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EEC 193B Autonomous Car Senior Design Final
Report

Adam Jones, Thanh Le, Vidush Vishwanath, Sarvgaya Singh, Christopher Uy, Kalani Murakami, Sam Truong,
Devashish Kashikar, Gabriel Lee

I. SUMMARY

The main purpose of this report is to summarize what the
team has collectively achieved and show what each individual
has contributed to the project. Our final product is a self-
driving car that uses a pre-trained neural network in order
to maneuver around a known track. Occasionally, if there is a
stop sign, the car is able to stop itself.

An important note is that there were many tasks that our
members worked on this quarter which were not needed
for the current car. Because our objective at the end of the
quarter was to have a car that could drive itself on a track,
tasks such as Simulation, ROS communication, etc. were not
directly applicable. However, such tasks are crucial for the
development of future tasks, and they lay the foundation for
which future project members can build upon. Because of that,
this report will include every task that the team worked on to
build a better car, not just the current one.

The tasks that we have accomplished are:
1) Traffic Sign and Pedestrian Detection.
2) Jetson Flashing and Installation.
3) Design and Modify the car chassis.
4) Establish UDP connection between the Jetson and Rasp-

berry Pi.
5) Modify the motor board to install heat sinks.
6) Build a track and Collect data from it.
7) Train the data on Titan XP.
These are essential tasks that work on the current car.

Furthermore, the following are tasks that we pass on to the
next project members.

1) Simulation on Deep Drive.
2) Lane Line Detection.
3) Long-range Path Planning.
4) Short-term Path Planning and maneuvering.
5) ROS packages for communication among components.
6) SLAM with Lidar.
7) Make installation Packages for future hardware.
In the following sections, we will talk about each tasks listed

above in more detail. We will address the final status of each
tasks, the difficulties we encountered and intricacy of dealing
with specific hardware bugs. All of this is in the hope that
future project members do not have to repeat the same mistake,
in order for them to focus on more important issues.

II. TRAFFIC SIGN AND PEDESTRIAN DETECTION

Sam Truong, Kalani Murakami

For traffic sign and pedestrian detection, we continued to
use the Darknet framework and the TinyYOLO architecture
to perform both our pedestrian and traffic sign detection.
However, for this quarter, we chose not to continue with
using GPU computing in the cloud, and instead, Sam used
the Titan XP to train the model. This was to reduce costs
for training, since the GPU computing service charged at an
hourly rate. Using the Titan XP, we have more control over our
model and was able to reach better convergence compare to
when training on AWS. This is because not having the budget
constraints allow us to have the freedom to test different hyper-
parameter and fine-tuning the model. The following images are
the characteristic plots through out the training.

Recalling from the previous report about training for Traffic
Sign Detection and Classification, we have the loss at around
60. We were able to get the loss down to around 12 using
the Titan XP. Although the loss can get even lower than
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that, experiments have shown that for a very small number of
classification (5-10 classes), where different classes are very
distinctive, a high loss value is acceptable. We also plot the
”Gradient of moving average loss”. This plot helps us to know
when the model is approaching convergence. If the value of
this plot fluctuate around 0, then we can act accordingly. This
means if the loss is still high and gradient is 0, we will decrease
the learning rate or increases the batch size. It is worth
mentioning that sometimes increasing the learning rate might
actually help us escape convergence (as oppose to decreasing
it). This is true when we are stuck in a local minimum. We
need a very large step to get out of the depression. Again,
without the Titan XP, testing and reverting back to last training
check-point are financially expensive operations. Each time we
decide to revert the training to the last saving point, it can take
3-4 hours to see the result.

The final result of this task can be confirmed by testing
on multiple validation images. Our most important classes
are: Pedestrian, Bike, Car and Stop sign, all of which are
successfully detected with the average accuracy of 95%. We
argue that for a real-time video streaming, the constraint on
accuracy can be relaxed since there are more than 1 frame
used as input. Even if the model fails to detect the classes in
one frame, it still have a high chance of successfully detect
other frames. The following images are our results:

Difficulties and Future Notice

We have modified the training files so that now it is
very tractable to retrain and validate the training. The bash
script ”run.sh” inside the ”darknet” directory takes care
of all hyper-parameter specification, starting points and
configuration files.

Also, the Jetson only has about 200 CUDA core, and

therefore having a detection/classification algorithm on
board is costly. This is because the Jetson is already
inferencing a supervised neural network in order to out-
put car’s action. To fix this issue, initially we want to
stream the camera output to the Titan XP, where the
detection/classification will be inferenced. However, using
UDP as network prototcol, we encountered latency issue.
The video was only streamed at 0.6 fps.

For future reference, we believed having a more
powerful processor on board will allow the detec-
tion/classification algorithm to run in parallel with other
tasks on the GPU. Alternatively, we could try to fix the
UDP connection, because other applications have shown
that it was possible to stream video in reasonable frame
per second. Both approaches needed additional require-
ment. While having more powerful processor requires a
better car chasais, fixing UDP protocol required a close
network for edge computing.

III. JETSON FLASHING AND INSTALLATION

Sam Truong, Christopher Uy, Devashish Kashikar,
Vidush Vishwanath

The Jetson was flashed with Jetpack 3.1 which included
CUDA 8.0, cudNN 6.0, Ubuntu 16.04 LTS, TensorRT 2.1
and OpenCV 2.4.1. The OpenCV version was archived and
did not support Python3, so the binaries and libraries had to
be removed and rebuilt from source. The Jetson TX2 ran on
an ARM64 architecture and some packages like Tensorflow
had to be compiled from source to work on the platform. We
recognized that ARM architecture helped reduce the power
consumption on embedded device, however, there were not a
lot of support for needed libraries.

Difficulties and Future Notice

There were quirks with the Jetson we found while work-
ing on it. The HDMI connection does not work with a
USB hub plugged in, and sometimes suddenly shuts off.
There also was an issue activating the SPI protocol on the
Jetson, which will be explained in the UDP connection
section later on.
Additionally, since the libraries and frameworks we in-
stalled on Jetson (CUDA, cudNN, TensorRT, OpenCV,
Tensorflow) took up more than the available space on the
Jetson (they took up more than 32 GB), we needed to
purchase a separate SSD and a SATA cable to provide
more secondary storage. This required us to move the
root director and boot files to the directory. In all, those
procedures were tiresome but needed.

IV. MOUNTING THE CAR

Adam Jones, Christopher Uy, Devashish Kashikar,
Thanh Le, Sam Truong
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The car was modified many times during the course of this
project. The first edition of the car was built only with the parts
that came with it. In order to all run the software to make the
car ”self-driving” we needed to include many things on the car.
The Nvidia Jetson, Raspberry Pi, lidar, motor control board,
battery pack, heat sink and camera were all the things that we
had mounted on the car. We needed to build a platform on the
car in order to fit all of these things.

The first model we built consisted of 1 level. We flipped the
car around so that the the belly of the car did not touch the
ground. We used ply wood to make the surface of the chassis
flat. This allowed us to put the Lidar, 1 battery unit, and the
Raspberry Pi on it. We also later mounted an adjustable camera
on to the chassis. However, this configuration did not allow
us to have the Jetson on board. This turned out to be a big
issue. because the raspberry pi was not fast enough to run our
neural nets, we had to put the jetson on board.

The second model we built consisted of two levels of plexi
glass which held all the hardware we needed. After mounting
all the materials on the glass, we made an attempt to run the
car and realized that the glass was way to heavy. It squished
the tires making the car very difficult to accelerate. The car
would overheat almost immediately. The power bank itself was
2 lbs, so we had to buy an even lighter power bank that could
power both the Jetson and Raspberry Pi at the same time.

The third model consisted of two levels of thinner plexi
glass. The original two pieces of plexi glass were heavier than
the car itself. With these two thinner pieces of plexi glass and
a lighter power bank, we thought the car would be able to
move without overheating. However, while the car was able
to run for longer, it still overheated too early.

Our latest edition of the car consists of two levels of ply-
wood to hold all of the hardware. The ply-wood was even
lighter than the plexi glass, and we added heat sinks to the
tops and bottom of both the motor control board and the
raspberry pi. With this final reduction in weight and the heat
sinks, the car is able to make 2-3 laps around the track without
overheating.

Difficulties and Future Notice

As mentioned earlier, the weight of the car was a huge
problem. It took a week to come up with a solution
and gather the materials to implement that solution. Our
car does not have very high-torque motors and can only
handle up to 3.8 Amps. Our car also has no suspension,
which makes it very difficult to hold any weight the
motors still overheated. Even with all the reductions in
weight and the heat sinks, our car can still not run
continuously for very long. For the future, we will need
to buy a car that can handle a lot of weight.

V. ESTABLISH UDP CONNECTION BETWEEN THE JETSON
AND RASPBERRY PI

Thanh Le, Gabriel Lee

The UDP connection between the Jetson and the Pi is for
device communication. Originally, we had planned to use SPI,
but the SPI protocol could not be unlocked to use on the board
without re-flashing the Jetson. We decided against re-flashing
since all prerequisite packages, binaries, and libraries were all
ready on the board. We decided to switch to a UDP connection
because it was easy to establish and we were limited in our
UDP connection by how fast our model can output steering
angle. We had a UDP python script from last quarter stored
on the Pi, but since then the Pi had been wiped several times
and all our progress was lost. We can blame this issue on
our poor use of git during the duration of our first quarter.
Writing the UDP script again was not a huge issue; however,
if we had the previous script this issue would have only taken
us 30 minutes instead of 2 hours. This issue highlights the
importance of having well-documented and back-up code for
our project.

VI. BUILD A TRACK AND COLLECT DATA FROM IT

Adam Jones, Kalani Murakami, Christopher Uy, Thanh
Le, Devashish Kashikar, Vidush Vishwanath

We built the track during the first quarter of the independent
senior design in order to capture reliable training data for our
models. The track consisted of 53 interlocking black foam
floor mats covered in white and yellow tape signifying the
lanes lines. Throughout the project, we knew that we had to
modify the track-layout in order to create a track that was
traverse-able by the RC Car.

Our initial layout of the track was too ambitious. The car
could not physically make some of the turns. In the second
iteration of our track layout, we smoothed out some of the
sharp turns, but it was still difficult for a person driving the
RC car to make some of the turns without slowing down to a
crawl. We trained the RC car on this iteration of the track, but
the car could only consistently make three turns on the track.

The turns required the RC car to switch from turning full
right to turning full left instantly on a slight downhill. A
person driving the car can easily anticipate the rapid change in
steering angle, but the RC car could not. We added correction
data for the two sharp turns on the track by driving the
car through them again and again, but it did not change
the behavior of our model. With only a week before our
deadline, we decided to modify the layout of the track again
to accommodate the car.

Thus, in our final layout, we designed a track with turns that
were optimal for the RC Car to traverse, but still included a
variety of curves and turns that our model might encounter in
real world scenarios. Our layout includes both short and long
curves at various curvatures to produce reasonable training
data.
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Difficulties and Future Notice

It was difficult to collect data from the track due to poor
lighting in Hershel’s garage. We had to install a ceiling
light in order to light the track in an even manner. Along
with poor lighting, the garage was also slanted towards
the garage door. This made it even more difficult to train
the car because the way we kept the car moving was
by making the power constant and the car needed more
power for turns and less for straight parts. We soon found
out that this method will not work because the car started
on a downhill and was able to make the first turn with
ease. On the second turn, it was difficult for the car to
turn because now, the car had to go on an uphill and
would often times stop moving. It is very important that
the track be on a flat surface in order to make sure that
the car will continue moving in a normal manner.

VII. TRAINING MODELS ON TITAN XP

Adam Jones, Sam Truong

The Titan Xp used for this research was donated by the
NVIDIA Corporation. We mainly used the Titan XP to
train 2 tasks: (1) the aforementioned YOLO network for
detection/classification of traffic signs and pedestrian. (2) the
supervised neural network used to output the steering angle
given an image containing at least one line. Here, we would
summarize both tasks training statistics and further elaborated
on task (2).

Using the Titan XP was been a great choice, because
working with AWS was very expensive. We acknowledged
that using AWS can further scale our application, however, our
objective right now did not require such a bulky and expensive
resource. It took a lot of fine tuning in order to training a
neural network. Spending time adjusting the hyper parameters
on AWS meant we needed to spend a large portion of our
budget on fining the right set of parameters.

For task (1), the total training time, including the time that
we went back and fine tune the parameters, took 36 hours. We
trained on 200 epochs, with the learning rate decreased from
0.001 to 0.0005 to 0.0002. Because we had the luxury of going
back to the last checkpoint and retrain, there are a lot of local

minimum that we escaped by changing the learning rate. The
batch size also got increased from 32 to 64 as we started to
approach convergence. Having larger batch size allowed the
descent to be less stochastic and more general.

For task (2), we used the term ”Lane Line detection”, how-
ever, it was important to know that this task is separate from
Adam’s lane line detection, which used traditional computer
vision. The original lane line detection will be used to provide
the inputs to our reinforcement learning approach, which
will be implemented in the future. Here, we used supervised
learning in order to output an steering angle number based on
the camera input. This tasked is purely supervised learning.
We tried two different neural nets: Nvidia and LeNet. Click
here for the original Nvidia neural network architecture Click
here for the original LeNet neural network architecture

Nvidia’s model worked on a real car. It took in an image as
an input and output a steering angle. This alone was able to
drive a real car. However, it did not work so well in Hershel’s
garage. The model that worked was a modified version of
LeNet. LeNet is sort of the ”hello world” when it comes
to image classification. We modified the input and output
layers to match what we needed for the self-driving car, added
another 2D Convolutional layer, and applied the same image
pre-processing that Nvidia did for their real self-driving car.
This included cutting off the top of the image (don’t need to
look at the roof to know where to drive), converting to YUV
color space, applying gaussian blur, and converting image
shape to (66, 200, 3). The original image shape was (180,
320, 3). We kept the input image size as small as possible to
make the neural net as small as possible. We think that the
modified LeNet model worked so much better than Nvidia’s
model because modified LeNet had 8.9 million parameters,
whereas Nvidia’s model only had 250,000 parameters.

With 100 iterations, it took the Titan XP about 30 minutes
to train the neural network. Using other GPU’s from AWS, it
would have taken between 45 - 60 minutes. The result was
the car being able to self driven based solely on the camera
input. This was a good use of the Titan XP since it allowed
us to try different models with different hyper-parameters in
a very short time, delivering us a working model.

Difficulties and Future Notice

Because the Titan XP requires its own computer (our
workstation), it would not be mounted on the car. Unless
we got a much bigger car, it would be impossible to have
wired communication between the workstation and the
Jetson. We ended up using a flash drive to transfer the
models from the workstation and the Jetson because it
was the fastest solution. As we mentioned, UDP protocol
was not fast enough to transfer frames in real time for
now. This defeated the purpose of having a very powerful
piece of hardware, because we have a bottleneck when
transferring data. To solve this, we needed to figure it out
how to speed up UDP communication.

https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
https://www.pyimagesearch.com/2016/08/01/lenet-convolutional-neural-network-in-python/
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VIII. SIMULATION ON DEEPGTAV

Kalani Murakami, Thanh Le, Christopher Uy, Gabriel
Lee

1) Introduction: Deep Drive is a software that allows the
training of self-driving car models using Grand Theft Auto V
as its environment. Official development of Deep Drive has
stopped due to take down notices from Grand Theft Auto V
publisher Take-Two Interactive so we needed to use forked
repositories. We decided to use a fork of the repository called
VPilot because it was the best documented out of all the forked
DeepGTAV networks.

DeepGTAV works as a plugin for the game when you run
it. The files inside the repository go into the game directory
of your copy of GTAV. The plugin was created in C++ using
Visual Studios. The plugin works off a already created Saved
File which runs as you are driving the car. The plugin comes
with different configurations that you can adjust as you drive
the car. You are able to configure these parameters using JSON
messages you send to the game using a client. There are 4
different messages you can send. The ’Start’ signal which is
required to run the simulator from the start. You cannot run
any other command unless this is started first. The ’Config’
signal is then used to override any settings used at the current
time such as the settings of the ’Start’ signal. The ’Command’
signal is used to give manual directions to the car at any
given moment allowing you to configure the throttle, brake,
and steering angle. The car must be in manual mode for this to
happen. The last signal is the ’Stop’ signal. This stops the car
from receiving messages from the Client. Each signal comes
with two different parameters that you must configure besides
the ’Stop Signal’. The first parameter is the ’Scenario’. The
’Scenario’ allows you to configure the location in GTAV, time,
and others such as auto mode or manual mode. The ’dataset’
parameter allows you to configure rate, frames and what you
want the car to do itself.

2) Installation: To get DeepGTAV to work we need to
revert the version of GTAV that was installed in our team
member’s machine to an older version. After some research
we were able to install the correct version. The first repository
that we were testing our simulations with seemed promising,
because we were able to use the in-game AI to collect data
consistently, however, the function included in the repository
to train the actual car itself did not work. The model which
was included in the project also did not work. After struggling
with the issues for a week, we decided that our best bet was
to look at different implementations.

The program runs on Windows 10 and was a challenge
for us since it was a different development environment than
Unix/Linux. The DeepGTAV project is compiled in a visual
studio project. It was difficult for us to get the simulation to
work properly because there were issues in the repository that
we forked. The first issue we encounter was that we weren’t
able to run any of the functions included in the repository due
to the fact that we didn’t have the correct version of OpenCV
installed in the system. Although we picked the most well
documented version of DeepGTAV available, it didn’t mention

anything about which version of OpenCV was used for the
project.

To understand what the simulator is doing we had to modify
the Visual Studios project. We first had to understand Visual
Studios. We ran into errors using Visual Studios including
version control of visual studios. We went from Visual 2013
- 2017 only to learn that it could only be done in 2017 due
to the Windows Game SDK that is only available in the 2017
version. Then from there we imported the project using the .sln
files from the main GTAV Github. We then had to import all
of the libraries used in the GTAV project from files that build
from other libraries. Due to the development environment of
our nature, using multiple drives, we ran into issues there.The
OpenCV directory where all the libraries are being contained
wasn’t found. From there, we first tried to manually link them
together only to find that we weren’t suppose to use OpenCV
3.4, but OpenCV 2.3.4. The reason we struggled with that
was because there was no indication that we could find on
which one to use. From there we learned we didn’t have to
use CMAKE to build OpenCV, but store it in the main C:Drive.
The main C drive is where Visual Studios finds libraries for
some reason, even though in the build settings of the project,
we linked it to the D:drive to build from. We don’t know why
it works the way it does, but it does. We are now able to
successfully use Visual Studios for the project and modify the
C++ code.

3) VPilot: VPilot is a scripts and tools using the Python
libraries to communicate with DeepGTAV. This was also
created by ’aitorzip’. This communicates with DeepGTAV
over a TCP connection. With this, we can easily write
Python implementations of this so we can also incorporate
our previous knowledge of using machine learning libraries
in Python. VPilot also comes with four important functions.
Messages.py and Client.py are the main functions that allow
us to communicate with DeepGTAV. They take care of the
JSON messages you send and starting up the TCP client. The
python scripts that build off these are dataset.py and drive.py.
Inside dataset.py, the car is set into autopilot mode which uses
the functions inside of GTAV and drives around. The game
doesn’t use the in-game AI to drive. The car is actually using
scripts that were made inside the original plugin of DeepGTAV
and uses the files ’Lanerewarder.cpp’ to stay in the lane lines
consistently. In drive.py, the car takes in a dummy model and
uses this model to drive the car. The purpose of this skeleton
code is to modify ourselves and place it where the dummy
model is created.

4) Data Collection: In the C++ implementation,the files
are already generated in a file called dataset.txt. This file
contains 8 different parameters. They are all found in the
Github of the main project, but the mains one we want
to focus on are steering, braking, and throttle as we did
in the Santos Net implementation. The dataset.txt file is a
space separated formatted file with the first number being
the indication of which frame to associate the line of data
this is from. This is important in training the model as we
associate the line number with the frame at that time. The data
collection can be configured using the config.ini file located
in the Github. The config.ini file is a file that is read in when
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the simulator starts.The config.ini file allows you to change
various parameters such as the capturing frame rates, weather,
and environment type. More can be found in the Github.
You are also able to specify the path of where the data and
frames are stored. The frames and dataset.txt file are stored
in the D:drive. This picture below shows an example of the
simulation environement in DeepGTAV.

5) Training:
a) Santos Net: This is a implementation is a sample

implementation that uses the skeleton code provided in VPilot
and builds on top of this. This is able to drive around and take
the dataset into a .pz file which is a video file and train based
off that. On further inspection of the code, we seem to cannot
use this code and modify it for our purposes. They model they
train only trains the steering of this car.

b) Lemon Net: The neural net was help created using
the Github called LemonAniLabs. The model uses a CNN and
LSTM to do temporal inferences on the network. The model
takes in multiple dataset.txt files and the frames in a numpy
array. Then it goes through the layers and exports the results
in a .hdf which is the file needed to run the script drive.py.
Drive.py uses the model.py functions to drive around the car in
a reinforcement learning environment. Drive.py uses a server
to communicate with the simulator of DeepGTAV. After that
it chooses the predicted actions given the current frame

6) Conclusion: In the end, we managed to get the simu-
lation to run and work, and had roughly 60GB of training
data ready, however the training script ran into an error and

would only pick up a black box. The GTAV window could not
be found by the program to do training on. We hotfixed this
issue by making the window full-screen, and just capturing the
whole screen instead of a specific window, while throwing out
the first hundreds frames of data which capture irrelevant data.
After applying the hotfix, we were able to produce a model
from our training data.

Difficulties and Future Notice

The future of the simulation team is collect more data
and train a robust model from that data. After creating a
model we apply that model to the RC Car by mapping
all the outputs of the model to controls on the car. Our
RC car has different steering and acceleration charac-
teristics than the Car in the simulation. Changing how
the simulation car behaves would be easier because all
it’s characteristics are controlled with software variables.
We would also have to optimize the RC Car controls
so that it would align with how the model thinks the
car would behave. The simulation will also be a plat-
form for testing our traffic sign, pedestrian, and lane
line detecting algorithms. By simulating a wider variety
of environments and conditions we could optimize our
Reinforcement Learning algorithms. After successfully
produce a policy in simulation, we could try to transfer
it to the real car model. Anyone who wishes to take
over the project must be well versed in Visual Studios.
Even though members from our team were well versed
in C++, understand how Visual Studios handles packages
and dependencies took a significant amount of time. Our
team spend a significant amount of time not being able
to run the functions from Lemon Net because we did not
understand that Visual Studios required its own version
of OpenCV in order to compile the program. Even after
figuring this out, we encounter numerous dependency and
compilation errors with the code. To replicate our current
simulation on another machine will require a significant
time to create/fix any environmental dependency. We
have documented all the steps necessary to achieve in a
document. Future considerations include creating a stream
lined process to train, extract, transform, and load data.
Another consideration in the future is to add the lane line
detection in the simulator itself without relying on the
auto reward function in the Visual Studios Project.

IX. LANE LINE DETECTION

Adam Jones, Vidush Vishwanath, Sarvagya Singh,
Devashish Kashikar, Christopher Uy

The lane line detection algorithm is the same as it was last
quarter, but this quarter our focus was on making it faster.
We initially planned to convert the Python code to C++ and
use the OpenCV CUDA wrapper to parallelize functions and
increase performance. The preprocessing functions such as
calculating magnitude and angle were successfully converted
to C++ code because the python code was using the CV2
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library. However, once numpy arrays were being used there
was no direct OpenCV C++ function that mapped to them,
so brand new code was written. Towards the end, it became
too time costly to rewrite function in C++ because some of
the functions we wanted to use like logical-and and logical-
or only existed within the OpenCV CUDA C++ wrapper. At
the time of writing the code, we did not have access to an
NVIDIA Jetson nor the Titan XP.

With this information in conjunction with analysis using
cProfiling and GraphViz time analysis libraries, it was revealed
that translation of program into C++ was not going to make
much difference. These scripts analyzed the lane-line detection
python scripts in run time and created a profile of run-time of
each function invoked by the script. This revealed that most
time was consumed by openCV functions which are actually
implemented in C++ with a Python wrapper around them.
Hence, translation of the lane-line detection would have been
unfruitful. This can also be seen in figure 1 which highlights
the bottlenecks in our lane-line detection script.

However, we found a python wrapper called NumbaJit
which does the same functionality for numpy. By adding
this wrapper and compressing the original video resolution
of the camera to 320x180, the Titan XP was able to run at
99fps. Ultimately, it is important to note that this code was
implemented on a CPU. Therefore, the majority of OpenCV
calculations were done in Serial. It was noted that decreasing
the image size should significantly decrease the amount of time
taken per image and therefore increase the throughput of the
algorithm. We therefore created a simple OpenCV program to
half all the frames extracted from a video file. Running these
frames through the lane line detection program indicated a
massive speedup in throughput.

X. LONG-RANGE PATH PLANNING

Sarvagya Singh

The main focus of long-range path planning is to help the
autonomous car maneuver from point A to B in the actual
world. In order to do so, the car needs an extensive amount of
data that can help it follow an efficient path from the origin
to the destination while continuously guiding it. We used the
Google Maps API to help use resolve this issue.

One can simply provide origin, destination and the mode of
transport to the Google Maps API, and it returns a detailed
data about the path in JSON format. The JSON file is returned
in the form of a web page, so we have to use a web-scraper to
copy the data on our local machine. Once, we have the data
we created a wrapper to access the data, so it can be used to
for the safe maneuver of the car.

Each path is divided into multiple legs where the legs are
divided by turns, merge and freeway entry and exits. The user
can use the wrapper to get detailed data about each leg. The
user can get data about the current leg by using the command
print current step. This gives a detailed description of set
of closely located GPS coordinates that car must follow to
complete the current leg. It also gives detail about the traffic
condition about that leg, data about the transition to the next
leg, duration of the leg, distance of the leg, end location

and start location. All these can be essential for safe and
efficient maneuvering of the car. Once the current leg has been
completed, the user can simply use the next step command to
go to the next leg.

Below is an example showing the details provided by the
API about one of the legs of the path from Davis to San
Jose. The polyline feature is actually encoded set of GPS
coordinates that constitute the path, and is helpful in making
sure that the autonomous car is following the supposed path.

XI. SHORT-TERM PATH PLANNING AND MANEUVERING
USING SLAM

Sam Truong, Sarvagya Singh

Simultaneous Localization and Mapping referred to a com-
putation problem that refers to constructing a map of an
unknown territory, while continuously keeping track of the
mapper with respect to the feature present in the surrounding.
It was useful in case of the autonomous car as it could be
used to map its current traffic environment and helped the car
made better decisions.

For example, in case of pedestrian detection, SLAM could
help us point out the exact physical location of the pedestrian
and ensure its safety. SLAM would also be helpful in ensuring
the safety of the autonomous car when it was merging into the
freeway or changing lanes as it would make sure that the no
obstruction was presented in the blind spots of the car. It would
also be helpful in scenarios involving parallel parking.

For this project, we used the hector SLAM library and
RPLidar in the ROS environment to create a SLAM map
of the local environment, which could be clearly noticed in
the graphic below. The graphic displayed a rough map of
Sam’s room and the blue spot represents the location of the
lidar with respect to Sam’s room (Figure 2). The project was
implemented such the the mapping and the localization data
can be published to a ROS topic, and could be used by our
AI models to make decisions on a finer granularity.

Difficulties and Future Notice

There are several ROS launch files that needed to be
modified before SLAM works. This was because the
default status of the package assumed simulated time.
That meant the input was taken from a pre-recorded file
and not in realtime. Also, the odometry of the Lidar was
also needed to be specified. All changes were saved into
a new ROS package.

Initially, we wanted to put Lidar ROS packages onto
the Raspberry Pi. Since it was decided that the Jetson
would be on board the car, it simplified most of our
installation procedure. ROS was a very particular domain
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Figure 1: Lane Line Detection C++ Analysis

Figure 2: SLAM mapped Sam’s room

that only worked well on Ubuntu machine. The Raspberry
Pi OS (Raspian) required all of its ROS packages to be
built with CMAKE. From our experience, that was a
very tiresome task since built fail rate is high. Moving
ROS packages away from the Pi was a good thing. We
recommended only let the Pi handle motor control later
on. All communications between nodes, including SLAM
nodes, should be processed from Jetson or other Ubuntu
machines.

XII. SHORT-TERM PATH PLANNING USING HEURISTIC A*
WITH POTENTIAL FUNCTION

Sam Truong

This Short-term path planning is different from SLAM because
it offers more fine tuning over how the path is made. While

SLAM offers how to make the car follow a desired path,
heuristic A* can defined what a desired path look like. This
task helped us when it came to studying maneuverability. It
would be helpful later on when we need a reward function
that evaluate the car’s path during Reinforcement Learning.
To further illustrate the difference and role between SLAM
and A*, we can look at the following scenario.

Given a situation where a car needs to move to the right
lane. SLAM will give us a full description of the surrounding
obstacles. With that information, A* (and later Reinforcement
Learning) can sketch out an ideal path for movement. The car
would then incrementally follow that path. SLAM will tell
the car if it was going of the ideal course and readjust the car.
Here, A* assumed the role of a reinforcement learning policy.
It was easier to study and develop A*, but later on the the role
of sketching the path would fall back to a refined RL policy,
once that would be trained with Simulation.

A* algorithm was an extension of Dijkstra’s shortest path
algorithm. However, it did not search every possible next node
in order to find the optimal path. This reduced the amount
of computation, which mean sketching a path in real time is
possible. Not only that, we added a potential function that
associated different weights values to different point in space.
Points that are closer to the obstacles would receive higher
weights. This effectively made the optimal path to be the
one that is furthest away from every obstacles. The following
image describes the optimal A* path with the potential shows
in blur. The weight of the space increases as it is closer to the
obstacles in purple.

Difficulties and Future Notice

We recommended if A* is used to test out the maneuver-
ability of the car in the future, the algorithm should be
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parallelized. This would ensure the algorithm to not be a
bottleneck. The search space of the algorithm could grow
very large if the search space is a test range. We knew
this was a parallelizable operation, since the next nodes
can be processed in parallel.

XIII. ROS PACKAGES FOR COMMUNICATION AMONG
COMPONENTS

Sam Truong, Thanh Le, Adam Jones, Gabriel Lee

This quarter, we anticipated a need for ROS in order to
provide a unified communication layer among our system
components. Our idea was to calculate the steering angle using
the lane line detection algorithm and publish the steering angle
over a ROS topic. This way, the Raspberry Pi could subscribe
to the topic and send the appropriate steering angle to the
motor control board. Although we did not incorporate ROS as
part of our final self-driving RC car, we were able successfully
publish individual topics and subscribe to topics on separate
machines, by publishing values from Sam’s desktop and
subscribing to those topics via laptop.

The reason why we felt we needed ROS was that our system
setup at the beginning of the quarter differed from our system
setup at the end of the quarter. Namely, at the beginning of
the quarter, we envisioned the following pipeline:

1) Produce image frame(s) from fish-eye camera connected
to Raspberry Pi

2) Store frames on Raspberry Pi and publish frame(s) over
ROS over a ”/camera” topic

3) Subscribe to ”/camera” topic on a machine with GPU
processing capabilities (e.g. Sam’s desktop or Jetson
TX2)

4) Process frame(s) on machine, calculate steering angle
based on lane line detection algorithm

5) Publish steering angle over ROS as a ”/steering angle”
topic

6) Subscribe to a ”/steering angle” topic on Raspberry Pi
to receive steering angle value

7) Send steering angle to motor board to turn the servo
motor accordingly

8) Repeat process
In contrast, our current pipeline is a lot simpler:
1) Produce image frame(s) from fish-eye camera connected

to Jetson TX2
2) Process frame(s) on Jetson TX2, calculate steering angle

based on lane line detection algorithm
3) Send steering angle to motor board over a communi-

cation protocol such as UART, SPI (not used) or UDP
(currently used) to turn the servo motor accordingly

4) Repeat process
Clearly, our current work-flow obviates the need for ROS,

opting for a more ad-hoc, specialized approach to communi-
cation over a restrictive, bulky framework such as ROS.

Although we chose to not use ROS for communication in
our final product, our team was able to publish outputs from
the lane line detection algorithm as well as the steering angle
over ROS, as seen in the following image:

Our published topics included:
• left radius of curvature (for the left lane line)
• right radius of curvature (for the right lane line)
• center offset (for the alignment of the detection coloring)
• steering angle (for the Raspberry Pi motor board)
These values, in addition to the actual video frame, are the

outputs of the lane line detection algorithm. The image shows
each topic being published by multiple publisher nodes and
being subscribed to by a single subscriber node.

Apart from publishing values, we were also able to
send/receive messages on multiple machines by connecting
machines on the same network. Specifically, we were able to
communicate between Sam’s desktop and a laptop by setting
up the master node on Sam’s desktop and changing the laptop’s
ROS MASTER URI parameter to be the same as the master
node’s address/port. With our published topics, subscriber
node, and ability to communicate across machines, we were
ready to connect the lane line detection algorithm to the topics
and begin porting our code to the Raspberry Pi.
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Although we were able to group these topics into a single
Data Collection package (consisting of a separate publisher
node and a single subscriber node), our development code only
worked on our laptop, and when we attempted to install ROS
on the Raspberry Pi, we ran into Raspbian compatibility issues
(ROS has mainly been tested for Jessie, not Stretch), particu-
larly with the image transport libraries (image-common).

In particular, when we installed and compiled the image-
common packages (needed for image transport among ROS
nodes), we ran into segmentation fault errors while attempting
to execute example code. We looked into the appropriate
issues on GitHub (https://github.com/ros-perception/image
common/issues/49), but could not resolve the error. We tried
to modify the OpenCV version in our CMakeLists.txt file as
recommended, but this merely resulted in compilation errors.

To deal with this, Thanh and Adam re-installed Raspbian
Jessie and Raspbian Stretch multiple times on the Raspberry
Pi, ultimately setting with Raspbian Stretch, in order to get
the image-common code working. We ended up going with
Raspbian Stretch because it was easier to install dependencies
and libraries on. Eventually, we realized that we didn’t need
ROS (we potentially didn’t even need the Raspberry Pi), and
halted all ROS-related development. As mentioned in the
previous sections, we decided to transport frames from the
Jetson to the Raspberry Pi using UDP instead of SPI or UART,
due to its favorable speed.

Difficulties and Future Notice

The main issues we ran into with incorporating ROS in
our project involved installation and compatibility errors
on our Raspberry Pi. As mentioned above, we had great
difficulty in getting our image-common packages to work
properly with our example executables, which we needed
in order to process the frames (according to our old
pipeline).

Although we did not use ROS this quarter, in the future
we can add it as a alternative/backup method of sending
data among components, assuming that all components
have access to the same network. Furthermore, ROS is
a more scalable, modular method of communicating that
would allow us to perform analytics for the system as a
whole. This would be immensely helpful for optimizing
the car and analyzing its performance, because we would
simply have to subscribe to all the system topics instead
of manually checking each communication interface. We
would be able to aggregate topic data in a single location
(e.g. a GUI) and quickly add new topics for combined
analysis. As the complexity of our car increases, so will
the usefulness of having a modular, unified communica-
tion system among all components.

We also had to re-flash the Raspberry Pi at least 12
times. It took over a week just to get all the dependencies
and libraries that we needed on the Raspberry Pi working
properly.
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