
How to use MARS to program in TAL for EEC 70

-By Michael Sticlaru

ABSTRACT

The motivation for this guide is to help students who would like to use very useful tool in the creation of
their assembly code for EEC 70 at UC Davis. This tool can help understanding of the assembly language,
as well as give a visual aid and reference for concepts discussed in the class room and book.
Traditionally, students use a text editor to generate lines of code for use in the SPIM/SAL simulator
located on the ECE machines, or using other windows based simulators.

The problem with this approach is there is little to no feedback given to the student when writing the
code. When loading the code into the simulator, feedback on any errors is difficult to discern or
understand. This can create a problem for students who are new to the language, and frustration when
trying to determine the cause of an error.

The use of the MARS MIPS simulator alleviates this problem by use of a power interactive development
environment (IDE) that can help students understand the code they are writing.

INRODUCTION

MARS – What is it?

MARS (MIPS Assembler and Runtime Simulator)
An IDE for MIPS Assembly Language Programming

MARS is a lightweight interactive development environment (IDE) for programming in MIPS assembly language, intended for
educational-level use 1

Features

 GUI with point-and-click control and integrated editor
 Easily editable register and memory values, similar to a spreadsheet
 Display values in hexadecimal or decimal
 Command line mode for instructors to test and evaluate many programs easily
 Floating point registers, coprocessor1 and coprocessor2. Standard tool: bit-level view and edit of 32-bit floating point

registers (screenshot).
 Variable-speed single-step execution
 "Tool" utility for MIPS control of simulated devices. Standard tool: Cache performance analysis tool (screenshot).
 Single-step backwards

It can be downloaded from the program’s website along with more information about the program.

DOWNLOAD

1 http://courses.missouristate.edu/kenvollmar/mars/

HOW TO USE IT

I will leave the download and installation up to the student to accomplish. After installation run the
program executable, and launch MARS.

You should now be looking at a screen like this.

INITIAL SCREEN

This is the main program layout. Instantly, you notice the Register stack on the right. It follows standard
the MIPS convention that is discussed in chapter 8 and 9, of the text, and in the table on page 244.

You will also notice the large blue area, this is where the code is typed out, and then the message
window on the bottom, this is where print outs and interaction created by the program are presented.

WRITING CODE

Mars will open all files with .s extension as well as .asm extension. It will also save with both extensions.
EEC70 requires the .s extension, so let us use that for our purposes.

To open a file, click File -> new, or open if you are opening existing code.

MARS is an IDE, this means that when you type code, there is interaction between you and the program
that gives you information about the code you are writing, as you write it. For example, when I start my
code, I will start with “.data”, lets see what happens. Directly after pressing the period key to start .data,
I get a list of all the possible commands I can use not all apply to our class, but a lot of them do.

As I continue to spell out data, I get the description of data, what it does, and how it works.

Here are a few more descriptions of commands, You can play with this on your own.

There is also command format descriptions, for example, if I want to use the Boolean” branch if not
equal”, I can start typing it to see how to use it.

As you can start to see, using MARS to
write code is very beneficial and can
help solidify the concepts taught in the
class

MARS also have formatting that it uses
in the text editor to identify commands,
statements, comments, and so on, here
is an example.

REGISTER DISPLAY

Other than being a powerful editor for assembly, MARS also gives
information about the registers. This is helpful when trying to
understand the PC counter, Stack Pointer, or other register values
that are used.

The registers display on the right side of the screen gives
information about the register name, its number, and the value
contained in that register at any point during the program
execution.

This is a valuable tool that runs in real time as the program is being
executed. We can see that the value of the stack pointer in this
example, and also the value of the PC counter before its offset.

When a program is running, the values will that the program uses or
creates will populate this list. If the program is run in real time, then
the results shown will be the final results of the program.

However, MARS supports single step instruction execution. Using
the single step, we can watch the values change, as our code is
executed. This can help not only understand HOW an instruction
works, but can also allow the student to determine where their
code is not working.

For example, if I were writing a subroutine to extract digits from a
number, I might expect that the command

Rem $t0,$t5,10 will extract the last digit from the integer stored in
$t5 and store is in $t0, in fact that is exactly what we would see.

COMPILING THE CODE

Now that the code we wanted to write has been written, we can compile it and run it. First we begin by
compiling, or “assembling” the code. We can do this by pressing f3, or going to “run -> assemble” MARS
will then attempt to assemble our code, and tell us about any errors we may have made. Here are a few
examples.

Once the errors are corrected, and the program will assemble and then a new screen is presented to us.

This portion of the next screen shows the code that we wrote on the right, the True assembly version of
the code we wrote, the HEX representation of our code, and then finally, the address that each
instruction is located at.

Next, we get to see the data table created by our code. Displayed by memory address and value.

This is the data segment of our code, it shows the variables we defined m in this case, 0x100 10000 is
the beginning of the label “msg1” and goes from 0(msg1) through address 10(msg1) where +10 is the
offset of the address segment.

Next we have the address of each label we have defined in
our program, this will hold the address of all labels that we
used in our program. You can use this table to calculate the
offsets for jump calls.

Notice that the label for msg1 corresponds to the
appropriate data segment, starting at address 0x1001 0000

Now let’s run our program and see what happens.

RUNNING THE PROGRAM

I am going to run the program in step by step mode. By clicking the green arrow with the ‘1’ on it. This
will step forward 1 instruction at a time.

I stepped forward 4 times, For the sake of saving pages, This is the result of
running the steps. We can see that $t0 now contains the value that we
expected, 0x1001 0000, and $t1 has the result of the addition. Also notice
that $a1 also has the value of 0x1001 0000. This is because register 1 is used
by the operating system as discussed in chapter 8. The reason it is used
follows from the TAL load instruction

So, instruction lui loads the upper address into $1, then ori loads the lower
address plus the upper address into $t0. I have stopped executing on line
12, so the lw command has not yet executed.

This is a continuation to the left of
the screen shot above. Notice that
we are stopped on line 12: if we look
to the left, we see that the address of
that line is 0x 0040 0008. Now, if we
look at the register stack, we see that PC has the value of 0x 0040 0008.

Using these tools, it is easy to see what is going on in your code, why its
going on, and how to manipulate your code to become more efficient.

TIPS

Because MARS uses only MAL and TAL commands (mostly TAL) you will need to use the proper syntax
for things like “get” and “put”.

In MAL, the commands “putc” and “getc” are used, but there are no such commands in TAL. As such, the
MARS simulator will not use them.

So how can you print?

Chapter 10 introduces TAL, and all instructions presented in the text work in the MARS simulator. The
table on page 262 and explanation of system
calls will help you tremendously.

In the settings tab there are several things of
interest.

You can see the options for “values displayed in
hexadecimal” . Try toggling this on and off when
you are looking at your registers. It is helpful
when trying to understand how characters are
inputted through the keyboard. Using “getc”
system call, you can write a simple subroutine
that will take input from the user, you can watch
in real time as the value of the register value
changes. Toggling the values button, you can
change from hex to decimal, and see the ascii
values.

EXAMPLE CODE

In this example, the program will ask for an input from the user, the ascii value of the key is then placed
into register $2,
copied to register
$t0, and then the

ascii bias is removed. Let’s take a look at the registers to see what is going on.

Pressing the “7” on my keyboard resulted in the ascii value
55 is placed into register $t0, 7 is placed into $t1, and $v0
holds the value of 12.

Looking at this, it is clear how the system call works. The
value in $v0 used to tell the system what to get, then the
results are stored according to how the code is written, in
this case $t0, and $t1. We also get immediate feedback on
the values we type into the program. (note: I used run
speed at 6 inst/sec)

Conslusion

Using the MARS simulator provides some great benefits for students who wish to learn how assembly is
written, and the underlying concepts that are discussed in the class. It provides a powerful tool for
debugging, and “watching” how code is working. Students can see the true assembly code that is
generated by their MAL commands.

Not all MAL commands are used “get, put, done, start.. etc” however, this is not a limitation, as
synthesizing TAL commands are part of the learning experience. While the current solution being used is
functional, it is often frustrating for students who cannot get feedback on how their code is working.
There is no easy way to debug code in a text editor. At the very least, MARS can be used to generate the
code for use on the SPIM/SAL simulators in use now. I have verified that code written with does
compile and run perfectly on the SPIM/SAL sim.

