneously stabilising PID

controller synthesis procedure for the plant class G21

and Proposition 3(ii) extends the procedure to the

combined class G21[Gno.

Proposition 3 (PID synthesis for simultaneous stabili-

sation of G21 and of G21[Gno):

(i) Let G21 be a finite set of plants as in (21). Let

Go2G
21 be an arbitrary member designated as the

nominal plant. With Yi(1) as in (22), let Wi¼ I as in

(23) for all Gi2G
21. Under these assumptions, simulta-

neously stabilising PID controllers exist for all plants

Gi2G
21, and can be designed as follows:

Choose any z1, z22R. Define �i2M(S) and

�12Rþ, as in (24):

�i :¼
s

ðsþ z1Þðsþ z2Þ
G�1i Yoð1Þ

�1
� s I,

�1 :¼ 2 max
Gi2G

21
k�ik:

ð24Þ

For any �4�1, the PID controller CPID given by (25)

simultaneously stabilises all plants Gi2G
21:

CPID ¼
�2ðsþ z1Þðsþ z2Þ

s ðsþ 2�Þ
Yoð1Þ: ð25Þ

(ii) Let G21 be a finite set of plants as in (21). Let

G
no be a finite set of plants that have no U-zeros as in

Proposition 1. Under the assumptions and definitions of

part (i) above, simultaneously stabilising PID controllers

exist for all plants Gi,Gk2G
21
[G

no, and can be

designed as follows: Let Go2G
21 and Yo be as in part

(i) above. Without loss of generality, suppose that z1¼

max{z1, z2}. Define �i2M(S), �12Rþ, as in (24). For

Gk2G
no, define ~�k 2 MðSÞ, �n2Rþ as in (26):

~�k ¼
s

sþ z2
G�1k Yoð1Þ

�1, �n :¼
2

z1
max
Gk2G

no
k ~�kk:

ð26Þ

For any �4max{0.5z1,�1,�n}, the PID controller

CPID given by (25) simultaneously stabilises all plants

Gi,Gk2G
21
[G

no.
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Example 4: Consider the class of seven MIMO
strictly-proper plants G21¼ {Gi, i¼ 1, . . . , 7}:

Gi ¼

�ðs� 4Þ

di

sðsþ 5Þ

ðs� 1Þdi
�10

di

�ðsþ 5Þ

di

2
664

3
775,

di ¼ ðs� piÞ½ ðs� aiÞ
2
þ b2i 	, i ¼ 1, . . . , 7,

ð27Þ

where p1¼ 5, a1¼ 1, b1¼ 2; p2¼ 6, a2¼ 2, b2¼ 3;
p3¼ 6, a3¼� 2, b3¼ 3; p4¼� 6, a4¼� 2, b4¼ 3;
p5¼ 7, a5¼ 3, b5¼ 4; p6¼ 7, a6¼� 3, b6¼ 4; p7¼� 7,
a7¼ 3, b7¼ 4. All of these plants are unstable with
poles at {1, pi, ai� jbi}, with G4 having only one U-pole
at s¼ 1. Any number of other choices for the poles at
pi, ai� jbi can be considered for a larger plant set.
These plants are in the form of (21), where, for any
a2Rþ,

Gi¼Y�1i

1

ðsþaÞ2
I

¼
di

ðsþ1Þðsþ4ÞðsþaÞ2

�ðs�1Þ �s

10ðs�1Þ

ðsþ5Þ

�ðs�1Þðs�4Þ

ðsþ5Þ

2
4

3
5

0
@

1
A
�1

�
1

ðsþaÞ2
I: ð28Þ

With Yið1Þ ¼
�
�1 �1
0 �1

�
for all i¼ 1, . . . , 7, the suffi-

cient condition for Proposition 3 is satisfied since all
Wi¼ I. Choosing z1¼ 6, z2¼ 9 completely arbitrarily,
from (24) we compute

�1 ¼ max
i¼1,...,7

k�ik

¼ maxf32:5723, 35:5196, 27:6902, 16:3810,

38:4762, 26:720, 24:7885g

¼ 38:4762:

Choosing �¼ 10042�1, we obtain the PID controller
as in (25):

CPID ¼
100ðsþ 6Þðsþ 9Þ

s ðsþ 200Þ

�1 �1

0 �1

� �
: ð29Þ

3.4 Simultaneous controller synthesis for plants with
one non-negative zero

Consider a finite set Gz of plants that all have exactly
one blocking-zero at s¼ z2 {Rþ[ 0} and no other
(transmission and blocking) U-zeros. There is an
arbitrary number of plants in this set and they may
have poles anywhere in C. These plants may have
(transmission and blocking) zeros anywhere in C nU.
There may be any number of stable as well as unstable
plants in the set under consideration. In the SISO case,

the relative degree is zero for these plants since they

have no zeros at infinity. More specifically, what is

meant by one blocking-zero at s¼ z for the MIMO

case is that the plants Gi2G
z are expressed as

Gi ¼ Y�1i

ðs� zÞ

aðs� zÞ þ 1
I

¼
ðs� zÞ

aðs� zÞ þ 1
G�1i

� ��1
ðs� zÞ

aðs� zÞ þ 1
I

� �
, ð30Þ

where Gi ¼ Y�1i X is an LCF, with X ¼ ðs�zÞ
aðs�zÞþ1 I for

each Gi, and Yi ¼
ðs�zÞ

aðs�zÞþ1G
�1
i is stable for any a2Rþ,

a5z�1. If z¼ 0, then (30) becomes

Gi ¼ Y�1i

s

asþ 1
I ¼

ðs� zÞ

asþ 1
G�1i

� ��1
s

asþ 1
I

� �
, ð31Þ

where Gi ¼ Y�1i X is an LCF, with X ¼ s
asþ1 I for each

Gi, and Yi ¼
s

asþ1G
�1
i is stable for any a2Rþ. Each

individual plant Gi as described in (30) or (31) is PD

stabilisable under certain sufficient conditions on the

location of the zero at s¼ z� 0. Existence of a single

PD controller that simultaneously stabilises all plants

Gi2G
z requires additional conditions. For Gi2G

z, let

YiðzÞ
�1
¼

1

ðs� zÞ
GiðsÞ

� �				
s¼z

: ð32Þ

If z¼ 0, then (32) becomes Yið0Þ
�1
¼ ½1s GiðsÞ 	js¼0.

Designate an arbitrary plant Go ¼ Y�1o X 2 Gz as the

nominal plant, with YoðzÞ
�1
¼ ½ 1
ðs�zÞ GoðsÞ 	js¼z. Define

Zi2R
m�m as

Zi :¼ YiðzÞYoðzÞ
�1
¼ ðG�1i GoÞðzÞ: ð33Þ

It is shown in Proposition 4 that the plants in Gz are

strongly simultaneously stabilisable using PD control-

lers if Zi¼ I when z40, and the plants in Gz are

strongly simultaneously stabilisable using PD control-

lers if all eigenvalues of Zi are real and positive when

z¼ 0, for all Gi2G
z. Furthermore, the finite set Gz[Gno

consisting of plants with one blocking-zero at s¼ z as

in (30) and plants with no U-zeros is also strongly

simultaneously stabilisable using PD controllers under

the same assumptions for Gi2G
z. Proposition 4(i)

presents a systematic simultaneously stabilising PD

controller synthesis procedure for the plant class Gz

and Proposition 4(ii) extends the procedure to the

combined class Gz[Gno.

Proposition 4 (PD synthesis for simultaneous stabilisa-

tion of Gz and of Gz[Gno): Let Gz be a finite set of

plants as in (30). Let Go2G
z be an arbitrary member

designated as the nominal plant. Let Yi(z) be as in (32)

and Zi be as in (33).

(i) (a) If z40, suppose that Zi¼ I for all Gi2G
z.

Under these assumptions, simultaneously stabilising PD

controllers exist for all plants Gi2G
z, and can be
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designed as follows: choose any KD2R
m�m, � 2Rþ.

Define �i2M(S) and ’z2Rþ as in (34):

�i :¼
1

ðs� zÞ
½ ðs� zÞG�1i YoðzÞ

�1
� I 	

þ
s

�sþ 1
KDYoðzÞ

�1,

’z :¼ min
Gi2G

z
k�ik

�1,

ð34Þ

If

z5
’z
2
, ð35Þ

then for any ’2Rþ, ’5(’z� z), the PD controller CPD

given by (36) simultaneously stabilises all plants Gi2G
z:

CPD ¼
1

zþ ’
YoðzÞ þ

s

�sþ 1
KD: ð36Þ

(b) If z¼ 0, suppose that all eigenvalues of Zi are

real and positive for all Gi2G
z. Under these assump-

tions, simultaneously stabilising PD controllers exist for

all plants Gi2G
z, and can be designed as follows: Choose

any KD2R
m�m, � 2Rþ. Define �i 2 MðSÞ and ’02Rþ

as in (37):

�0
i :¼

1

s
½ s G�1i YoðzÞ

�1
� Zi 	 þ

s

�sþ 1
KDYoðzÞ

�1,

’0 :¼ min
Gi2G

z
k�0

i k
�1, ð37Þ

For any ’2Rþ, ’5’0, the PD controller CPD given by

(38) simultaneously stabilises all plants Gi2G
z:

CPD ¼
1

’
Yoð0Þ þ

s

�sþ 1
KD: ð38Þ

(ii) Let Gz be a finite set of plants as in (30). Let Gno

be a finite set of plants that have no U-zeros as in

Proposition 1. Under the assumptions and definitions of

part (i) above, simultaneously stabilising PD controllers

exist for all plants Gi, Gk2G
z
[G

no, and can be designed

as follows: Let Go2G
z and Yo be as in part (i) above.

Choose any KD2R
m�m, � 2Rþ. If z40, define

�i2M(S) and ’z2Rþ as in (34); if z¼ 0, define

�0
i 2 M(S)} and ’02Rþ as in (37). For Gk2G

no, let �̂

and �z be defined as

�̂ :¼ G�1k þ
s

�sþ 1
KD

� �
YoðzÞ

�1,

�z :¼ min
Gk2G

no
k �̂k k

�1:
ð39Þ

If z satisfies (35) and

z5�z, ð40Þ

then for any ’2Rþ, ’5min{’z� z, �z� z}, the PD

controller CPD given by (36) simultaneously stabilises all

plants Gi,Gk2G
z
[G

no. If z¼ 0, then for any ’2Rþ,

’5min{’0,�z}, the PD controller CPD given by (38)

simultaneously stabilises all plants Gi, Gk2G
z
[G

no.

In the PD controller (36) for z41, and the PD

controller (38) for z¼ 0, the choice of the derivative

constant matrix KD is completely free. For KD¼ 0, (36)

and (38) are proportional controllers.

Remarks (Robustness of the simultaneously stabilising

PD/PID controllers): It follows from standard

robustness arguments that the simultaneously stabilis-

ing PD and PID controllers in Propositions 1 and 2,

the simultaneously stabilising PID controller in

Propositions 3, and the PD controller in Propositions

4 all achieve robust simultaneous stability under

‘sufficiently small’ plant uncertainty for the plant

classes considered in those propositions. Let

D2Sm�m be a stable additive perturbation. For the

plant class Gno, the PD controller CPD in (5) and the

PID controller CPID in (6) of Proposition 1 simulta-

neously stabilise all Gk2G
no. The PD controller CPD

and the PID controller CPID also robustly simulta-

neously stabilise the additively perturbed plants

GkþDk for all Dk2S
m�m such that

kDkk5 kCPDðIþ GkCPDÞ
�1
k�1,

kDkk5 kCPIDðIþ GkCPIDÞ
�1
k�1,

ð41Þ

respectively. For multiplicative perturbations, the PD

controller CPD and the PID controller CPID robustly

simultaneously stabilise the plants Gk(IþDk) under all

pre-multiplicative perturbations Dk2S
m�m such that

kDkk5 kCPDGkðIþ CPDGkÞ
�1
k�1,

kDkk5 kCPIDGkðIþ CPIDGkÞ
�1
k�1,

ð42Þ

respectively. Similarly, the PD controller CPD and the

PID controller CPID robustly simultaneously stabilise

the plants (IþDk)Gk under all post-multiplicative

perturbations Dk2S
m�m such that

kDkk5 kGkCPDðIþ GkCPDÞ
�1
k�1,

kDkk5 kGkCPIDðIþ GkCPIDÞ
�1
k�1,

ð43Þ

respectively. Some of the free parameter choices in the

proposed controller synthesis method may be used to

maximise the allowable perturbation magnitudes in

(41), (42) or (43). For example, to maximise kDkk in

(41), the choice of the parameters K̂p , KD should then

be formulated into an H1 problem to minimise the

norms kCPD(IþGkCPD)
�1
k, kCPID(IþGkCPID)

�1
k.

Entirely similar robust stability conclusions apply

to the plant class G11. The PD controller CPD in (16)
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and the PID controller CPID in (17) of Proposition 2,
which simultaneously stabilise all Gi2G

11, also
robustly simultaneously stabilise the additively per-
turbed plants GiþDi for all Di2S

m�m such that kDik5
kCPD(IþGiCPD)

�1
k
�1, kDik5kCPID(IþGiCPID)

�1
k
�1,

respectively. For multiplicative perturbations, the PD
controller CPD and the PID controller CPID robustly
simultaneously stabilise the plants Gi(IþDi) under all
pre-multiplicative perturbations Di2S

m�m such that
kDik5kCPDGi(IþCPDGi)

�1
k
�1, kDik5kCPIDGi(Iþ

CPIDGi)
�1
k
�1, respectively. Similarly, the PD control-

ler CPD and the PID controller CPID robustly
simultaneously stabilise the plants (IþDi)Gi under all
post-multiplicative perturbations Di2S

m�m such that
kDik5kGiCPD(IþGiCPD)

�1
k
�1, kDik5kGiCPID(Iþ

GiCPID)
�1
k
�1, respectively.

For the plant class G21, Proposition 3 proposes
simultaneously stabilising PID controllers CPID in (25),
which robustly simultaneously stabilise the additively
perturbed plants GiþDi for all Di2S

m�m such that
kDik5kCPID(IþGiCPID)

�1
k
�1. They robustly simulta-

neously stabilise the pre-multiplicatively perturbed
plants Gi(IþDi) under all Di2S

m�m such that
kDik5kCPIDGi(IþCPIDGi)

�1
k
�1, and the post-multi-

plicatively perturbed plants (IþDi)Gi under all
Di2S

m�m such that kDik5kGiCPID(IþGiCPID)
�1
k
�1.

The PD controllers in Proposition 4 also achieve
similar robust simultaneous stabilisation. œ

4. Conclusions

This article identified some important plant classes
such that any finite number of plants can be
simultaneously stabilised using a common PD con-
troller or PID controller. The plant classes considered
here have restrictions on the zeros in the region of
instability. These restrictions are due to the difficulties
involving simultaneous stabilisation of three or more
plants with order-restricted controllers whose only
unstable pole may be at the origin (PID controller).

The plant classes with at most one blocking-zero at
infinity can be simultaneously stabilised using both PD
and PID controllers. The existence of PD controllers
implies that these plants are strongly simultaneously
stabilisable. The existence of simultaneously stabilising
PID controllers implies that asymptotic tracking of
constant reference inputs is achieved with zero steady-
state error. The plants with two blocking-zeros at
infinity can be simultaneously PID stabilised. The
synthesis method proposed here does not determine
existence of PD controllers for this plant class. The
class of plants with one (small) non-negative real-axis
zero can be simultaneously stabilised using PD
controllers. If the zero is at the origin, then these

plants would not allow integral-action controllers.

Systematic synthesis procedures are proposed for

each plant class, where the PD/PID parameters and

the design choices are explicitly defined. The proposed

designs allow freedom in the parameters, which should

be used to satisfy additional performance criteria that

the design may require. In each of the illustrative

examples, we selected a set of parameters out of

infinitely many satisfying the conditions of

Propositions 1, 2 and 3. These parameter choices

resulted in closed-loop poles in the left-half plane

sufficiently far from the origin. While asymptotic

tracking of constant reference inputs is achieved with

the PID controllers due to the integral term, perfor-

mance objectives beyond tracking (and equivalently

disturbance rejection) were not considered within the

scope of this work. The goal of this study was to

establish simultaneous stabilisability using PD/PID

controllers, and it was shown that these controllers

achieve robust stability under sufficiently small addi-
tive and multiplicative plant uncertainty.
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Appendix (Proofs)

Proof of Proposition 1: Let CPD be as in (5). For Gk2G
no we

can write Gk ¼ Y�1k X ¼ ðG�1k Þ
�1I. So with Xk¼ I,

CPD¼ND�1¼CPDI
�1, (2) becomes

Mk¼YkþXCPD¼G�1k þ�K̂Pþ
s

�sþ1
KD

¼ Iþ
1

�
G�1k þ

s

�sþ1
KD

� �
K̂�1P

� �
�K̂P¼ Iþ

1

�
�k

� �
�K̂P:

For �4�n40, k 1
��k k5 1 implies that Mk is unimodular

(since K̂P is non-singular); hence, CPD stabilises all Gk. Let
CPID be as in (6) and write CPID¼ND�1 as

CPID¼ND�1¼
s

sþ e
KPþ

s

�sþ1
KD

� �
þ

1

sþ e
KI

� �
sI

sþ e

� ��1

¼
s

sþ e
CPID

� �
s

sþ e
I

� ��1
: ð44Þ

Then (2) becomes

Mk ¼
s

sþ e
Yk þ

s

sþ e
XCPID

¼
s

sþ e
1þ

g

s


 �
�K̂P þ

s

�sþ 1
KD þ G�1k

� �

¼
ðsþ gÞ

ðsþ eÞ
�K̂P þ

s

sþ e
G�1k þ

s

�sþ 1
KD

� �

¼ Iþ
1

�

s

ðsþ gÞ
G�1k þ

s

�sþ 1
KD

� �
K̂�1P

� �
�
ðsþ gÞ

ðsþ eÞ
K̂P

¼ Iþ
1

�

s

ðsþ gÞ
�k

� �
�
ðsþ gÞ

ðsþ eÞ
K̂P:

For �4�n, k
1
�

s
ðsþgÞ�kk �

1
� k

s
ðsþgÞ kk�kk �

1
� k�kk5 1 implies

that Mk is unimodular; hence, CPID ¼ CPD þ
�g
s K̂P stabilises

all Gk.

Proof of Proposition 2: (i) Let CPD be as in (16).
For Gi2G

11 as in (11), with X ¼ 1
sþa I,

CPD¼ND�1¼CPDI
�1, (2) becomes

Mi ¼ Yi þ XCPD ¼ Yi þ X�Yoð1Þ þ X
s

�sþ 1
KD

¼
ðWisþ �I Þ

ðsþ aÞ
½ ðWisþ �I Þ

�1�Iþ ðWisþ �I Þ
�1
ð ðsþ aÞYi

þ
s

�sþ 1
KDÞYoð1Þ

�1
	Yoð1Þ

¼
ðWisþ �I Þ

ðsþ aÞ
½ Iþ ðWisþ �I Þ

�1�i 	Yoð1Þ:

By assumption, Wi has real positive eigenvalues implying
that (Wisþ�I )

�1
2M(S); then k(Wisþ�I )

�1
k¼ 1/�.

If �4�1, then

kðWisþ �I Þ
�1�ik � kðWisþ �I Þ

�1
kk�ik ¼

1

�
k�ik5 1

implies that Mi is unimodular; hence, CPD stabilises all Gi.
Let CPID be as in (17) and write CPID ¼ ½

s
sþe CPID 	 ½

s
sþe I	

�1 as
in (44). Then (2) becomes

Mi¼
s

sþ e
Yiþ

s

sþ e
XCPID

¼
ðsþgÞ

ðsþaÞ

s

ðsþ eÞ

1

ðsþgÞ
KPþ

g

s
KPþ

s

�sþ1
KDþðsþaÞYi

� �� �

¼
ðsþgÞ

ðsþaÞ

�

sþ e
Yoð1Þþ

1

ðsþgÞ

s

ðsþ eÞ
ðG�1i þ

s

�sþ1
KDÞ

� �

¼
ðsþgÞ

ðsþaÞðsþ eÞ
ðWisþ�IÞ

� ðWisþ�I Þ
�1�IþðWisþ�IÞ

�1 G�1i þ
s

�sþ1
KD

� ��

�
s

ðsþgÞ
Yoð1Þ

�1

�
Yoð1Þ

¼
ðsþgÞ

ðsþaÞðsþ eÞ
ðWisþ�IÞ½IþðWisþ�IÞ

�1�i 	Yoð1Þ:

Following similar steps as for CPD, (Wisþ �I )
�1
2M(S);

then k(Wisþ �I )
�1
k¼ 1/�. If �4�1, then

kðWisþ�I Þ
�1�ik� kðWisþ�I Þ

�1
kk�ik¼

1
�k�ik51 implies

that Mi is unimodular; hence, CPID stabilises all Gi. (ii)
By (i), the controllers CPD and CPID in (16) and (17) stabilise
all Gi2G

11. It remains to show that they also stabilise all
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Gk2G
no. For CPD in (16), (2) becomes

Mk ¼ Yk þ XCPD ¼ G�1k þ �Yoð1Þ þ
s

�sþ 1
KD

¼ Iþ
1

�
G�1k þ

s

�sþ 1
KD

� �
Yoð1Þ

�1

� �
�Yoð1Þ

¼ Iþ
1

�
�k 	�Yoð1Þ:

�

For �4�n, k
1
��kk5 1 implies Mk, is unimodular; hence,

CPD stabilises all Gk. For CPID in (17),

Mk¼Yk
s

sþ e
þXCPID

s

sþ e

¼
s

sþ e
1þ

g

s


 �
�Yoð1Þþ

s

�sþ1
KDþG�1k

� �

¼
ðsþgÞ

ðsþ eÞ
�Yoð1Þþ

s

sþ e
G�1k þ

s

�sþ1
KD

� �

¼ Iþ
1

�

s

ðsþgÞ
G�1k þ

s

�sþ1
KD

� �
Yoð1Þ

�1

� �
�
ðsþgÞ

ðsþ eÞ
Yoð1Þ

¼ Iþ
1

�

s

ðsþgÞ
�k

� �
�
ðsþgÞ

ðsþ eÞ
Yoð1Þ:

If �4�n, then k
1
�

s
ðsþgÞ �kk5 1 implies thatMk is unimodular;

hence, CPID stabilises all Gk. œ

Proof of Proposition 3: (i) Let CPID be as in (25) and write
CPID ¼ ND�1 ¼ ½�2Yoð1Þ	½

s ðsþ2�Þ
ðsþz1Þðsþz2Þ

I 	�1. Then (2) becomes

Mi¼
s ðsþ2�Þ

ðsþ z1Þðsþ z2Þ
Yiþ�

2XYoð1Þ

¼
s ðsþ2�Þ

ðsþ z1Þðsþ z2Þ

1

ðsþaÞ2
G�1i þ�

2 1

ðsþaÞ2
Yoð1Þ

¼
ðsþ�Þ2

ðsþaÞ2
�2

ðsþ�Þ2
Iþ

s ðsþ2�Þ

ðsþ�Þ2ðsþ z1Þðsþ z2Þ
G�1i Yoð1Þ

�1

� �

�Yoð1Þ

¼
ðsþ�Þ2

ðsþaÞ2
Iþ
ðsþ2�Þ

ðsþ�Þ2
s

ðsþ z1Þðsþ z2Þ
G�1i Yoð1Þ

�1
� sI

� �� �

�Yoð1Þ

¼
ðsþ�Þ2

ðsþaÞ2
Iþ
ðsþ2�Þ

ðsþ�Þ2
�i

� �
Yoð1Þ:

If �4�1, then k
ðsþ2�Þ

ðsþ�Þ2
�ik � k

ðsþ2�Þ

ðsþ�Þ2
kk�ik ¼

2
� k�ik5 1

implies Mi is unimodular; hence, CPID stabilises all Gi.

(ii) By (i), the controller CPID in (25) stabilises all Gi2G
21 for

�4�1. It remains to show that they also stabilise all

Gk2G
no for �4max{0.5z1,�1,�n}. Writing CPID as in proof

of (i) above, for Gk2G
no, Mk becomes

Mk ¼
s ðsþ 2�Þ

ðsþ z1Þðsþ z2Þ
Yk þ X�2Yoð1Þ

¼
s ðsþ 2�Þ

ðsþ z1Þðsþ z2Þ
G�1k þ �

2Yoð1Þ

¼ ½Iþ
ðsþ 2�Þ

�2ðsþ z1Þ

s

ðsþ z2Þ
G�1k Y�1o ð1Þ	�

2Yoð1Þ

¼ ½Iþ
ðsþ 2�Þ

�2ðsþ z1Þ
~�k 	�

2Yoð1Þ:

If �40.5z1, then k
ðsþ2�Þ
�2ðsþz1Þ

k ¼ 2ð�z1Þ
�1. In addition, �4�n,

then k ðsþ2�Þ
�2ðsþz1Þ

~�kk �
2
�z1
k ~�kk5 1 implies that Mk is unim-

odular; hence, CPID stabilises all Gk. œ

Proof of Proposition 4:

(a) If z40, let CPD be as in (36). For Gi2G
z as in (30),

with X ¼ ðs�zÞ
aðs�zÞþ1 I, CPD¼ND�1¼CPDI

�1, (2)
becomes

Mi¼YiþXCPD¼YiþX
1

zþ’
YoðzÞþX

s

�sþ1
KD

¼
ðsþ’Þ

ðaðs� zÞþ1Þ
ð
ðs� zÞ

ðsþ’Þ
Iþ
ðzþ’Þ

ðsþ’Þ
½ ðaðs� zÞþ1ÞYi

þ
ðs� zÞs

�sþ1
KD	YoðzÞ

�1
Þ

1

ðzþ’Þ
YoðzÞ

¼
ðsþ’Þ

ðaðs� zÞþ1Þ
ðIþ
ðzþ’Þðs� zÞ

ðsþ’Þ
½
ðaðs� zÞþ1ÞYiYoðzÞ

�1
� I

ðs� zÞ

þ
s

�sþ1
KDYoðzÞ

�1
	Þ

1

ðzþ’Þ
YoðzÞ

¼
ðsþ’Þ

ðaðs� zÞþ1Þ
ðIþ
ðzþ’Þðs� zÞ

ðsþ’Þ
�i Þ

1

ðzþ’Þ
YoðzÞ:

For ’4z, k ðzþ’Þðs�zÞ
ðsþ’Þ k ¼ ðzþ ’Þ. If z satisfies assumption (35),

then for z5’5k�k�1� z, we have k
ðzþ’Þðs�zÞ
ðsþ’Þ �ik �

k
ðzþ’Þðs�zÞ
ðsþ’Þ kk�ik ¼ ðzþ ’Þk�ik5 1 which implies that Mi is

unimodular; hence, CPD stabilises all Gi.
(b) If z¼ 0, for Gi2G

z as in (31), with X ¼ s
asþ1 I,

CPD¼ND�1¼CPDI
�1, (2) becomes

Mi ¼ Yi þ XCPD ¼ Yi þ X
1

’
Yoð0Þ þ X

s

�sþ 1
KD

¼
ðsIþ ’ZiÞ

ðasþ 1Þ
ð ðsIþ ’ZiÞ

�1sIþ ðsIþ ’ZiÞ
�1’½ ðasþ 1ÞYi

þ
s2

�sþ 1
KD	Yoð0Þ

�1
Þ
1

’
Yoð0Þ

¼
ðsIþ ’ZiÞ

ðasþ 1Þ

�
Iþ ðsIþ ’ZiÞ

�1’s

�
ðasþ 1ÞYiYoð0Þ

�1
� I

s

þ
s

�sþ 1
KDYoð0Þ

�1

��
1

’
Yoð0Þ

¼
ðsIþ ’ZiÞ

ðasþ 1Þ
ð Iþ ’ ðsIþ ’ZiÞ

�1s�0
i ÞYoð0Þ:

By assumption, Zi has real positive eigenvalues
implying (sIþ ’Zi)

�1
2M(S); then k’(sIþ ’Zi)

�1sk¼ ’.
If ’4’0, then

k’ðsIþ’ZiÞ
�1s�0

i k� k’ðsIþ’ZiÞ
�1skk�0

i k¼ ’k�
0
i k51

implies that Mi is unimodular; hence, CPD stabilises all Gi.
(ii) By (i), the controllers CPD in (36) and (38) stabilise all
Gi2G

z for z40 and z¼ 0, respectively. It remains to show
that they also stabilise all Gk2G

no. For CPD in (36), (2)
becomes

Mk ¼ Yk þ XCPD ¼ G�1k þ
1

zþ ’
YoðzÞ þ

s

�sþ 1
KD

¼ ½Iþ ðzþ ’ÞðG�1k þ
s

�sþ 1
KDÞYoðzÞ

�1
	

1

ðzþ ’Þ
YoðzÞ

¼ ½Iþ ðzþ ’Þ�̂k 	
1

ðzþ ’Þ
YoðzÞ:

For ’5�z� z, kðzþ ’Þ�̂kk5 1 implies that Mk is unim-
odular; hence, CPD stabilises all Gk. œ
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