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Abstract— A simple low order controller synthesis is devel-
oped for certain classes of linear, time-invariant, multi-input
multi-output plants. The order of these controllers depends
on the number of right-half plane plant poles rather than
the order of the plant to be stabilized. Furthermore, the
controller’s poles and zeros are all in the stable region with the
exception of one pole at the origin for the integral-action design
requirement. The integral-action in the controller achieves
asymptotic tracking of step input references with zero steady-
state error. The freedom available in the design parameters may
be used for additional performance objectives although the only
goal here is stabilization and tracking of constant references.

I. INTRODUCTION

In this paper we show that it is possible to design very

simple low order controllers to stabilize linear time-invariant

(LTI), multi-input multi-output (MIMO) plants that have

restrictions on their zeros that lie in the region of instability.

The pole locations are not restricted as well as the zeros

that lie in the stable region. An additional objective is to

design these LTI controllers with integral-action so that the

closed-loop system achieves asymptotic tracking of constant

reference inputs.

Controllers stabilizing a complex plant and achieving a

specified performance are usually at least as complex as the

plant itself [15]. The issues of computation and implemen-

tation of such controllers are dealt with in control system

design using reduction approaches such as a) designing the

high-order controller and then approximating it with a low-

order one within an acceptable loss of performance; b)

reducing the order of the plant model with the prospect that

a low order model will lead to a low order controller (see

e.g., [1], [2], [3], [5], [8], [10], [11], [12]). Model reduction

is not the objective of this work; what is developed here is

a direct simple controller design that stabilizes the original

plant without reducing it.

Asymptotic tracking of constant reference inputs is

achieved with poles duplicating the dynamic structure of the

exogenous signals that the regulator has to process. Due to

this internal model principle, integral-action controllers have

poles at the origin of the complex plane [6]. The standard

method of designing controllers with integral-action starts by

augmenting the plant dynamics with an extra state, which

is the integral of the output error. In the MIMO case with

m inputs and outputs, the planted augmented by adding the

integrators to the input of the plant then has m more states

than the n states of the original plant. Using a full-order

observer and state feedback to move the (n+m) eigenvalues
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to the region of stability, the resulting m × m controller is

always strictly-proper, has (n + m) eigenvalues, with m at

the origin and the remaining eigenvalues may be anywhere in

the complex plane. For the class of plants we consider here,

a simpler integral-action controller design can be achieved.

The plants have no restrictions as far as the location of

the poles are concerned (stable or unstable) and the zeros

in the region of stability are also not restricted. However,

we assume the zeros in the region of instability are on

the positive real axis and have “large” magnitude (including

infinity). The case where the unstable zeros are all at infinity

is particularly interesting: Plants that have blocking-zeros at

infinity of multiplicity r can be stabilized using the proposed

design, which gives r-th order controllers. These m × m
controllers have exactly rm eigenvalues, where m are at the

origin and the remaining (r − 1)m are all in the region of

stability (open left-half complex plane). Furthermore, they

are bi-proper and they have stable inverse. For single-input

single-output (SISO), the comparison is easy to illustrate. An

SISO plant (m = 1) with n poles that has zeros at infinity

has relative degree r < n. The proposed r-th order integral-

action controller design has r eigenvalues (with one at s = 0
and the rest in the open left-half complex plane), whereas

full-order observer and state feedback design based on an

augmented plant would result in a strictly-proper controller

of order (n + 1), with one eigenvalue at s = 0 and some of

the n eigenvalues possibly in the right-half plane.

The paper is organized as follows: Section II gives the

problem formulation, and defines the class of plants consid-

ered. All results apply to square MIMO plants and obviously

SISO plants are included as special cases. The main results in

Section III are grouped into subsections depending on the re-

strictions imposed on the zeros in the unstable region. Propo-

sition 1 provides a systematic procedure of constructing first

order integral-action controllers when none of the zeros of

the plant are in the unstable region. Proposition 2 considers

blocking-zeros in the unstable region, particularly at infinity,

and Proposition 3 extends to the case of transmission-zeros

at infinity. In all cases the plants under consideration may

have unrestricted zeros in the stable region. There are no

constraints on plant poles anywhere in the complex plane.

Illustrative MIMO examples are also given, and a controller

order comparison is provided with the standard integral-

action design method based on full-order observer and state-

feedback applied to an augmented plant model. Section IV

contains remarks and possible future extensions. Proofs of

all propositions are collected in the Appendix.

Although we discuss continuous-time systems here, all

results apply also to discrete-time systems with appropriate
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modifications. The following fairly standard notation is used:

Notation: Let R , R+ , C denote real, positive real, and

complex numbers, respectively. The extended closed right-

half plane is U = { s ∈ C | Re(s) ≥ 0 } ∪ {∞}; Rp

denotes real proper rational functions of s ; S ⊂ Rp is

the stable subset with no poles in U ; M(S) is the set

of matrices with entries in S ; I is the identity matrix (of

appropriate dimension). A transfer-matrix M ∈ M(S) is

called unimodular iff M−1 ∈ M(S). The H∞-norm of

M ∈ M(S) is denoted by ‖M‖ (i.e., the norm ‖ · ‖
is the usual operator norm ‖M‖ := sups∈∂U σ̄(M(s)),
where σ̄ is the maximum singular value and ∂U is the

boundary of U). For simplicity, we drop (s) in transfer-

matrices such as P (s) where this causes no confusion. We

use coprime factorizations over S ; i.e., for P ∈ Rp

m×m,

P = D−1N denotes a left-coprime-factorization (LCF),

where N ∈ S
m×m, D ∈ S

m×m, detD(∞) 6= 0. For

full-rank P , we say that z ∈ U is a U-zero of P if

rankN(z) < m; these zeros include both transmission-zeros

and blocking-zeros in U . If z ∈ U is a blocking-zero of P ,

then P (z) = 0 and equivalently N(z) = 0

II. PROBLEM DESCRIPTION

Consider the standard LTI, MIMO unity-feedback system

Sys(P,C) shown in Fig. 1, where P ∈ Rp

m×m and

C ∈ Rp

m×m denote the plant’s and the controller’s transfer-

matrices, respectively. It is assumed that the feedback system

is well-posed, P and C have no hidden-modes in the

unstable region, and the plant P ∈ Rp

m×m is full normal

rank m. The objective is to design a low order stabilizing

controller C with integral-action, so that the closed-loop

system achieves asymptotic tracking of step-input references

with zero steady-state error.

- h - C - h? - P -
6−

u e
v

w y

Fig. 1. Unity-Feedback System Sys(P, C).

Let P = D−1N be a left-coprime-factorization (LCF) of

the plant and C = NcD
−1
c be a right-coprime-factorization

(RCF) of the controller, where N, D, Nc , Dc ∈ M(S)
have appropriate sizes, detD(∞) 6= 0, detDc(∞) 6= 0.

The system Sys(P,C) is said to be stable if the closed-

loop transfer-function from (u, v) to (y, w) is stable. The

controller C is said to stabilize P if C is proper and

the system Sys(P,C) is stable. The controller C stabilizes

P ∈ M(Rp) if and only if

M := DDc + NNc (1)

is unimodular [13], [7].

Let the (input-error) transfer-function from u to e be

denoted by Heu and let the (input-output) transfer-function

from u to y be denoted by Hyu ; then

Heu = (I +PC)−1 = I−PC(I +PC)−1 = I−Hyu . (2)

Definition 1: i) The system Sys(P,C) is stable if the

closed-loop transfer-function from (u, v) to (y, w) is stable.

ii) The stable system Sys(P,C) has integral-action if Heu

has blocking-zeros at s = 0.

iii) The controller C is an integral-action controller

if C stabilizes P and the denominator D of any RCF

C = NcD
−1
c has blocking-zeros at s = 0, i.e., Dc(0) = 0. �

Suppose that the system Sys(P,C) is stable and that step

input references are applied to the system. Then the steady-

state error e(t) due to step inputs at u(t) goes to zero as

t → ∞ if and only if Heu(0) = 0. Therefore, by Definition 1,

the stable system Sys(P,C) achieves asymptotic tracking of

constant reference inputs with zero steady-state error if and

only if it has integral-action. Write Heu = (I + PC)−1 =
Dc M−1D . Then by Definition 1, Sys(P,C) has integral-

action if C = NcD
−1
c is an integral-action controller since

Dc(0) = 0 implies Heu(0) = (DcM
−1D)(0) = 0.

Lemma 1 states the basic necessary condition on the plant

P for existence of integral-action controllers.

Lemma 1: (Necessary condition for integral-action): Let

P ∈ Rp

m×m. Let rankP (s) = m. If the system Sys(P,C)
has integral-action, then P does not have transmission-zeros

at s = 0. �

In order to design controllers with integral-action, we

assume from now on that the plants under consideration have

no zeros at s = 0, i.e., rankP (0) = m.

III. LOW ORDER CONTROLLER SYNTHESIS

The plants under consideration here for low order sta-

bilizing controller synthesis have no restrictions on their

poles; there are no restrictions on the zeros in the open

left-half complex plane C \ U , and at infinity. However, the

finite U-zeros are restricted. In order to design controllers

with integral-action, based on the necessary condition of

Lemma 1, we assume everywhere that the plant has no zeros

at s = 0, i.e., rankP (0) = m.

In Section III-A, we consider plants with no zeros in

the right-half-plane U including infinity; 1st order integral-

action controllers can be designed for these plants. In Sec-

tion III-B, we consider the case where the U-zeros of the

plant P are positive real, and they are blocking zeros. In

Section III-C, the U-zeros are only at infinity but instead of

appearing in every entry of P with the same multiplicity,

they are transmission-zeros.

A. Plants with no right-half-plane zeros including infinity

The plants in this section have no restrictions on their

poles, and also no restrictions on the zeros in the open left-

half complex plane C \ U . However, there are no U-zeros.

Therefore, P−1 is stable. Proposition 1 gives a systematic

controller synthesis method for such plants.
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Proposition 1: (Controller synthesis for plants with no

zeros in U including infinity) Let P ∈ Rp

m×m, where

rankP (0) = m. Choose any nonsingular K ∈ Rp

m×m and

any g ∈ R+ . Choose α ∈ R+ such that

α > ‖
s

s + g
P−1K−1 ‖ . (3)

Then the integral-action controller in (4) stabilizes P :

C = α
(s + g)

s
K . (4)

�

The 1st order integral-action controller in (4) is a propor-

tional+integral (PI) controller.

B. Plants with large blocking-zeros on the positive real-axis

The plants in this section have no restrictions on their

poles, and also no restrictions on the zeros in the open left-

half complex plane C \ U . The U-zeros of the plant P are

positive real, and they are blocking-zeros (appearing in every

entry of P ). Therefore, P can be written as

P = D−1N =

(

r
∏

i=1

(1 − s/zi)

(s + a)
P−1

)−1 r
∏

i=1

(1 − s/zi)

(s + a)
I ,

(5)

for any a ∈ R+ , where zi ∈ R+ ∪ {∞}, i = 1, . . . , r, are

the U-blocking-zeros of P , and P has no other transmission-

zeros in U , i.e.,

D =

∏r
i=1(1 − s/zi)

(s + a)r
P−1 ∈ M(S) .

Any number of these r U-blocking-zeros may be at infinity;

e.g., if none of the U-zeros is finite, then (5) becomes

P = D−1N =

(

1

(s + a)r
P−1

)−1
1

(s + a)r
I . (6)

Proposition 2 gives a systematic controller synthesis method

for plants in the form of (5).

Proposition 2: (Controller synthesis for plants with

blocking-zeros in U) Let P ∈ Rp

m×m be as in (5), with

rankP (0) = m. Let D(∞)−1 =
(

(s+a)r

∏
r
i=1

(1−s/zi)
P
)

|s→∞.

Choose any monic r-th order strictly-Hurwitz polynomial

ρ(s). Define Φ as

Φ := s [

r
∏

i=1

(1 − s/zi)

ρ(s)
P−1D(∞)−1 − I] . (7)

If

r
∑

i=1

1

zi
<

1

2
‖Φ ‖−1, then choose α ∈ R+ such that α < zi

for i = 1, . . . , r and
α >

r

‖Φ ‖−1 −

r
∑

i=1

1

zi

. (8)

Then the r-th order bi-proper integral-action controller in (9)

stabilizes P :

C =
αr ρ(s)

(s + α)r − αr

r
∏

i=1

(1 − s/zi)

D(∞) . (9)

�

Remarks: 1) For r = 1, the controller in (9) is a pro-

portional+integral (PI) controller, and for r = 2, it is a

proportional+integral+derivative (PID) controller [9]. 2) If

all of the r zeros of the plant (5) are at infinity as in (6),

then Φ in (7) becomes

Φ := s [
1

ρ(s)
P−1D(∞)−1 − I] , (10)

and the condition
∑r

i=1
1
zi

= 0 < ‖Φ ‖−1 is obviously

satisfied. In this case, α ∈ R+ is chosen to satisfy (8) as

α > r ‖Φ ‖ , (11)

and the r-th order integral-action controller in (9) becomes

C =
αr ρ(s)

(s + α)r − αr
D(∞) . (12)

The MIMO controller in (12) is bi-proper. Every entry has

the r zeros in C \ U of the strictly-Hurwitz polynomial ρ,

and r poles. The poles are the roots of the polynomial d,

d := (s + α)r − αr , (13)

which has one root at s = 0 and the remaining r − 1 roots

in C \ U . �

C. Plants with transmission-zeros at infinity

As in Section III-B, the plants in this section have no

restrictions on their poles, and also no restrictions on the

zeros in the open left-half complex plane C\U . The U-zeros

of the plant P are at infinity, and every entry in the transfer-

matrix of P may have different relative degree and some

entries may not even be strictly proper. Hence, the zeros

at infinity are not necessarily blocking-zeros. Therefore, the

numerator matrix N in any LCF P = D−1N has an

improper inverse, which we write as

N−1 =

[

nij

dij

]

i,j∈{1,...,m}

. (14)

Since P has no transmission-zeros in U except at infinity,

dij are strictly-Hurwitz polynomials. Define the integers

rij :=

{

δnij − δdij , δnij > δdij

0 , δnij ≤ δdij
(15)

where δ denotes polynomial degree. For j = 1, . . . ,m, let

rj := max
j

{ rij } . (16)

Let a ∈ R+ ; then

nij

dij(s + a)rj
∈ S , i = 1, . . . ,m . (17)

Define Λ ∈ S
m×m as

Λ := diag [λ1, . . . , λm]

= diag
[

1
(s+a)r1

, 1
(s+a)r2

, . . . , 1
(s+a)rm

]

, (18)

where λj = 1 if rj = 0. Some examples of plants with

transmission-zeros at infinity are as follows:
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1) Let P =

[ 1
s−1

1
(s2−1)

1 1
s−2

]

; note that the transmission-zero

at infinity is not a blocking-zero. An LCF of P is P =

D−1N =

[ s−1
s+1 0

0 s−2
s+1

]−1 [ 1
s+1

1
(s+1)2

s−2
s+1

1
s+1

]

. Then N−1 =
[

1
3 (s + 1)2 − 1

3 (s + 1)
− 1

3 (s − 2)(s + 1)2 1
3 (s + 1)2

]

. Here, r1 = 3 and r2 = 2

and Λ as in (18) becomes Λ =

[

1
(s+a)3 0

0 1
(s+a)2

]

, a ∈ R+ .

2) In this example, some entries of P are not strictly-

proper and r1 = 0. Let P =

[

s+1
s−1

−(s+1)
s−1

1
s−2

1
(s+1)(s−2)

]

, with

LCF P = D−1N =

[ s−1
s+1 0

0 s−2
s+1

]−1 [
1 −1
1

s+1
1

(s+1)2

]

. Then

N−1 =

[

1
s+2

(s+1)2

s+2
−(s+1)

s+2
(s+1)2

s+2

]

, and Λ =

[

1 0
0 1

s+a

]

, a ∈ R+ .

3) In some cases, there may be a blocking-zero at infinity, in

addition to transmission-zeros at infinity that do not appear in

every entry of P ; e.g., P =

[ 1
s−1

−1
s−1

1
(s+1)(s−2)

1
(s+1)2(s−2)

]

, with

LCF P = D−1N =

[ s−1
s+1 0

0 s−2
s+1

]−1

1
(s+1)

[

1 −1
1

s+1
1

(s+1)2

]

.

Then N−1 = (s + 1)

[

1
s+2

(s+1)2

s+2
−(s+1)

s+2
(s+1)2

s+2

]

, and with r1 = 1,

r2 = 2, Λ as in (18) becomes Λ =

[ 1
s+a 0

0 1
(s+a)2

]

, a ∈ R+ .

Proposition 3 gives a systematic controller synthesis method

for MIMO plants with transmission-zeros at infinity.

Proposition 3: (Controller synthesis for plants with

transmission-zeros at infinity) Let P ∈ Rp

m×m have no

finite transmission-zeros in U . Let P = D−1N be any LCF

of P . Define Λ as in (18). For j = 1, . . . ,m, choose any

monic rj-th order strictly-Hurwitz polynomial ρj(s). Define

Ψ as

Ψ := s [DD(∞)−1diag
[

(s+a)r1

ρ1(s)
, . . . , (s+a)rm

ρm(s)

]

−I] . (19)

Choose α ∈ R+ such that

α > max
j

rj ‖Ψ ‖ . (20)

Then the integral-action controller in (21) stabilizes P :

C = N−1Λ diag
[

αr1ρ1(s)
(s+α)r1−αr1

, . . . , αrm ρm(s)
(s+α)rm−αrm

]

D(∞) .

(21)

�

Remarks: The poles of the MIMO integral-action controller

in (21) are the poles of the stable matrix N−1Λ and are the

roots of the Hurwitz polynomial dj defined as

dj := (s + α)rj − αrj , (22)

which has one root at s = 0 and the remaining rj − 1 roots

in C \ U . �

D. A comparison with integral-action controller design

based on augmented plant model

The standard integral-action controller design method is

based on augmentation, where the integral of error is in-

cluded in the state-space representation of the plant. Let

[Ap, Bp, Cp,Dp] be a minimal state-space representation of

the plant P ∈ R
m×m
p , where Ap ∈ R

n×n. A full n-th order

observer is designed by choosing L ∈ R
n×m such that the

eigenvalues of (Ap−LCp) are in C\U . The estimator state is

used for state-feedback Ka = [Kn Km] ∈ R
m×(n+m) such

that the eigenvalues of (Aa − BaKa) are in C \ U , where

an (n + m)-th dimensional state-space representation of the

augmented plant 1
sP ∈ R

m×m
p gives (Aa, Ba) as

Aa =

[

Ap 0
−Cp 0

]

, Ba =

[

Bp

−Dp

]

, (23)

which has (n+m) states. Let Ca denote the integral-action

controller designed by this augmentation. Then a state-space

representation (Ac, Bc, Cc,Dc) for the controller Ca is

Ac = [Aa − BaKa + La ( [C 0 ] − DKa ) ]

=

[

Ap − (Bp − LDp)Kn − LCp −(Bp − LDp)Km

0 0

]

,

Bc = La =

[

−L
I

]

, Cc = −Ka , Dc = 0 . (24)

The transfer function of this controller is given by

Ca = Cc(sI(n+m) − Ac)
−1Bc + Dc

= −Ka [sI − Aa + BaKa + La( [C 0 ] − DKa)]
−1

La .

The controller Ca in (24) has m of its (n + m) eigen-

values at s = 0. The other n eigenvalues of Ca may be

anywhere in the complex plane. Integral-action controllers

designed using full-order observer and state feedback based

on an augmented plant model always give a strictly proper

controller transfer function.

The order of the bi-proper controllers designed for the

plant classes in Section III do not depend on the number

of eigenvalues of the plant P ∈ Rp

m×m. For the class of

plants with no U-zeros discussed in Proposition 1, the first

order (PI) controller C ∈ Rp

m×m in (4) can be realized

with m states, with all m eigenvalues at zero. For the class

of plants with r blocking-zeros (large, possibly at infinity)

discussed in Proposition 2, the controller C ∈ Rp

m×m in (9)

(and the special case of (12) when all blocking zeros of P
are at infinity) can be realized with rm states, with m of the

eigenvalues at zero. For the controllers in (12), the remaining

(r − 1)m eigenvalues are in the open-left-half plane.

We now compare the design for an augmentation based

controller Ca to the design in (12) through an illustrative

example.

Example 1: In this example we consider a chemical re-

actor plant obtained by linearizing the model given in [4],

where the concentration of the inlet reactant and the rate

of heat input are manipulated to regulate the outlet reactant

concentration and the reactor temperature. The linearization

735



around one of the operating points gives the unstable plant

transfer-matrix in (25), where P has poles at s = 0.0614 ∈
U and s = −0.0167, and a blocking-zero at infinity:

P =
1

100y

[

1.67s − 0.1232 −0.00189
4.143 4.184s + 0.1218

]

,

y = (s − 0.0614)(s + 0.167) . (25)

With r = 1, the plant in (25) can be written as in (6), where

N = 1
(s+a)I2 and

D =
100(s + 0.167)

6.9873(s + a)

[

4.184s+0.1218
(s+0.0167)

0.00189
(s+0.0167)

−4.143
(s+0.0167)

1.67s−0.1232
(s+0.0167)

]

,

where a ∈ R+. Following Proposition 2, we take a simple

first order ρ(s) = (s + 1). Then the norm of Φ in (10) is

‖Φ ‖ = 1.5. If we choose α = 3 > r‖Φ ‖ satisfying (11),

then the first order controller as in (12) becomes

C =
(s + 1)

s

[

179.64 0
0 71.7

]

. (26)

For different choices of ρ(s) and α, we would obtain

different first order controllers. A minimal state-space re-

alization of the controller in (26) has 2 states, with two

eigenvalues both at s = 0. The resulting closed-loop poles for

the system Sys(P,C) are {−1.5452 ± j0.7759,−1.5826 ±
j0.7025,−0.0168}. The closed-loop step responses are

shown in Fig. 2.
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Fig. 2. Step responses for Example 1

We now design an integral-action controller as in (24)

based on an augmented plant 1
sP . A minimal state-space

representation of the 2 × 2 plant in (25) has n = 4
states, and the augmented description has n + m = 6
states. We choose L ∈ R

4×2 to place the observer poles

(eigenvalues of (Ap−LCp)) at {−50,−50,−40,−40}. Then

we choose Ka ∈ R
2×6 to place the eigenvalues of (Aa −

BaKa) at {−1.5444±j0.7764,−1.5835±j0.7018,−2,−2}.

The controller Ca as in (24) then has 6 eigenvalues, at

{−120575, 120482,−48.498 ± j10385, 0, 0}. Note that Ca

has one eigenvalue in U in addition to the two at s = 0.

The transfer-function of Ca is strictly-proper, with 5-th order

denominator terms. �

This example illustrates that the controller order for the

proposed integral-action synthesis method is lower than the

augmented plant based full order observer approach since it

depends on the relative degree (number of blocking-zeros at

infinity) of the plant class under consideration.

IV. CONCLUSIONS

For plants whose zeros in the unstable region are ‘large’

and particularly at infinity, we developed a systematic synthe-

sis methodology that results in a simple integral-action con-

troller whose poles other than the one integrator providing

the integral-action all are in the stable region. We investigated

both blocking-zeros and transmission-zeros at infinity. The

plant classes under consideration do not put any constraints

on where the poles are and also the zeros in the stable region

are unrestricted. Since the controller has only one integrator

but is otherwise stable, the plants here are in fact strongly

stabilizable [14]. Low order controllers with integral-action

for plants that are not strongly stabilizable would have some

poles in the right-half complex-plane.

The proposed controllers for each plant class we con-

sidered here have flexibility in the choice of the design

parameters (e.g., the numerator polynomial for the controller

is chosen arbitrarily). The effect of the parameter choices on

the system performance can be explored in future extensions,

although the scope of this current work is limited to the

challenging goal of low-order stabilization while achiev-

ing asymptotic tracking of step-input references with zero

steady-state error.

APPENDIX

Proof of Proposition 1:

Let Nc = I and Dc = s
α(s+g)K

−1 = C−1. By (1),

C = NcD
−1
c stabilizes P = (P−1)−1I if and only if

M = NNc + DDc is unimodular, where

M = I +
1

α

s

(s + g)
P−1K−1 . (27)

A sufficient condition for M to be unimodular is that

‖ 1
α

s
(s+g)P

−1K−1 ‖ < 1, which holds for α satisfying (3);

hence, C in (4) stabilizes P , which has no zeros in U . �

Proof of Proposition 2:

Let d := (s + α)r − αr

r
∏

i=1

(1 − s/zi), which becomes (13)

when all zeros are at infinity. Let Nc = αrI and Dc =
αrC−1 = d

ρD(∞)−1; note that C−1 is stable by choice of

ρ(s). By (1), C = NcD
−1
c stabilizes P = D−1N given by

(5) if and only if M = NNc + DDc is unimodular, where

M =
αr
∏r

i=1(1 − s/zi)

(s + a)r
I + DD(∞)−1 d

ρ
. (28)
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Since a, α ∈ R+ , M is unimodular if and only if M̂ :=
M (s+a)r

(s+α)r is unimodular, where M̂ can be written as

M̂ =
αr
∏r

i=1(1 − s/zi)

(s + α)r
I+DD(∞)−1 (s + a)r

ρ

d

(s + α)r

= I + [DD(∞)−1 (s + a)r

ρ
− I]

d

(s + α)r

= I + s [

∏r
i=1(1 − s/zi)

ρ
P−1D(∞)−1 − I]

d

s (s + α)r

= I + Φ
d

s (s + α)r
. (29)

Since (DD(∞)−1 (s+a)r

ρ − I)(∞) = 0, Φ is proper.

A sufficient condition for M̂ to be unimodular is that

‖Φ d
s (s+α)r ‖ < 1. For zi > α, the norm ‖ d

s (s+α)r ‖ is:

‖
d

s (s + α)r
‖ = ‖

((s + α)r − αr
∏r

i=1(1 − s/zi))

s (s + α)r
‖

= ‖
((s + α)r − αr

s (s + α)r
+

αr − αr
∏r

i=1(1 − s/zi))

s (s + α)r
‖

≤ ‖
((s + α)r − αr

s (s + α)r
‖ + ‖

αr − αr
∏r

i=1(1 − s/zi))

s (s + α)r
‖

≤
r

α
+

r
∑

i=1

1

zi
.

Therefore, if
∑r

i=1
1
zi

< r
α and 2

∑r
i=1

1
zi

< ‖Φ ‖−1, then

for α satisfying (8),

‖Φ
d

s(s + α)r
‖ ≤ ‖Φ‖‖

d

s (s + α)r
‖ ≤ ‖Φ‖[

r

α
+

r
∑

i=1

1

zi
] < 1,

and hence, M̂ is unimodular; equivalently, the controller

C in (9) stabilizes P . By Definition 1-(iii), C is an

integral-action controller since d(0) = 0 implies

Dc(0) = d
ρD(∞)−1|s=0 = 0. Since ρ and d are both

r-th order polynomials, C = αrρ
d D(∞)−1 and C−1 are

both proper. �

Proof of Proposition 3:

Let dj be defined as in (22). Let Nc =
N−1Λ diag

[

αr1 , . . . , αr1

]

and Dc = αrC−1 =

D(∞)−1diag
[

d1

ρ1

, . . . , dm

ρm

]

; note that C−1 is stable by

choice of ρ(s). By (1), C = NcD
−1
c stabilizes P = D−1N

if and only if M = NNc + DDc is unimodular, where

M = NN−1Λ diag
[

αr1 , . . . , αr1

]

+ DD(∞)−1diag
[

d1

ρ1

, . . . , dm

ρm

]

.

Now since a, α ∈ R+ , M is unimodular if and only if M̂ :=

Mdiag
[

(s+a)r1

(s+α)r1
, . . . , (s+a)rm

(s+α)rm

]

is unimodular, where M̂ can

be written as

M̂ = I + s [DD(∞)−1diag
[

(s+a)r1

ρ1

, . . . , (s+a)rm

ρm

]

− I ] diag
[

d1

s(s+α)r1
, . . . , dm

s(s+α)rm

]

= I + Ψ diag
[

d1

s(s+α)r1
, . . . , dm

s(s+α)rm

]

. (30)

Since (DD(∞)−1diag
[

(s+a)r1

ρ1

, . . . , (s+a)rm

ρm

]

− I)(∞) =

0, Ψ is proper. A sufficient condition for M̂ to be unimodular

is that ‖Ψ diag
[

d1

s(s+α)r1
, . . . , dm

s(s+α)rm

]

‖ < 1. The norm

‖
[

d1

s(s+α)r1
, . . . , dm

s(s+α)rm

]

‖ = max
j

‖
((s + α)rj − αrj

s (s + α)rj
‖

≤ max
j

rj

α
.

Therefore, for α satisfying (20),

‖Ψ
[

d1

s(s+α)r1
, . . . , dm

s(s+α)rm

]

‖

≤ ‖Ψ‖‖
[

d1

s(s+α)r1
, . . . , dm

s(s+α)rm

]

‖ ≤ ‖Ψ‖max
j

rj

α
< 1,

and hence, M̂ is unimodular; equivalently, the controller

C in (21) stabilizes P . By Definition 1-(iii), C is an

integral-action controller since dj(0) = 0 implies Dc(0) =

D(∞)−1diag
[

d1(0)
ρ1(0)

, . . . , dm(0)
ρm(0)

]

= 0. �
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